ASTRONET ERTRC Report

Total Page:16

File Type:pdf, Size:1020Kb

ASTRONET ERTRC Report Radio Astronomy in Europe: Up to, and beyond, 2025 A report by ASTRONET’s European Radio Telescope Review Committee ! 1!! ! ! ! ERTRC report: Final version – June 2015 ! ! ! ! ! ! 2!! ! ! ! Table of Contents List%of%figures%...................................................................................................................................................%7! List%of%tables%....................................................................................................................................................%8! Chapter%1:%Executive%Summary%...............................................................................................................%10! Chapter%2:%Introduction%.............................................................................................................................%13! 2.1%–%Background%and%method%............................................................................................................%13! 2.2%–%New%horizons%in%radio%astronomy%...........................................................................................%13! 2.3%–%Approach%and%mode%of%operation%...........................................................................................%14! 2.4%–%Organization%of%this%report%........................................................................................................%15! Chapter%3:%Review%of%major%European%radio%telescopes%................................................................%16! 3.1%–%Introduction%...................................................................................................................................%16! 3.2%–%Regional%interferometers:%eQMERLIN,%WSRT,%and%AMI%....................................................%16! 3.2.1 – e-MERLIN!..............................................................................................................................................................!16! 3.2.2 – WSRT – The Westerbork Synthesis Radio Telescope!..................................................................!18! 3.2.3 – AMI – Arcminute Micro-kelvin Imager!.....................................................................................................!19! 3.2.4 – Major regional interferometers outside Europe: ATCA, JVLA and GMRT!...........................!19! 3.3%–%PanQEuropean%interferometers:%EVN%&%LOFAR%...................................................................%20! 3.3.1 – EVN – European VLBI Network!.................................................................................................................!20! 3.3.2 – LOFAR – Low-Frequency Array!.................................................................................................................!21! 3.3.3 – Other major, non-European facilities: VLBA, MeerKAT and ASKAP!.....................................!23! 3.4%–%Large%single%dishes:%Effelsberg,%Lovell,%Yevpatoria,%Nançay%and%Sardinia%.................%24! 3.4.1 – Effelsberg!...............................................................................................................................................................!24! 3.4.2 – Lovell!........................................................................................................................................................................!25! 3.4.3 – Yevpatoria!..............................................................................................................................................................!25! 3.4.4 – Nançay!....................................................................................................................................................................!26! 3.4.5 – Sardinia!...................................................................................................................................................................!27! 3.4.6 – Other major, non-European facilities: Arecibo, Parkes, GBT and FAST!..............................!27! 3.5%–%MediumQsized%single%dishes:%Medicina,%Noto,%Metsähovi,%Onsala,%Toruń%and%Yebes %.......................................................................................................................................................................%28! 3.5.1 – Medicina and Noto!............................................................................................................................................!28! 3.5.2 – Metsähovi!...............................................................................................................................................................!29! 3.5.3 – Onsala!......................................................................................................................................................................!29! 3.5.4 – Toruń!........................................................................................................................................................................!30! 3.5.5 – Yebes!.......................................................................................................................................................................!31! 3.5.6.!–!Other!medium7sized!facilities!........................................................................................................................!31! 3.6%–%Conclusions%.....................................................................................................................................%31! A.1%–%Graphical%comparison%of%telescope%parameters%................................................................%32! Chapter%4:%Addressing%the%ASTRONET%Science%Vision%goals%with%existing%European%radio% telescopes%.......................................................................................................................................................%40! 4.1%–%Introduction%...................................................................................................................................%40! 4.2%–%Contributions%of%radio%astronomy%to%the%ASTRONET%Science%Vision%..........................%40! A.%Do%we%understand%the%extremes%of%the%Universe?%..................................................................%40! A1. How did the Universe begin?!..............................................................................................................................!40! A2. What is dark matter and energy?!......................................................................................................................!40! A3. Can we observe strong gravity in action?!.....................................................................................................!42! A4. How do supernovae and gamma-ray bursts work?!.................................................................................!42! A5. How do black hole accretion, jets and outflows operate?!....................................................................!43! A6. What do we learn from energetic radiation and particles?!..................................................................!43! B.%How%do%galaxies%form%and%evolve?%...............................................................................................%44! B1. How did the Universe emerge from the Dark Ages?!..............................................................................!44! B2. How did the structure of the cosmic web evolve?!....................................................................................!44! B3. Where are most of the metals throughout cosmic time?!......................................................................!45! B4. How were galaxies assembled?!........................................................................................................................!45! 3!! ! ! ! B5. How did our galaxy form?!.....................................................................................................................................!46! C.%What%is%the%origin%and%evolution%of%stars%and%planets?%.........................................................%47! C1. How do stars form?!..................................................................................................................................................!47! C2. Do we understand stellar structure and evolution?!.................................................................................!47! C3. What is the life cycle of the interstellar medium and stars?!................................................................!48! C4. How do planetary systems form and evolve?!............................................................................................!48! C5. What is the diversity of planetary systems in the Galaxy?!..................................................................!48! C6. Determine the frequency of Earth-like planets and push towards direct imaging.!..................!49! D.%How%do%we%fit%in?%................................................................................................................................%49! D1. What can the Solar System teach us about astrophysical processes?!........................................!49! D2. Develop a unified picture of the Sun and the Heliosphere.!.................................................................!49! D3. What drives solar variability on all scales and transient activity?!....................................................!50! D4. Understand the role of turbulence and magnetic fields in the evolution of the primordial nebula!.......................................................................................................................................................................................!50!
Recommended publications
  • Jodrell Bank Observatory
    UK Tentative List of Potential Sites for World Heritage Nomination: Application form Please save the application to your computer, fill in and email to: [email protected] The application form should be completed using the boxes provided under each question, and, where possible, within the word limit indicated. Please read the Information Sheets before completing the application form. It is also essential to refer to the accompanying Guidance Note for help with each question, and to the relevant paragraphs of UNESCO’s Operational Guidelines for the Implementation of the World Heritage Convention, (OG) available at: http://whc.unesco.org/en/guidelines Applicants should provide only the information requested at this stage. Further information may be sought in due course. (1) Name of Proposed World Heritage Site Jodrell Bank Observatory (2) Geographical Location Name of country/region United Kingdom Grid reference to centre of site SJ 798708 Please enclose a map preferably A4-size, a plan of the site, and 6 photographs, preferably electronically. page 1 (3) Type of Site Please indicate category: Natural Cultural Mixed Cultural Landscape (4) Description Please provide a brief description of the proposed site, including the physical characteristics. 200 words The Jodrell Bank Observatory, which is part of the University of Manchester’s School of Physics and Astronomy, is dominated by the monumental Lovell Telescope, the first large fully steerable radio telescope in the world - which still operates as the 3rd largest on the planet. The telescope, which is a Grade 1 listed structure, is 76m in diameter and stands 89m high. Despite its age (53 years in 2010), it is now more powerful than ever and remains at the forefront of Astrophysics research, working 24 hours a day, 365 days a year to observe distant galaxies and objects such as Pulsars and Quasars, far out across the Universe.
    [Show full text]
  • RF Interference Monitoring for the Onsala Space Observatory Master of Science Thesis (Communication Engineering)
    RF Interference Monitoring for the Onsala Space Observatory Master of Science Thesis (Communication Engineering) SYED AMEER AHMED GILLANI Department of Earth and Space Sciences, Onsala Space Observatory, CHALMERS UNIVERSITY OF TECHNOLOGY, Göteborg, Sweden, 2010. RF INTERFERENCE MONITORING FOR ONSALA SPACE OBSERVATORY SYED AMEER AHMED GILLANI Department of Earth and Space Sciences, Onsala Space Observatory CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2010 ii ABSTRACT With the continuous and rapid developments in wireless services and allocation of radio frequency spectrum to these services, huge interferences have been observed in the field of radio astronomy. According to the international regulations, parts of the spectra are reserved for radio-astronomical observations. Man-made signals entering the receiver chain of a radio telescope have much higher power compared to natural or passive signals received at the radio telescopes. Passive signals received at radio telescopes are normally 60 dB below the receiver noise level. Active signals generated by man-made wireless services pollute the natural emissions by completely masking them due to high signal strength. The cosmic radiation is determined by the fundamental laws of physics, thus the frequencies are fixed and cannot be changed. So interferences created by active services lead to wrong interpretations of the astronomical data. The present thesis deals with RF interference monitoring system for the Onsala Space Observatory. As part of the thesis, a software application has been developed, which communicates with different type of digital receivers (spectrum analyzers) attached with antenna controlling hardware to control omnidirectional and steerable antennas. A steerable antenna is used to find the direction of interference source by moving the antenna in azimuth and elevation direction.
    [Show full text]
  • Square Kilometre Array Computational Challenges
    Square Kilometre Array Computational Challenges Paul Alexander Paul Alexander SKA Computational Challenges What is the Square Kilometre Array (SKA) • Next Generation radio telescope – compared to best current instruments it is ... E-MERLIN • ~100 times sensitivity • ~ 106 times faster imaging the sky • More than 5 square km of collecting area on sizes 3000km eVLA 27 27m dishes Longest baseline 30km GMRT 30 45m dishes Longest baseline 35 km Paul Alexander SKA Computational Challenges What is the Square Kilometre Array (SKA) • Next Generation radio telescope – compared to best current instruments it is ... • ~100 times sensitivity • ~ 106 times faster imaging the sky • More than 5 square km of collecting area on sizes 3000km • Will address some of the key problems of astrophysics and cosmology (and physics) • Builds on techniques developed in Cambridge • It is an interferometer • Uses innovative technologies... • Major ICT project • Need performance at low unit cost Paul Alexander SKA Computational Challenges Dishes Paul Alexander SKA Computational Challenges Phased Aperture array Paul Alexander SKA Computational Challenges also a Continental sized Radio Telescope • Need a radio-quiet site • Very low population density • Large amount of space • Possible sites (decision 2012) • Western Australia • Karoo Desert RSA Paul Alexander SKA Computational Challenges Sensitivity comparison 12,000 Sensitivity Comparison 10,000 1 - K 2 8,000 SKA2 6,000 SKA2 SKA1 MeerKAT LOFAR ASKAP 4,000 Sensitivity: Aeff/Tsys m Sensitivity:Aeff/Tsys eVLA SKA1 2,000
    [Show full text]
  • 50 Years of the Lovell Telescope Transcript
    50 years of the Lovell telescope Transcript Date: Wednesday, 5 December 2007 - 12:00AM 50 YEARS OF THE LOVELL TELESCOPE Professor Ian Morison The Early days at Jodrell Bank In late 1945 Dr Bernard Lovell (as he then was) returned to Manchester University after working on the development of radar during the war years. His aim was to continue his researches into cosmic rays - highly energetic particles that enter the Earth's atmosphere from outer space. He had the idea that sporadic echoes sometimes received by military radars might be the result of cosmic rays entering the atmosphere and thus radar observations might provide a new way to continue his researches. Radar observations were not practical in the centre of Manchester so he took his ex-army radar system out to the University's Botanical Grounds at Jodrell Bank, some 20 miles to the south. By the middle of December 1945, the system was operating and his team was soon able to prove that the echoes were coming not from cosmic rays but from ionized meteor trails left behind when small particles, released from comets, are burnt up in the upper atmosphere of the Earth. Radar Antenna in the Botany Grounds. The Jodrell Bank Experimental Station. The observations continued and, to house the expanding staff and equipment, the Jodrell Bank Experimental Station was built in the field next to the Botanic Grounds. Lovell realised that a much more sensitive radio telescope would be required to detect cosmic rays and so, in 1947, the researchers built a large parabolic reflector, 66-m across, pointing upwards to observe the sky passing overhead.
    [Show full text]
  • Radio Astronomy
    Theme 8: Beyond the Visible I: radio astronomy Until the turn of the 17th century, astronomical observations relied on the naked eye. For 250 years after this, although astronomical instrumentation made great strides, the radiation being detected was still essentially confined to visible light (Herschel discovered infrared radiation in 1800, and the advent of photography opened up the near ultraviolet, but these had little practical significance). This changed dramatically in the mid-20th century with the advent of radio astronomy. 8.1 Early work: Jansky and Reber The atmosphere is transparent to visible light, but opaque to many other wavelengths. The only other clear “window” of transparency lies in the radio region, between 1 mm and 30 m wavelength. One might expect that the astronomical community would deliberately plan to explore this region, but in fact radio astronomy was born almost accidentally, with little if any involvement of professional astronomers. Karl Jansky (1905−50) was a radio engineer at Bell Telephone. In 1932, while studying the cause of interference on the transatlantic radio-telephone link, he discovered that part of the interference had a periodicity of one sidereal day (23h 56m), and must therefore be coming from an extraterrestrial source. By considering the time at which the interference occurred, Jansky identified the source as the Milky Way. This interesting finding was completely ignored by professional astronomers, and was followed up only by the radio engineer and amateur astronomer Grote Reber (1911−2002). Reber built a modern-looking paraboloid antenna and constructed maps of the radio sky, which also failed to attract significant professional attention.
    [Show full text]
  • The Lovell Telescope … Through Its Surfaces Simon Garrington, JBO/University of Manchester
    The Lovell Telescope … through its surfaces Simon Garrington, JBO/University of Manchester • Original design & redesign: 1950-1957 • Radical modification & new surface: 1971 • Replacement of surface: 2001 • Replacement of original Picture A. Holloway surface: 2018 • Other consequences: foundations O1 Original MkI proposal and changes • Concept & proposals: 1950-1 • Lovell-Husband Sep 1949 • Radio Astronomy Cttee 1950 • rail track; towers, cradle, 4-inch mesh • 2-inch mesh/5-in profile by 20 Mar 1951 submission • Design changes • 21cm line discovered (Ewen 25 Mar 1951) • Inner 100’ mesh 1x2-in ‘at no cost’ ? Sep 1952 • Interest from Air Ministry: 10cm radar • March 1954: 3/4-in mesh -> stronger cradle … but Air Ministry step back O2 Original MkI proposal and changes • Concept & proposals: 1950-1 • Lovell-Husband Sep 1949 • Radio Astronomy Cttee 1950 • rail track; towers, cradle, 4-inch mesh • 2-inch mesh/5-in profile by 20 Mar 1951 submission • Design changes • 21cm line discovered (Ewen 25 Mar 1951) • Inner 100’ mesh 1x2-in ‘at no cost’ ? Sep 1952 • Interest from Air Ministry: 10cm radar • March 1954: 3/4-in mesh -> stronger cradle … but Air Ministry step back O3 Original MkI proposal and changes • Concept & proposals: 1950-1 • Lovell-Husband Sep 1949 • Radio Astronomy Cttee 1950 • rail track; towers, cradle, 4-inch mesh • 2-inch mesh/5-in profile by 20 Mar 1951 submission • Design changes • 21cm line discovered (Ewen 25 Mar 1951) • Inner 100’ mesh 1x2-in ‘at no cost’ ? Sep 1952 • Interest from Air Ministry: 10cm radar • March 1954: 3/4-in
    [Show full text]
  • Detection Statistics of the Radioastron AGN Survey
    Available online at www.sciencedirect.com ScienceDirect Advances in Space Research 65 (2020) 705–711 www.elsevier.com/locate/asr Detection statistics of the RadioAstron AGN survey Y.Y. Kovalev a,b,c,⇑, N.S. Kardashev a,†, K.V. Sokolovsky a,d,e, P.A. Voitsik a,T.Anf, J.M. Anderson g,h, A.S. Andrianov a, V.Yu. Avdeev a, N. Bartel i, H.E. Bignall j, M.S. Burgin a, P.G. Edwards k, S.P. Ellingsen l, S. Frey m, C. Garcı´a-Miro´ n, M.P. Gawron´ski o, F.D. Ghigo p, T. Ghosh p,q, G. Giovannini r,s, I.A. Girin a, M. Giroletti r, L.I. Gurvits t,u, D.L. Jauncey k,v, S. Horiuchi w, D.V. Ivanov x, M.A. Kharinov x, J.Y. Koay y, V.I. Kostenko a, A.V. Kovalenko aa, Yu.A. Kovalev a, E.V. Kravchenko r,a, M. Kunert-Bajraszewska o, A.M. Kutkin a,z, S.F. Likhachev a, M.M. Lisakov c,a, I.D. Litovchenko a, J.N. McCallum l, A. Melis ab, A.E. Melnikov x, C. Migoni ab, D.G. Nair t, I.N. Pashchenko a, C.J. Phillips k, A. Polatidis z, A.B. Pushkarev a,ad, J.F.H. Quick ae, I.A. Rakhimov x, C. Reynolds j, J.R. Rizzo af, A.G. Rudnitskiy a, T. Savolainen ag,ah,c, N.N. Shakhvorostova a, M.V. Shatskaya a, Z.-Q. Shen f,ac, M.A. Shchurov a, R.C. Vermeulen z, P. de Vicente ai, P.
    [Show full text]
  • Cutting-Edge Engineering for the World's Largest Radio Telescope
    SKAO Cutting-edge engineering for the world’s largest radio telescope Cutting-edge engineering for the world’s largest radio telescope Approaching a technological challenge on the scale of the SKA is formidable... while building on 60 years of radio- astronomy developments, the huge increase in scale from existing facilities demands a revolutionary break from traditional radio telescope design and radical developments in processing, computer speeds and the supporting technological infrastructure. To answer this challenge the SKA has been broken down into various elements that will form the final SKA telescope. Each element is managed by an international consortium comprising world leading experts in their fields. The SKA Office, staffed with engineering domain experts, systems engineers, scientists and managers, centralises the project management and system design. SKAO The design work was awarded through the SKA Office to these Consortia, made up of over 100 of some of the world’s top research institutions and companies, drawn primarily from the SKA Member countries but also beyond. Following the delivery of a detailed design package in 2016, in 2018 nine consortia are having their Critical Design Reviews (CDR) to deliver the final design documentation to prepare a construction proposal for government approval. The other three consortia are part of the SKA’s Advanced Instrumentation Programme, which develops future instrumention for the SKA. The 2018 SKA CalenDaR aims to recognise the immense work conducted by these hundreds of dedicated engineers and project managers from around the world over the past five years. Without their crucial work, the SKA’s ambitious science programme would not be possible.
    [Show full text]
  • (LWA): a Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar
    The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar A Ground-Based Instrument Paper for the 2010 NRC Decadal Survey of Solar and Space Physics Lee J Rickard, Joseph Craig, Gregory B. Taylor, Steven Tremblay, and Christopher Watts University of New Mexico, Albuquerque, NM 87131 Namir E. Kassim, Tracy Clarke, Clayton Coker, Kenneth Dymond, Joseph Helmboldt, Brian C. Hicks, Paul Ray, and Kenneth P. Stewart Naval Research Laboratory, Washington, DC 20375 Jacob M. Hartman NRC Research Associate, in residence at Naval Research Laboratory Stephen M. White AFRL, Kirtland AFB, Albuquerque, NM 87117 Paul Rodriguez Consultant, Washington, DC 20375 Steve Ellingson and Chris Wolfe Virginia Tech, Blacksburg, VA 24060 Robert Navarro and Joseph Lazio NASA Jet Propulsion Laboratory, Pasadena, CA 91109 Charles Cormier and Van Romero New Mexico Institute of Mining & Technology, Socorro, NM 87801 Fredrick Jenet University of Texas, Brownsville, TX 78520 and the LWA Consortium Executive Summary The Long Wavelength Array (LWA), currently under construction in New Mexico, will be an imaging HF/VHF interferometer providing a new approach for studying the Sun-Earth environment from the surface of the sun through the Earth’s ionosphere [1]. The LWA will be a powerful tool for solar physics and space weather investigations, through its ability to characterize a diverse range of low- frequency, solar-related emissions, thereby increasing our understanding of particle acceleration and shocks in the solar atmosphere along with their impact on the Sun-Earth environment. As a passive receiver the LWA will directly detect Coronal Mass Ejections (CMEs) in emission, and indirectly through the scattering of cosmic background sources.
    [Show full text]
  • Istituto Di Radioastronomia Inaf
    ISTITUTO DI RADIOASTRONOMIA INAF STATUS REPORT October 2007 http://www.ira.inaf.it/ Chapter 1. STRUCTURE AND ORGANIZATION The Istituto di Radioastronomia (IRA) is presently the only INAF structure with divisions distributed over the national territory. Such an organization came about because IRA was originally a part of the National Council of Research (CNR), which imposed the first of its own reforms in 2001. The transition from CNR to INAF began in 2004 and was completed on January 1st , 2005. The Institute has its headquarters in Bologna in the CNR campus area, and two divisions in Firenze and Noto. The Medicina station belongs to the Bologna headquarters. A fourth division is foreseen in Cagliari at the Sardinia Radiotelescope site. The IRA operates 3 radio telescopes: the Northern Cross Radio Telescope (Medicina), and two 32-m dishes (Medicina and Noto), which are used primarily for Very Long Baseline Interferometry (VLBI) observations. The IRA leads the construction of the Sardinia Radio Telescope (SRT), a 64-m dish of new design. This is one of the INAF large projects nowadays. The aims of the Institute comprise: - the pursuit of excellence in many research areas ranging from observational radio astronomy, both galactic and extragalactic, to cosmology, to geodesy and Earth studies; - the design and management of the Italian radio astronomical facilities; - the design and fabrication of instrumentation operating in bands from radio to infrared and visible. Main activities of the various sites include: Bologna: The headquarters are responsible for the institute management and act as interface with the INAF central headquarters in Roma. Much of the astronomical research is done in Bologna, with major areas in cosmology, extragalactic astrophysics, star formation and geodesy.
    [Show full text]
  • NATIONAL ACADEMIES of SCIENCES and ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES of AMERICA
    NATIONAL ACADEMIES OF SCIENCES AND ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES OF AMERICA UNITED STATES NATIONAL COMMITTEE International Union of Radio Science National Radio Science Meeting 4-8 January 2000 Sponsored by USNC/URSI University of Colorado Boulder, Colorado U.S.A. United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE PROGRAM AND ABSTRACTS National Radio Science Meeting 4-8 January 2000 Sponsored by USNC/URSI NOTE: Programs and Abstracts of the USNC/URSI Meetings are available from: USNC/URSI National Academy of Sciences 2101 Constitution Avenue, N.W. Washington, DC 20418 at $5 for 1983-1999 meetings. The full papers are not published in any collected format; requests for them should be addressed to the authors who may have them published on their own initiative. Please note that these meetings are national. They are not organized by the International Union, nor are the programs available from the International Secretariat. ii MEMBERSHIP United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE Chair: Gary Brown* Secretary & Chair-Elect: Umran S. !nan* Immediate Past Chair: Susan K. Avery* Members Representing Societies, Groups, and Institutes: American Astronomical Society Thomas G. Phillips American Geophysical Union Donald T. Farley American Meteorological Society vacant IEEE Antennas and Propagation Society Linda P.B. Katehi IEEE Geosciences and Remote Sensing Society Roger Lang IEEE Microwave Theory and Techniques Society Arthur A. Oliner Members-at-Large: Amalia Barrios J. Richard Fisher Melinda Picket-May Ronald Pogorzelski W. Ross Stone Richard Ziolkowski Chairs of the USNC/URSI Commissions: Commission A Moto Kanda Commission B Piergiorgio L. E. Uslenghi Commission C Alfred 0.
    [Show full text]
  • Essential Radio Astronomy
    February 2, 2016 Time: 09:25am chapter1.tex © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. 1 Introduction 1.1 AN INTRODUCTION TO RADIO ASTRONOMY 1.1.1 What Is Radio Astronomy? Radio astronomy is the study of natural radio emission from celestial sources. The range of radio frequencies or wavelengths is loosely defined by atmospheric opacity and by quantum noise in coherent amplifiers. Together they place the boundary be- tween radio and far-infrared astronomy at frequency ν ∼ 1 THz (1 THz ≡ 1012 Hz) or wavelength λ = c/ν ∼ 0.3 mm, where c ≈ 3 × 1010 cm s−1 is the vacuum speed of light. The Earth’s ionosphere sets a low-frequency limit to ground-based radio astronomy by reflecting extraterrestrial radio waves with frequencies below ν ∼ 10 MHz (λ ∼ 30 m), and the ionized interstellar medium of our own Galaxy absorbs extragalactic radio signals below ν ∼ 2 MHz. The radio band is very broad logarithmically: it spans the five decades between 10 MHz and 1 THz at the low-frequency end of the electromagnetic spectrum. Nearly everything emits radio waves at some level, via a wide variety of emission mechanisms. Few astronomical radio sources are obscured because radio waves can penetrate interstellar dust clouds and Compton-thick layers of neutral gas. Because only optical and radio observations can be made from the ground, pioneering radio astronomers had the first opportunity to explore a “parallel universe” containing unexpected new objects such as radio galaxies, quasars, and pulsars, plus very cold sources such as interstellar molecular clouds and the cosmic microwave background radiation from the big bang itself.
    [Show full text]