Lizards on Newly Created Islands Independently and Rapidly Adapt in Morphology and Diet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Island Rule Explains Consistent Patterns of Body Size 2 Evolution Across Terrestrial Vertebrates 3
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114835; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The island rule explains consistent patterns of body size 2 evolution across terrestrial vertebrates 3 4 Ana Benítez-López1,2*, Luca Santini1,3, Juan Gallego-Zamorano1, Borja Milá4, Patrick 5 Walkden5, Mark A.J. Huijbregts1,†, Joseph A. Tobias5,† 6 7 1Department of Environmental Science, Institute for Wetland and Water Research, Radboud 8 University, P.O. Box 9010, NL-6500 GL, Nijmegen, the Netherlands. 9 2Integrative Ecology Group, Estación Biológica de Doñana, CSIC, 41092, Sevilla, Spain 10 3National Research Council, Institute of Research on Terrestrial Ecosystems (CNR-IRET), Via 11 Salaria km 29.300, 00015, Monterotondo (Rome), Italy 12 4Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), 13 Madrid 28006, Spain 14 5Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, 15 Berkshire SL5 7PY, United Kingdom 16 *Correspondence to: [email protected]; [email protected] 17 †These two authors contributed equally 18 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114835; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
North American Hydrobiidae (Gastropoda: Rissoacea): Redescription and Systematic Relationships of Tryonia Stimpson, 1865 and Pyrgulopsis Call and Pilsbry, 1886
THE NAUTILUS 101(1):25-32, 1987 Page 25 . North American Hydrobiidae (Gastropoda: Rissoacea): Redescription and Systematic Relationships of Tryonia Stimpson, 1865 and Pyrgulopsis Call and Pilsbry, 1886 Robert Hershler Fred G. Thompson Department of Invertebrate Zoology Florida State Museum National Museum of Natural History University of Florida Smithsonian Institution Gainesville, FL 32611, USA Washington, DC 20560, USA ABSTRACT scribed) in the Southwest. Taylor (1966) placed Tryonia in the Littoridininae Taylor, 1966 on the basis of its Anatomical details are provided for the type species of Tryonia turreted shell and glandular penial lobes. It is clear from Stimpson, 1865, Pyrgulopsis Call and Pilsbry, 1886, Fonteli- cella Gregg and Taylor, 1965, and Microamnicola Gregg and the initial descriptions and subsequent studies illustrat- Taylor, 1965, in an effort to resolve the systematic relationships ing the penis (Russell, 1971: fig. 4; Taylor, 1983:16-25) of these taxa, which represent most of the generic-level groups that Fontelicella and its subgenera, Natricola Gregg and of Hydrobiidae in southwestern North America. Based on these Taylor, 1965 and Microamnicola Gregg and Taylor, 1965 and other data presented either herein or in the literature, belong to the Nymphophilinae Taylor, 1966 (see Hyalopyrgus Thompson, 1968 is assigned to Tryonia; and Thompson, 1979). While the type species of Pyrgulop- Fontelicella, Microamnicola, Nat ricola Gregg and Taylor, 1965, sis, P. nevadensis (Stearns, 1883), has not received an- Marstonia F. C. Baker, 1926, and Mexistiobia Hershler, 1985 atomical study, the penes of several eastern species have are allocated to Pyrgulopsis. been examined by Thompson (1977), who suggested that The ranges of both Tryonia and Pyrgulopsis include parts the genus may be a nymphophiline. -
BASTERIA, 101-113, 1998 Hydrobia (Draparnaud, 1805) (Gastropoda
BASTERIA, Vol 61: 101-113, 1998 Note on the occurrence of Hydrobia acuta (Draparnaud, 1805) (Gastropoda, Prosobranchia: Hydrobiidae) in western Europe, with special reference to a record from S. Brittany, France D.F. Hoeksema Watertoren 28, 4336 KC Middelburg, The Netherlands In August 1992 samples of living Hydrobia acuta (Draparnaud, 1805) have been collected in the Baie de Quiberon (Morbihan, France). The identification is elucidated. Giusti & Pezzoli (1984) and Giusti, Manganelli& Schembri (1995) suggested that Hydrobia minoricensis (Paladilhe, of H. The features ofthe 1875) and Hydrobia neglecta Muus, 1963, are junior synomyms acuta. material from Quiberon support these suggestions: it will be demonstrated that H. minoricensis and H. neglecta fit completely in the conception of H. acuta. H. acuta, well known from the be also distributed in and northwestern Mediterranean, appears to widely western Europe. Key words: Gastropoda,Prosobranchia, Hydrobiidae,Hydrobia acuta, distribution, France. Europe. INTRODUCTION In favoured localities often hydrobiid species are very abundant, occurring in dense populations. Some species prefer fresh water, others brackish or sea-water habitats. in the distributionof Although salinity preferences play a part determining each species, most species show a broad tolerance as regards the degree of salinity. Frequently one live in the habitat with Some hydrobiid species may same another. hydrobiid species often dealt with are in publications on marine species as well in those on non-marine Cachia Giusti species (e.g. et al., 1996, and et al., 1995). Many hydrobiid species are widely distributed, but often in genetically isolated populations; probably due to dif- ferent circumstances ecological the species may show a considerablevariability, especially as to the dimensions and the shape of the shell and to the pigmentation of the body. -
Rethinking Easter Island's Ecological Catastrophe
ARTICLE IN PRESS + MODEL Journal of Archaeological Science xx (2006) 1e18 http://www.elsevier.com/locate/jas Rethinking Easter Island’s ecological catastrophe Terry L. Hunt Department of Anthropology, University of Hawai’i-Manoa, 2424 Maile Way Honolulu, HI 96822, USA Received 25 June 2006; received in revised form 1 October 2006; accepted 2 October 2006 Abstract Rapa Nui (Easter Island) has become a paragon for prehistoric human induced ecological catastrophe and cultural collapse. A popular nar- rative recounts an obsession for monumental statuary that led to the island’s ecological devastation and the collapse of the ancient civilization. Scholars offer this story as a parable of today’s global environmental problems. In this paper, I review new and emerging Rapa Nui evidence, compare ecological and recently acquired palaeo-environmental data from the Hawaiian and other Pacific Islands, and offer some perspectives for the island’s prehistoric ecological transformation and its consequences. The evidence points to a complex historical ecology for the island; one best explained by a synergy of impacts, particularly the devastating effects of introduced rats (Rattus exulans). This perspective questions the simplistic notion of reckless over-exploitation by prehistoric Polynesians and points to the need for additional research. Ó 2006 Elsevier Ltd. All rights reserved. Keywords: Easter Island; Rapa Nui; Deforestation; Ecocide; Collapse; Rats; Rattus exulans; Invasive species ‘‘It ain’t what you don’t know that gets you into trouble. It’s archaeological records also reveals a more complex historical what you know for sure that just ain’t so.’’ Mark Twain ecology for the island; one best explained by a synergy of impacts, rather than simply the reckless over-exploitation by Easter Island (Rapa Nui) has become the paragon for pre- prehistoric Polynesians. -
On Christmas Island. the Presence of Trypanosoma in Cats and Rats (From All Three Locations) and Leishmania
Invasive animals and the Island Syndrome: parasites of feral cats and black rats from Western Australia and its offshore islands Narelle Dybing BSc Conservation Biology, BSc Biomedical Science (Hons) A thesis submitted to Murdoch University to fulfil the requirements for the degree of Doctor of Philosophy in the discipline of Biomedical Science 2017 Author’s Declaration I declare that this thesis is my own account of my research and contains as its main content work that has not previously been submitted for a degree at any tertiary education institution. Narelle Dybing i Statement of Contribution The five experimental chapters in this thesis have been submitted and/or published as peer reviewed publications with multiple co-authors. Narelle Dybing was the first and corresponding author of these publications, and substantially involved in conceiving ideas and project design, sample collection and laboratory work, data analysis, and preparation and submission of manuscripts. All publication co-authors have consented to their work being included in this thesis and have accepted this statement of contribution. ii Abstract Introduced animals impact ecosystems due to predation, competition and disease transmission. The effect of introduced infectious disease on wildlife populations is particularly pronounced on islands where parasite populations are characterised by increased intensity, infra-community richness and prevalence (the “Island Syndrome”). This thesis studied parasite and bacterial pathogens of conservation and zoonotic importance in feral cats from two islands (Christmas Island, Dirk Hartog Island) and one mainland location (southwest Western Australia), and in black rats from Christmas Island. The general hypothesis tested was that Island Syndrome increases the risk of transmission of parasitic and bacterial diseases introduced/harboured by cats and rats to wildlife and human communities. -
Special Issue3.7 MB
Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird -
The Biogeography of Large Islands, Or How Does the Size of the Ecological Theater Affect the Evolutionary Play
The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly To cite this version: Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly. The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play. Revue d’Ecologie, Terre et Vie, Société nationale de protection de la nature, 2007, 62, pp.105-168. hal-00283373 HAL Id: hal-00283373 https://hal.archives-ouvertes.fr/hal-00283373 Submitted on 14 Dec 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE BIOGEOGRAPHY OF LARGE ISLANDS, OR HOW DOES THE SIZE OF THE ECOLOGICAL THEATER AFFECT THE EVOLUTIONARY PLAY? Egbert Giles LEIGH, Jr.1, Annette HLADIK2, Claude Marcel HLADIK2 & Alison JOLLY3 RÉSUMÉ. — La biogéographie des grandes îles, ou comment la taille de la scène écologique infl uence- t-elle le jeu de l’évolution ? — Nous présentons une approche comparative des particularités de l’évolution dans des milieux insulaires de différentes surfaces, allant de la taille de l’île de La Réunion à celle de l’Amé- rique du Sud au Pliocène. -
Changing Invaders: Trends of Gigantism in Insular Introduced Rats
Environmental Conservation (2018) 45 (3): 203–211 C Foundation for Environmental Conservation 2018 doi:10.1017/S0376892918000085 Changing invaders: trends of gigantism in insular THEMATIC SECTION Humans and Island introduced rats Environments ALEXANDRA A.E. VAN DER GEER∗ Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands Date submitted: 7 November 2017; Date accepted: 20 January 2018; First published online 14 March 2018 SUMMARY within short historical periods (Rowe-Rowe & Crafford 1992; Michaux et al. 2007;Renaudet al. 2013; Lister & Hall 2014). The degree and direction of morphological change in Additionally, invasive species may also alter the evolutionary invasive species with a long history of introduction pathway of native species by mechanisms such as niche are insufficiently known for a larger scale than the displacement, hybridization, introgression and predation (e.g. archipelago or island group. Here, I analyse data for 105 Mooney & Cleland 2001; Stuart 2014; van der Geer et al. island populations of Polynesian rats, Rattus exulans, 2013). The timescale and direction of evolution of invasive covering the entirety of Oceania and Wallacea to test rodents are, however, insufficiently known. Data on how whether body size differs in insular populations and, they evolve in interaction with native species are urgently if so, what biotic and abiotic features are correlated needed with the increasing pace of introductions today due to with it. All insular populations of this rat, except globalized transport: invasive rodent species are estimated to one, exhibit body sizes up to twice the size of their have already colonized more than 80% of the world’s island mainland conspecifics. -
Seabird Recovery and Vegetation Dynamics After Norway Rat Eradication at Tromelin Island, Western Indian Ocean Matthieu Le Corre, D
Seabird recovery and vegetation dynamics after Norway rat eradication at Tromelin Island, western Indian Ocean Matthieu Le Corre, D. K. Danckwerts, David Ringler, Matthieu Bastien, S. Orlowski, C. Morey Rubio, David Pinaud, Thierry Micol To cite this version: Matthieu Le Corre, D. K. Danckwerts, David Ringler, Matthieu Bastien, S. Orlowski, et al.. Seabird recovery and vegetation dynamics after Norway rat eradication at Tromelin Island, western Indian Ocean. Biological Conservation, Elsevier, 2015, 185, pp.85-94. 10.1016/j.biocon.2014.12.015. hal- 01207081 HAL Id: hal-01207081 https://hal.archives-ouvertes.fr/hal-01207081 Submitted on 26 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Seabird recovery and vegetation dynamics after Norway rat eradication at Tromelin Island, western Indian Ocean ⇑ M. Le Corre a, , D.K. Danckwerts a,b, D. Ringler a,d, M. Bastien a, S. Orlowski a, C. Morey Rubio a, D. Pinaud c, T. Micol d,e a Laboratoire ECOMAR, FRE3560, Université de La Réunion, INEE-CNRS, 97715 Saint Denis messag cedex 9, France b Department of Zoology and Entomology. Rhodes University, Grahamstown 6140, South Africa c CEBC, UMR7372, CNRS/Université de La Rochelle, 79360 Villiers en Bois, France d TAAF, Rue Gabriel Dejean, 97410 Saint-Pierre, Reunion e LPO, Fonderies Royales, 10 rue du Dr Pujos, 17305 Rochefort, France abstract Seabirds are notoriously sensitive to introduced mammalian predators and eradication programs have benefitted seabird populations and their habitats on numerous islands throughout the world. -
Lutetiella, a New Genus of Hydrobioids from the Middle Eocene (Lutetian) of the Upper Rhine Graben and Paris Basin (Mollusca: Gastropoda: Rissooidea S
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Geologica Saxonica - Journal of Central European Geology Jahr/Year: 2015 Band/Volume: 61 Autor(en)/Author(s): Kadolsky Dietrich Artikel/Article: Lutetiella, ein neues Genus von Hydrobioiden aus dem Mitteleozän (Lutetium) des Oberrheingrabens und Pariser Beckens (Mollusca: Gastropoda: Rissooidea s. lat.) 35-51 61 (1): 35 – 51 2 Jan 2015 © Senckenberg Gesellschaft für Naturforschung, 2015. Lutetiella, a new genus of hydrobioids from the Middle Eocene (Lutetian) of the Upper Rhine Graben and Paris Basin (Mollusca: Gastropoda: Rissooidea s. lat.) Lutetiella, ein neues Genus von Hydrobioiden aus dem Mitteleozän (Lutetium) des Oberrheingrabens und Pariser Beckens (Mollusca: Gastropoda: Rissooidea s. lat.) Dietrich Kadolsky 66 Heathhurst Road, Sanderstead, Surrey CR2 0BA, United Kingdom; [email protected] Revision accepted 17 November 2014. Published online at www.senckenberg.de/geologica-saxonica on 1 December 2014. Abstract Lutetiella n.gen. is proposed for Lutetiella hartkopfi n. sp. (type species) and L. conica (Prévost 1821) from the Middle Eocene (Lutetian) of the Upper Rhine Graben and Paris Basin, respectively. The protoconch microsculpture of L. hartkopfi n. sp. was occasionally preserved and proved to be a variant of the plesiomorphic hydrobioid pattern. The new genus is tentatively placed in Hydrobiidae. Problems in the classi- fication of hydrobioid fossils are discussed, arising from the dearth of distinguishing shell characters. Previous attributions of L. conica to Assiminea or Peringia are shown to be incorrect. The name Paludina conica Férussac 1814, a senior primary homonym of Paludina conica Prévost 1821, and denoting an unidentifiable hydrobioid, threatens the validity of the nameLutetiella conica (Prévost 1821) and should be suppressed. -
The Specific Vulnerability of Plant Biodiversity and Vegetation on Mediterranean Islands in the Face of Global Change Frederic Medail
The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change Frederic Medail To cite this version: Frederic Medail. The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change. Regional Environmental Change, Springer Verlag, 2017, 17 (6), pp.1775-1790. 10.1007/s10113-017-1123-7. hal-01681626 HAL Id: hal-01681626 https://hal.archives-ouvertes.fr/hal-01681626 Submitted on 7 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Reg Environ Change (2017) 17:1775–1790 DOI 10.1007/s10113-017-1123-7 REVIEW ARTICLE The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change Fre´de´ric Me´dail1 Received: 5 October 2016 / Accepted: 3 February 2017 / Published online: 23 March 2017 Ó Springer-Verlag Berlin Heidelberg 2017 Abstract The numerous Mediterranean islands ([10,000) refugia’ to ensure the long-term preservation of coastal are very important from a biodiversity point of view, both plant biodiversity. They also represent fascinating ecolog- in term of plant species (numerous endemics, presence of ical systems to disentangle the role of environmental versus ‘climate relicts’) and of ecosystems’ assemblage. -
The Yellow Pigment Cells of Hydrobia Ulvae (Pennant) (Mollusca : Prosobranchia) J.D
J. moll. Stud. (1979), 45, 345-352 THE YELLOW PIGMENT CELLS OF HYDROBIA ULVAE (PENNANT) (MOLLUSCA : PROSOBRANCHIA) J.D. FISH Downloaded from https://academic.oup.com/mollus/article/45/3/345/1003004 by guest on 29 September 2021 Department of Zoology, University College of Wales, Penglais, Aberystwyth, SY23 3DA. (Received 3 January 1979) ABSTRACT The distribution of yellow pigment cells in the veliger larvae and post-metamorphic snails of Hydrobia ulvae has been recorded. The number of cells increases with the size of the snail and the pigment is characteristic of the foot of the veliger larva, and the foot, mantle, tentacles and penis of adult snails. The cells contain numerous, double membrane-bound vesicles and have a highly granular cytoplasm. The absorption spectra of acetone and methanolic HC1 extracts show single peaks at 337 and 392 nm respectively, while chloroform extracts show peaks at 249, 274 and 283 nm with an inflexion at 293 nm. The pigment has a pale green fluorescence in ultra- violet light. The results of feeding and starvation experiments using larval and post-metamorphic snails lead to the hypothesis that the pigment is a waste product of metabolism which is stored in the vesicles of the cells. INTRODUCTION One of the characteristic features of the veliger larva of Hydrobia ulvae is a number of conspicuous pigment cells arranged in a V-shaped area on the mesopodium. These distinct cells appear black under transmitted light and yellow-green under reflected light and were first recorded by Henking (1894). It has subsequently been shown that they are an important aid in identification and are one of the characters by which the veligers of Hydrobia can be readily separated from those of the edible periwinkle, Littorina littorea (L.) (Fish & Fish, 1977) with which they are often found in inshore waters.