AMS Dottorato

Total Page:16

File Type:pdf, Size:1020Kb

AMS Dottorato Alma Mater Studiorum - Università di Bologna Facoltà di Ingegneria - DISTART Dottorato di Ricerca in SCIENZE GEODETICHE E TOPOGRAFICHE Raggruppamento disciplinare ICAR 06 STUDIO DELLE DEFORMAZIONI GRAVITAZIONALI DELLE ANTENNE VLBI DI MEDICINA E DI NOTO CON METODOLOGIE LASER SCANNING, TOPOGRAFICHE E FEM Tesi di Dottorato di: Tutori: Ing. Simonetta Montaguti Prof. Luca Vittuari Dott. Pierguido Sarti Coordinatore: Prof. Gabriele Bitelli XX Ciclo QUESTA TESI E’ STATA SVOLTA NELL’AMBITO DELLE ATTIVITA’ DI RICERCA FINANZIATE DALL’ISTITUTO DI RADIOASTRONOMIA DELL’ISTITUTO NAZIONALE DI ASTROFISICA DI BOLOGNA Parole chiave PAROLE CHIAVE ANTENNE VLBI DEFORMAZIONI GRAVITAZIONALI LASER SCANNING GEODESIA CLASSICA ELEMENTI FINITI Indice INDICE Introduzione 1 1. VLBI ( Very Long Baseline Interferometry) 5 1.1 Introduzione alla interferometria radio 5 1.1.1 La tecnica VLBI 9 1.1.2 Applicazioni della tecnica VLBI 15 1.2 Radiotelescopi di Medicina e di Noto 20 1.2.1 Tipologie dei radiotelescopi 26 1.2.2 Punto di riferimento delle tecniche geodetiche spaziali 28 1.2.3 Deformazioni strutturali delle antenne VLBI 32 2. Tecniche integrate laser scanning e topografiche per la misura delle deformazioni gravitazionali delle antenne VLBI di Medicina e di Noto 37 2.1 Introduzione ai sistemi laser scanner terrestri 37 2.1.1 Principi di acquisizione 39 2.1.2 Procedure di rilievo e data processing 44 2.2 Indagini laser realizzate presso i radiotelescopi di Medicina e di Noto 46 2.3 Considerazioni pratiche ed operative sulle procedure di rilievo topografiche 49 2.4 Indagini topografiche realizzate presso i radiotelescopi di Medicina e di Noto 52 3. FEM ( Finite Element Method) 57 3.1 Introduzione ai modelli numerici 57 3.1.1 Presentazione del metodo 58 3.1.2 Proprietà del metodo 62 i Indice 3.2 Modello agli elementi finiti realizzato per il radiotelescopio di Medicina 72 4. Analisi e confronti fra le diverse metodologie 81 4.1 Post-processing dei dati laser e relativi risultati 81 4.1.1 Codice realizzato in Fortran 90 per la stima del paraboloide di best-fit 97 4.2 Post-processing dei dati topografici e relativi risultati 102 4.3 Deformazioni gravitazionali del riflettore primario dei telescopi VLBI: laser scanning e FEM a confronto 107 4.4 Deformazioni gravitazionali del quadrupode dei telescopi VLBI: osservazioni topografiche e FEM a confronto 114 Conclusioni 120 Bibliografia 124 Appendice A Nodal solution: output dell’elaborazione Ansys per il modello matematico alla elevazione di 90° 131 ii Introduzione INTRODUZIONE Le antenne paraboliche di Medicina (BO) e di Noto (SR) sono dei telescopi realizzati nell'ambito del progetto nazionale VLBI (Very Long Baseline Interferometry ), per operare in collegamento con altri radiotelescopi esteri, sfruttando la tecnica interferometrica a lunga base (Sovers et al. 1998, Thompson et al. 2001). Tali antenne, in particolare, fanno parte delle reti europee per l'astronomia, EVN (European VLBI Network ) e per la Geodesia e, in quest’ultimo settore, partecipano ai programmi osservativi gestiti e coordinati dall’International VLBI Service for Geodesy and Astrometry , IVS (http://ivscc.gsfc.nasa.gov/). Negli ultimi anni, l’attenzione della comunità geodetica internazionale si è concentrata sulla necessità di realizzare misure di alta precisione dei vettori eccentricità tra i punti di riferimento delle diverse tecniche geodetiche co-locate presso il medesimo osservatorio. Quest’approccio, oltre a garantire un effettivo apporto delle local ties in sede di compensazione ITRF (Altamimi et. al. 2002, Altamimi et. al. 2005, Altamimi et. al. 2007) e per gli altri parametri combinati (e.g. Kruegel et al. 2007, Thaller et al. 2007), permette di valorizzare il ruolo degli osservatori geodetici multi-tecnica anche nelle applicazioni a scala nazionale, regionale e locale. In particolare, la possibilità di collegare i punti di riferimento di tecniche, quali VLBI, SLR ( Satellite Laser Ranging ), DORIS ( Doppler Orbitography Radiopositioning Integrated by Satellite ) e GPS ( Global Positioning System ), a reti terrestri consente l’inquadramento di reti locali, anche di carattere tecnico, nel sistema di riferimento internazionale (Sarti e Vittuari 2004). Gli osservatori di Medicina e di Noto sono entrambi dei siti co- locati ITRF dove i vettori eccentricità fra le due tecniche presenti, GPS-VLBI, vengono regolarmente rilevati utilizzando un metodo 1 Introduzione indiretto basato su osservazioni terrestri di elevata precisione (Sarti et al. 2004). Entrambe le local ties , rilasciate nel formato SINEX (Solution Independent Exchange format ) con la rigorosa matrice di varianza e covarianza, sono state utilizzate nel più recente calcolo del sistema di riferimento internazionale terrestre: ITRF2005 (Altamimi et al. 2007). Diverse sono le cause che possono influenzare la precisione nella stima delle eccentricità: la stabilità dei punti di riferimento dei diversi strumenti geodetici spaziali co-locati riveste un ruolo fondamentale. La posizione teorica del reference point è ben definita per ogni strumento geodetico spaziale (Sarti e Angermann 2005) ma la sua realizzazione fisica potrebbe subire notevoli variazioni a causa della gravità e dei gradienti termici che tendono a modificare la struttura del telescopio VLBI. Modelli di deformazione dipendenti dalla temperatura sono attualmente in fase di definizione allo scopo di valutare l’influenza delle variazioni termiche durante le osservazioni (Nothnagel et al. 1995, Wresnik et al. 2007). Difficilmente modellabili risultano invece le deformazioni gravitazionali che tendono a degradare le osservazioni geodetiche VLBI e a diminuire l'accuratezza dei parametri geodetici stimati (Carter et al. 1980). I metodi indiretti per la stima del punto di riferimento, basati su osservazioni terrestri di targets distribuiti sulla struttura esterna del radiotelescopio, possono fornire importanti informazioni riguardanti le deformazioni di alcune parti della struttura del telescopio ma non sono in grado di descrivere completamente la variazione del percorso del segnale VLBI dovuto alle deformazioni gravitazionali. Al fine di creare un modello di elevazione che tenga conto delle variazioni del percorso del segnale indotte dalla gravità occorre determinare la variazione di posizione dei ricevitori, lo scivolamento del dish e le variazioni della distanza focale (Clark e Thomsen 1988). 2 Introduzione Nei telescopi VLBI le variazioni della distanza focale sono direttamente legate alle deformazioni della specchio primario (paragrafo 1.2-3). Nel settembre del 2005, la forma del riflettore primario delle antenne VLBI di Medicina e di Noto, a differenti elevazioni (90°, 75°, 60°, 45°, 30°, 15°), è stata da noi direttamente determinata mediante un’indagine laser di tipo terrestre. Il sistema laser utilizzato, Trimble- Mensi GS200 (http://www.trimble.com/gs200.shtml), è stato posizionato in prossimità del fuoco secondario, su due supporti creati ad hoc per questo tipo di indagine e la distanza focale, nonché gli altri parametri geometrici del paraboloide, sono stati stimati utilizzando un approccio best-fit applicato alle nuvole di punti acquisite. L’indagine laser è stata integrata con osservazioni terrestri realizzate da due total stations di alta precisione; TDA5005 (15 mgon; 1 millimetro + 2 ppm), TC2003 (0,15 mgon; 1 millimetro + 1ppm). In particolare, le indagini topografiche hanno permesso l’inserimento delle nuvole laser all’interno dello stesso sistema topocentrico utilizzato per la stima delle local ties . Inoltre, grazie alle campagne di misura realizzate nel mese di ottobre 2006, presso l’osservatorio di Medicina, e nel mese di agosto 2007 in entrambi i telescopi VLBI di Medicina e di Noto, è stato possibile valutare le deformazioni gravitazionali del quadrupode. Infine, per poter confrontare e confermare le deformazioni gravitazionali del riflettore primario e del quadrupode, ricavate dalle indagini laser e topografiche, un modello agli elementi finiti è stato applicato all’antenna di Medicina. Di seguito viene brevemente illustrata la struttura attraverso la quale si articolerà la presente tesi. Capitolo 1. Breve introduzione alla interferometria radio fino a giungere alla descrizione della tecnica interferometrica ad elementi disconnessi ( Very Long Baseline Interferometry ) e alle sue principali 3 Introduzione applicazioni soprattutto in campo geodetico. Descrizione delle caratteristiche geometriche e tecniche delle antenne VLBI di Medicina e di Noto, delle loro differenze e delle deformazioni strutturali a cui esse possono essere soggette. Definizione dei reference points per le principali tecniche geodetiche spaziali e breve illustrazione del procedimento indiretto utilizzato per determinare l’ invariant point per la tecnica VLBI. Capitolo 2. Considerazioni pratiche ed operative sulle procedure di rilievo utilizzate per lo studio delle deformazioni gravitazionali dei radiotelescopi di Medicina e di Noto ( laser scanning terrestre e topografia). Descrizione di tutte le operazioni, le soluzioni tecniche, gli accorgimenti adottati in entrambe la campagne di misura e le problematiche incontrate. Capitolo 3. Illustrazione dei concetti di base e delle caratteristiche generali su cui si fonda il metodo di analisi strutturale agli elementi finiti e delle fasi fondamentali attraverso le quali si esplica l’analisi stessa con questo tipo di approccio. Descrizione di tutti gli schemi strutturali agli elementi finiti, delle condizioni di carico e di vincolo adottate nel modello dell’antenna VLBI di Medicina. Capitolo
Recommended publications
  • Istituto Di Radioastronomia Inaf
    ISTITUTO DI RADIOASTRONOMIA INAF STATUS REPORT October 2007 http://www.ira.inaf.it/ Chapter 1. STRUCTURE AND ORGANIZATION The Istituto di Radioastronomia (IRA) is presently the only INAF structure with divisions distributed over the national territory. Such an organization came about because IRA was originally a part of the National Council of Research (CNR), which imposed the first of its own reforms in 2001. The transition from CNR to INAF began in 2004 and was completed on January 1st , 2005. The Institute has its headquarters in Bologna in the CNR campus area, and two divisions in Firenze and Noto. The Medicina station belongs to the Bologna headquarters. A fourth division is foreseen in Cagliari at the Sardinia Radiotelescope site. The IRA operates 3 radio telescopes: the Northern Cross Radio Telescope (Medicina), and two 32-m dishes (Medicina and Noto), which are used primarily for Very Long Baseline Interferometry (VLBI) observations. The IRA leads the construction of the Sardinia Radio Telescope (SRT), a 64-m dish of new design. This is one of the INAF large projects nowadays. The aims of the Institute comprise: - the pursuit of excellence in many research areas ranging from observational radio astronomy, both galactic and extragalactic, to cosmology, to geodesy and Earth studies; - the design and management of the Italian radio astronomical facilities; - the design and fabrication of instrumentation operating in bands from radio to infrared and visible. Main activities of the various sites include: Bologna: The headquarters are responsible for the institute management and act as interface with the INAF central headquarters in Roma. Much of the astronomical research is done in Bologna, with major areas in cosmology, extragalactic astrophysics, star formation and geodesy.
    [Show full text]
  • NATIONAL ACADEMIES of SCIENCES and ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES of AMERICA
    NATIONAL ACADEMIES OF SCIENCES AND ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES OF AMERICA UNITED STATES NATIONAL COMMITTEE International Union of Radio Science National Radio Science Meeting 4-8 January 2000 Sponsored by USNC/URSI University of Colorado Boulder, Colorado U.S.A. United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE PROGRAM AND ABSTRACTS National Radio Science Meeting 4-8 January 2000 Sponsored by USNC/URSI NOTE: Programs and Abstracts of the USNC/URSI Meetings are available from: USNC/URSI National Academy of Sciences 2101 Constitution Avenue, N.W. Washington, DC 20418 at $5 for 1983-1999 meetings. The full papers are not published in any collected format; requests for them should be addressed to the authors who may have them published on their own initiative. Please note that these meetings are national. They are not organized by the International Union, nor are the programs available from the International Secretariat. ii MEMBERSHIP United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE Chair: Gary Brown* Secretary & Chair-Elect: Umran S. !nan* Immediate Past Chair: Susan K. Avery* Members Representing Societies, Groups, and Institutes: American Astronomical Society Thomas G. Phillips American Geophysical Union Donald T. Farley American Meteorological Society vacant IEEE Antennas and Propagation Society Linda P.B. Katehi IEEE Geosciences and Remote Sensing Society Roger Lang IEEE Microwave Theory and Techniques Society Arthur A. Oliner Members-at-Large: Amalia Barrios J. Richard Fisher Melinda Picket-May Ronald Pogorzelski W. Ross Stone Richard Ziolkowski Chairs of the USNC/URSI Commissions: Commission A Moto Kanda Commission B Piergiorgio L. E. Uslenghi Commission C Alfred 0.
    [Show full text]
  • Wikipedia, the Free Encyclopedia
    SKA newsletter Volume 21 - April 2011 The Square Kilometre Array Exploring the Universe with the world’s largest radio telescope www.skatelescope.org Please click the relevant section title to skip to that section 03 Project news 04 From the SPDO 05 SKA science 08 Engineering update 10 Site characterisation 12 Outreach update 14 Industry participation 17 News from around the world 18 Africa 20 Australia and New Zealand 23 Canada 25 China 28 Europe 31 India 33 US 35 Future meetings and events Project news Project news 04 From the SPDO Crucial steps for the SKA project were At its first meeting on 2 April, the Founding taken in the last week of March 2011. A Board decided that the location of the SKA Founding Board was created with the Project Office (SPO) will be at the Jodrell aim of establishing a legal entity for the Bank Observatory near Manchester in the project by the time of the SKA Forum in UK. This decision followed a competitive Canada in early July, as well as agreeing bidding process in which a number of the resourcing of the Project Execution excellent proposals were evaluated in an Plan for the Pre-construction Phase international review process. The SPO, which from 2012 to 2015. The Founding Board is hoped to grow to 60 people over the next replaces the Agencies SKA Group with four years, will supersede the SPDO currently immediate effect. Prof John Womersley based at the University of Manchester. The from the UK’s Science and Technology physical move to a new building at Jodrell Facilities Council (STFC) was elected Bank Observatory is scheduled for mid-2012.
    [Show full text]
  • Table of Contents - 1 - - 2
    Table of contents - 1 - - 2 - Table of Contents Foreword 5 1. The European Consortium for VLBI 7 2. Scientific highlights on EVN research 9 3. Network Operations 35 4. VLBI technical developments and EVN operations support at member institutes 47 5. Joint Institute for VLBI in Europe (JIVE) 83 6. EVN meetings 105 7. EVN publications in 2007-2008 109 - 3 - - 4 - Foreword by the Chairman of the Consortium The European VLBI Network (EVN) is the result of a collaboration among most major radio observatories in Europe, China, Puerto Rico and South Africa. The large radio telescopes hosted by these observatories are operated in a coordinated way to perform very high angular observations of cosmic radio sources. The data are then correlated by using the EVN correlator at the Joint Institute for VLBI in Europe (JIVE). The EVN, when operating as a single astronomical instrument, is the most sensitive VLBI array and constitutes one of the major scientific facilities in the world. The EVN also co-observes with the Very Long Baseline Array (VLBA) and other radio telescopes in the U.S., Australia, Japan, Russia, and with stations of the NASA Deep Space Network to form a truly global array. In the past, the EVN also operated jointly with the Japanese space antenna HALCA in the frame of the VLBI Space Observatory Programme (VSOP). The EVN plans now to co-observe with the Japanese space 10-m antenna ASTRO-G, to be launched by 2012, within the frame of the VSOP-2 project. With baselines in excess of 25.000 km, the space VLBI observations provide the highest angular resolution ever achieved in Astronomy.
    [Show full text]
  • Radio Astronomy Across Europe
    Radio astronomy across Europe Wilfred Frieswijk* & ERATec Network Activity [email protected] * ASTRON Netherlands Institute for Radio Astronomy Abstract Europe has a long and outstanding history in radio astronomy. It currently hosts numerous of world-class facilities spread around the globe, some of which well-known, others being less familiar. The map below gives an overview of associated radio observatories accessible for the general astronomical community. Trans-national access (TNA) Capabilities The objectives of the Transnational Access portion of RadioNet3 are ERATec The receivers available on the various • to draw together all of the European radio facilities under one umbrella; The main activity of the RadioNet3 telescopes operate in the radio regime, • to enable the European user community to have easy and transparent European Radio Astronomy Technical covering frequencies from ~10 MHz access to the entire range of facilities; Forum is to organise and support to 1 THz. With dish-sizes ranging • to offer the European user community an integrated, professional and meetings and workshops that help to from ~10 to 100 meters and baselines consistent level of user support. identify synergies and develop up to >1000 kilometers, spatial complementary capabilities at the website: http://www.radionet-eu.org/transnational-access resolutions can be achieved down to observatories, to determine how the sub-arc-second scales, thus matching pooling of resources might lead to those obtained at infrared- and optical Open time common solutions
    [Show full text]
  • CESRA Workshop 2019: the Sun and the Inner Heliosphere Programme
    CESRA Workshop 2019: The Sun and the Inner Heliosphere July 8-12, 2019, Albert Einstein Science Park, Telegrafenberg Potsdam, Germany Programme and abstracts Last update: 2019 Jul 04 CESRA, the Community of European Solar Radio Astronomers, organizes triennial workshops on investigations of the solar atmosphere using radio and other observations. Although special emphasis is given to radio diagnostics, the workshop topics are of interest to a large community of solar physicists. The format of the workshop will combine plenary sessions and working group sessions, with invited review talks, oral contributions, and posters. The CESRA 2019 workshop will place an emphasis on linking the Sun with the heliosphere, motivated by the launch of Parker Solar Probe in 2018 and the upcoming launch of Solar Orbiter in 2020. It will provide the community with a forum for discussing the first relevant science results and future science opportunities, as well as on opportunity for evaluating how to maximize science return by combining space-borne observations with the wealth of data provided by new and future ground-based radio instruments, such as ALMA, E-OVSA, EVLA, LOFAR, MUSER, MWA, and SKA, and by the large number of well-established radio observatories. Scientific Organising Committee: Eduard Kontar, Miroslav Barta, Richard Fallows, Jasmina Magdalenic, Alexander Nindos, Alexander Warmuth Local Organising Committee: Gottfried Mann, Alexander Warmuth, Doris Lehmann, Jürgen Rendtel, Christian Vocks Acknowledgements The CESRA workshop has received generous support from the Leibniz Institute for Astrophysics Potsdam (AIP), which provides the conference venue at Telegrafenberg. Financial support for travel and organisation has been provided by the Deutsche Forschungsgemeinschaft (DFG) (GZ: MA 1376/22-1).
    [Show full text]
  • Presentazione Standard Di Powerpoint
    G. Serra, F. Gaudiomonte e G.Valente [email protected] Italian National Institute for Astrophysics Sardinia Radio Telescope Astronomical Observatory of Cagliari PhD Summer School “Seminario di eccellenza Italo Gorini” Selargius, OAC, September 8, 2016 In the morning 9:30-12:30, at OAC General talk about radio astronomy and SRT (G. Serra) Introduction to Radio Frequency measurement by Vectorial Network Analyzer (VNA), (G. Valente) Introduction to Radio Frequency Interference (RFI) measurement (F. Gaudiomonte) Labs tour: ◦ VNA calibration and S-parameter measurement of a Low Noise Amplifier (at room temp) ◦ Visit at mechanical shop and electronic/optical laboratory In the afternoon 4-5:30, at SRT site ◦ a close look at telescope, control room and apparatus box ◦ an experience with the RFI mobile laboratory Agenda Radio Frequency Measurements for SRT Radio astronomy in a nutshell ◦ System temperature ◦ Antenna temperature ◦ Large reflector antennas ◦ Radio cosmic signals ◦ Receivers noise temperature ◦ Antenna temperature due to atmosphere ◦ Telescope system sensitivity ◦ Frequency bands allocated to radio astronomy service (RAS) ◦ Radio Frequency Interference (RFI) monitoring Sardinia Radio Telescope Summary Agenda “Radio astronomy is the study of radio waves originating outside the Earth. The radio range of frequency (ν) ( or wavelength (λ)) is loosely defined by three factors” [see http://www.cv.nrao.edu/course]: atmospheric transparency quantum thermal noise current technology “Together they yield a boundary between radio and far-infrared astronomy”: Upper limit: ν~ 1 THz (1012 Hz) or λ =c/ν ~ 0.3 mm (molecular absorption of the atmosphere) Lower limit: ν~ 50 MHz (107 Hz) or λ =c/ν ~ 6 m (ionosheric refraction) c = speed of light Radio astronomy in a nutshell The water vapor start affecting the ground based radio astronomical observations above 10 GHz (λ < 3 cm) Radio astronomy in a nutshell The water vapour (IWV) content is the main limiting factor for ground based radio astronomical observations (at frequency >20 GHz).
    [Show full text]
  • Neue Ergebnisse Und Perspektiven Der Radioastronomie
    Sommersemester 2006 Neue Ergebnisse und Perspektiven der Radioastronomie 1 Neue Ergebnisse und Perspektiven der Radioastronomie • 05.05: Einführung & Übersicht • 12.05. Radioteleskope & Radiobilder & RFI Themen • 26.05. Der Radiohimmel im Licht der 21cm-Linie & Radioteleskop-Katastrophen & Daten • 09.06. Pulsar-Astronomie (heute & in Zukunft) • 23.06. AGN & Binäre Schwarze Löcher (NEUES!) • 07.07. Maser & das Interstellare Medium & AGN & Merger • 21.07. 2 12.05. Radioteleskope & Radiobilder • Radiostrahlung und Radioantennen – Aktive Oberflächen (Effelsberg, GBT) • Neue Radioteleskope (z.Bsp. GBT, Sardinien, Yebes) • Neues Weltraumteleskop • Neue Interferometer – Fragestellungen beim Interferometerbau – Neues im mm-Bereich Übersicht – LOFAR und SKA (Antennenkonzepte) • RFI – Radiointerferenz 3 Radioteleskope zeigen Phänomene, die für optische Teleskope unsichtbar sind Optisch / Radio Radioteleskope Optische sehen Teleskope sehen hauptsächlich vorwiegend Phänomene wie thermische hochenergetische Objekte wie Elektronen Sterne 5 Radiostrahlung & Radioantennen 6 Vom Weidezaun zur Parabolantenne 7 Mauritius (151 MHz) 2km und 1km Armlänge Image of a Supernova remnant at 4' x 9' Nancay 200m x 40m Molonglo (U. Syd) 1 mile x 40 ft. (843 MHz) Antennenmontierung • Günstiger • Beam rotiert nicht am Himmel •Teurer • Bessere Nachführgenauigkeit • Beam rotiert am Himmel • Probleme mit Gravitation • Gravitation macht keine • Wie für optische Teleskope Probleme • Kleine Teleskope (<25m) • Größere Teleskope • Muß nur um eine Achse rotieren 11 REFLEKTOR
    [Show full text]
  • ASTRONET ERTRC Report
    Radio Astronomy in Europe: Up to, and beyond, 2025 A report by ASTRONET’s European Radio Telescope Review Committee ! 1!! ! ! ! ERTRC report: Final version – June 2015 ! ! ! ! ! ! 2!! ! ! ! Table of Contents List%of%figures%...................................................................................................................................................%7! List%of%tables%....................................................................................................................................................%8! Chapter%1:%Executive%Summary%...............................................................................................................%10! Chapter%2:%Introduction%.............................................................................................................................%13! 2.1%–%Background%and%method%............................................................................................................%13! 2.2%–%New%horizons%in%radio%astronomy%...........................................................................................%13! 2.3%–%Approach%and%mode%of%operation%...........................................................................................%14! 2.4%–%Organization%of%this%report%........................................................................................................%15! Chapter%3:%Review%of%major%European%radio%telescopes%................................................................%16! 3.1%–%Introduction%...................................................................................................................................%16!
    [Show full text]
  • Thermal Design and Thermal Behaviour of Radio Telescopes and Their Enclosures
    Thermal Design and Thermal Behaviour of Radio Telescopes and their Enclosures Bearbeitet von Albert Greve, Michael Bremer 1. Auflage 2010. Buch. X, 420 S. Hardcover ISBN 978 3 642 03866 2 Format (B x L): 15,5 x 23,5 cm Gewicht: 795 g Weitere Fachgebiete > Physik, Astronomie > Astronomie: Allgemeines > Astronomische Beobachtung: Observatorien, Instrumente, Methoden Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 Radio Telescope Constructions in View of Thermal Aspects A radio telescope operates with good performance if all relevant structural components remain stable for a considerable period of time. Adverse influences may arise from gravity, temperature and wind. They affect the focus, the pointing, the reflector surface and the path length. Corrections can be made from pointing and focus measurements that may however consume a substantial part of the ob- serving time. Telescopes with active main reflector or subreflector surface can, in addition, upgrade the performance from temperature monitoring and/or metrology measurements and subsequent real time actuator control1. With f the focal length of a telescope, θ =1.2λ/D the beam width (D = reflector
    [Show full text]
  • Pos(11Th EVN Symposium)070 G G That a Healthy Acilities in an Integrated Realike Licence
    RadioNet3 PoS(11th EVN Symposium)070 Franco Mantovani * Max-Planck-Institut für Radioastronomie Auf dem Hügel 69, D-53121 Bonn, Germany E-mail: [email protected] RadioNet3 coordinates all Europe's leading radio astronomy facilities in an integrated cooperation to achieve transformational improvement in the quality and quantity of the scientific research of European astronomers. RadioNet3 includes facilitation of research via dedicated Network Activities. It also includes four pathfinders for the SKA in its Transnational Access Programme. Furthermore, it aims to stimulate new Research & Development (R&D) via Joint Research Activities for the already existing radio infrastructures in synergy with ALMA and SKA. The RadioNet3 programme, briefly described here, aims at ensuring that a healthy scientific and technical community will be ready and prepared for these radio telescopes. 11th European VLBI Network Symposium & Users Meeting October 9-12, 2012 Bordeaux, France _______________________ * Speaker Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it RadioNet3 Franco Mantovani 1. Introduction RadioNet3 coordinates Europe’s leading radio astronomy institutions to support scientific research by all European astronomers. The RadioNet3 initiative, funded by the European Commission under the Seven Framework Programme (FP7, Contract no. 283393), builds on the success of its two preceding programmes launched in 2004 and 2009. RadioNet3 is a Consortium of 27 partners comprising funding Agencies, Universities, Institutes, and Observatories from all over Europe and beyond. In the following, I will briefly summarize governance, goals, and activities of RadioNet3 . For more information consult www.radionet- PoS(11th EVN Symposium)070 eu.org .
    [Show full text]
  • Recovery of Near-Earth Object Science Lost Due to the Demise of Arecibo a White Paper from the Small Bodies Assessment Group
    Recovery of Near-Earth Object Science Lost Due to the Demise of Arecibo A white paper from the Small Bodies Assessment Group The United States Congress has mandated that NASA search for and characterize near-Earth objects (NEOs) and formulate plans to mitigate their destructive potential. As described in the National Near-Earth Object Preparedness Strategy and Action Plan (DAMIEN, 2018), radar astronomy is one of the key elements in NASA’s array of capabilities to study and track NEOs. The Arecibo Observatory was the foremost facility with “resolution [that] greatly exceed[ed] that available from any optical telescope on the ground or in near-Earth space and is matched only by ‘flyby’ and exceeded only by rendezvous spacecraft missions” (National Research Council, 2010). Radar astrometry remains the most precise Earth-based technique for refining knowledge of asteroids’ trajectories and for predicting future Earth encounters. Radar studies that characterize the size, morphology, roughness, and surface texture of individual NEOs provide key information for mitigation strategies and support asteroid spacecraft missions. The importance of radar astronomy to NASA’s goals is emphasized in the last planetary science Decadal Survey: “Ground-based facilities that receive NASA support, including …Arecibo… all make important and, in some cases, unique contributions to planetary science. NASA should continue to provide support for the planetary observations that take place at these facilities.” (National Research Council, 2011). The collapse of Arecibo has dealt a severe blow to NASA’s ability to characterize NEOs. The Small Bodies Assessment Group (SBAG) recommends that NASA partially offset this loss to NEO science and to planetary defense in the near-term by supporting increased radar observations by other facilities.
    [Show full text]