Istituto Di Radioastronomia Inaf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Global Jet Structure of the Archetypical Quasar 3C 273
galaxies Article The Global Jet Structure of the Archetypical Quasar 3C 273 Kazunori Akiyama 1,2,3,*, Keiichi Asada 4, Vincent L. Fish 2 ID , Masanori Nakamura 4, Kazuhiro Hada 3 ID , Hiroshi Nagai 3 and Colin J. Lonsdale 2 1 National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903, USA 2 Massachusetts Institute of Technology, Haystack Observatory, 99 Millstone Rd, Westford, MA 01886, USA; vfi[email protected] (V.L.F.); [email protected] (C.J.L.) 3 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; [email protected] (K.H.); [email protected] (H.N.) 4 Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan; [email protected] (K.A.); [email protected] (M.N.) * Correspondence: [email protected] Received: 16 September 2017; Accepted: 8 January 2018; Published: 24 January 2018 Abstract: A key question in the formation of the relativistic jets in active galactic nuclei (AGNs) is the collimation process of their energetic plasma flow launched from the central supermassive black hole (SMBH). Recent observations of nearby low-luminosity radio galaxies exhibit a clear picture of parabolic collimation inside the Bondi accretion radius. On the other hand, little is known of the observational properties of jet collimation in more luminous quasars, where the accretion flow may be significantly different due to much higher accretion rates. In this paper, we present preliminary results of multi-frequency observations of the archetypal quasar 3C 273 with the Very Long Baseline Array (VLBA) at 1.4, 15, and 43 GHz, and Multi-Element Radio Linked Interferometer Network (MERLIN) at 1.6 GHz. -
Scientific and Technical Infrastructures (Icts) Prelude
UPDATED MAP OF UNIQUE SCIENTIFIC AND TECHNICAL INFRASTRUCTURES (ICTS) PRELUDE In 1986 Spain took the important step of telescopes, cleanrooms, biomedical tech- Spain needs to invest more in research passing the first science law in its history. nologies, underground laboratories, syn- and innovation and facilitate the work of It was a time of opening for Spain, in which chrotrons, particle accelerators, advanced researchers. We also need to continue it became a Member State of the European lasers, biological reserves, solar, oceanic supporting the key facilities described in Union, a time of eagerness for society in and hydraulic platforms, oceanographic this book and increasing our participation general and the research community in research ships, and polar bases in An- in large scientific infrastructures world- particular. Thanks to the enthusiasm and tarctica. A total of 29 ICTS, made up of 62 wide. Only through a strong commitment hard work of many people, the ground- nodes, allow for ambitious research pro- to science will we be able to consoli date work was laid during that time for what jects that attract first-rate talent and Spain as a knowledge and innovation is today the Spanish System of Science, enhance the technological and innovative powerhouse that is capable of facing the Techno logy, and Innovation. In the more capacity of Spanish companies. future with guarantees of success. than three decades that have transpired since then, the number of researchers The current map includes Spain’s principal The Unique Scientific and Technical has multiplied, scientific production has science and innovation infrastructures. Infrastructures described in this book are surged, highly competitive research cen- It was approved on November 6, 2018 by crucial for Spain and its science, techno- ters have opened, and companies able to the Council of Science, Technology, and logy, and innovation. -
EDGES Memo #054
EDGES MEMO #054 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 December 1, 2009 Telephone: 781-981-5407 Fax: 781-981-0590 To: EDGES Group From: Alan E.E. Rogers Subject: Meteor scatter rates Since all the World’s designated radio quiet zones are les than 2000 km from strong radio transmitters they are subject to RFI from meteor scatter. The key parameters of meteor scatter are poorly determined. For example, theory suggests that the radar cross-section (RCS) should decrease by 20 dB per decade from head echoes but measurements typically have an even faster decline with frequency. The frequency range for significant scatter and the range of concern to radio astronomy is about 50 to 300 MHz. Some papers claim that 1012 meteors enter the Earth’s atmosphere each day while others suggest a number more like 109. In practice we observed a rate of about 1 per minute when located in a canyon (see memo #52) with sky coverage limited to elevations greater than about 25 degrees. Based on the geometry of Figure 1 this corresponds to a worldwide rate of about 107/day. Figure 2 shows the estimated burst rate as a function of elevation cut-off angle. This very sharp curve shows the advantage of limiting the low elevation response of the antenna or using the terrain to limit the elevation angle. Potential locations for EDGES are on route 205 in the canyon just before 205 enters the Catlow Valley, Oregon or about 1km West of route 205 on Skull creek road. 1 h R To solve: theta=acos( ( (R+ h)*(R+ h)+ R*R-r*r) / (2*(R+ h)*R)) a 1 b -2*R*cos(elev+90) c = -(R+h)*(R+h)+R*R r = ((- b+sqrt(b*b-4*a*c) / (2*a) ; R earth radius = 6357 km r = region where meteors form ions ,-..J 100 km Figure 1. -
CASKAR: a CASPER Concept for the SKA Phase 1 Signal Processing Sub-System
CASKAR: A CASPER concept for the SKA phase 1 Signal Processing Sub-system Francois Kapp, SKA SA Outline • Background • Technical – Architecture – Power • Cost • Schedule • Challenges/Risks • Conclusions Background CASPER Technology MeerKAT Who is CASPER? • Berkeley Wireless Research Center • Nancay Observatory • UC Berkeley Radio Astronomy Lab • Oxford University Astrophysics • UC Berkeley Space Sciences Lab • Metsähovi Radio Observatory, Helsinki University of • Karoo Array Telescope / SKA - SA Technology • NRAO - Green Bank • New Jersey Institute of Technology • NRAO - Socorro • West Virginia University Department of Physics • Allen Telescope Array • University of Iowa Department of Astronomy and • MIT Haystack Observatory Physics • Harvard-Smithsonian Center for Astrophysics • Ohio State University Electroscience Lab • Caltech • Hong Kong University Department of Electrical and Electronic Engineering • Cornell University • Hartebeesthoek Radio Astronomy Observatory • NAIC - Arecibo Observatory • INAF - Istituto di Radioastronomia, Northern Cross • UC Berkeley - Leuschner Observatory Radiotelescope • Giant Metrewave Radio Telescope • University of Manchester, Jodrell Bank Centre for • Institute of Astronomy and Astrophysics, Academia Sinica Astrophysics • National Astronomical Observatories, Chinese Academy of • Submillimeter Array Sciences • NRAO - Tucson / University of Arizona Department of • CSIRO - Australia Telescope National Facility Astronomy • Parkes Observatory • Center for Astrophysics and Supercomputing, Swinburne University -
Next Generation Radio Arrays
NextNext GenerationGeneration RadioRadio ArraysArrays Dr.Dr. FrankFrank D.D. LindLind MITMIT HaystackHaystack ObservatoryObservatory (with acknowledgement to my colleagues who contribute to these efforts...) [McKay-Bukowski, et al., 2014] contact info : Frank D. Lind MIT Haystack Observatory Route 40 Westford MA, 01886 email - [email protected] DeepDeep MemoryMemory Solid state memory capacity will exceed our data storage requirements. Deep memory instruments will become possible. Store all data from every element for the life of a radio array... Intel + Micron 3D Flash Intel XPoint memory Keon Jae Lee of the Korea Advanced Institute of Science and Technology (KAIST) ConnectedConnected WorldWorld Wireless networks will be global and even replace the wires. Disconnected, self networking, and software realized instrumentation Sparse global radio arrays, deployable dense arrays, and ad-hoc arrays DisappearingDisappearing SensorsSensors Integration will become extreme and include quantum referenced sensors Receivers in connectors, cloud computers on a chip, really good clocks Energy harvesting and low power near field wireless data Self coherent arrays, personal passive radar, the ionosphere as a sensor Deployable Low Power Radio Platforms Instruments in ~ 10W power envelopes. Future systems will use ~ 1W of power total. Zero infrastructure radio science instrumentation Software radio and radar technology Solar and battery power Low power computing for data acquisition Intelligent control software Mahali Array (during build out) Deep -
Real-Time High Volume Data Transfer and Processing for E-VLBI
Real-time high volume data transfer and processing for e-VLBI Yasuhiro Koyama, Tetsuro Kondo, Hiroshi Takeuchi, Moritaka Kimura (Kashima Space Research Center, NICT, Japan) and Masaki Hirabaru (New Generation Network Research Center, NICT, Japan) OutlineOutline What is e-VLBI? Why e-VLBI is necessary? How? – K5 VLBI System ~ Standardization – Network Test Experiments – June 2004 : Near-Realtime UT1 Estimation – January 2005 : Realtime Processing Demo Future Plan Traditional VLBI The Very-Long Baseline Interferometry (VLBI) Technique (with traditional data recording) The Global VLBI Array (up to ~20 stations can be used simultaneously) WhatWhat isis ee--VVLBI?LBI? VLBI=Very Long Baseline Interferometry Correlator Radio Telescope Network Correlator Radio Telescope Shipping Data Media e-VLBI (Tapes/Disks) Conventional VLBI VLBIVLBI ApplicationsApplications Geophysics and Plate Tectonics Kashima-Kauai鹿島-ハワイの基線長変化 Baseline Length -63.5 ± 0.5 mm/year 400 200 0 -200 基線長(mm) -400 5400km 5400km Fairbanksアラスカ 1984 1986 1988 1990 1992 1994 Fairbanks-Kauaiアラスカ-ハワイの基線長変化年 Baseline Length 4700km 4700km -46.1 ± 0.3 mm/year Kashima鹿島 400 5700km 200 Kauaiハワイ 0 -200 基線長(mm) -400 1984 1986 1988 1990 1992 1994 Kashima-Fairbanks鹿島-アラスカの基線長変化年 Baseline Length 1.3 ± 0.5 mm/year 400 200 0 -200 基線長(mm) -400 1984 1986 1988 1990 1992 1994 年 VLBIVLBI ApplicationsApplications (2)(2) Radio Astronomy : High Resolution Imaging, Astro-dynamics Reference Frame : Celestial / Terrestrial Reference Frame Earth Orientation Parameters, Dynamics of Earth’s Inner Core -
NATIONAL ACADEMIES of SCIENCES and ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES of AMERICA
NATIONAL ACADEMIES OF SCIENCES AND ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES OF AMERICA UNITED STATES NATIONAL COMMITTEE International Union of Radio Science National Radio Science Meeting 4-8 January 2000 Sponsored by USNC/URSI University of Colorado Boulder, Colorado U.S.A. United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE PROGRAM AND ABSTRACTS National Radio Science Meeting 4-8 January 2000 Sponsored by USNC/URSI NOTE: Programs and Abstracts of the USNC/URSI Meetings are available from: USNC/URSI National Academy of Sciences 2101 Constitution Avenue, N.W. Washington, DC 20418 at $5 for 1983-1999 meetings. The full papers are not published in any collected format; requests for them should be addressed to the authors who may have them published on their own initiative. Please note that these meetings are national. They are not organized by the International Union, nor are the programs available from the International Secretariat. ii MEMBERSHIP United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE Chair: Gary Brown* Secretary & Chair-Elect: Umran S. !nan* Immediate Past Chair: Susan K. Avery* Members Representing Societies, Groups, and Institutes: American Astronomical Society Thomas G. Phillips American Geophysical Union Donald T. Farley American Meteorological Society vacant IEEE Antennas and Propagation Society Linda P.B. Katehi IEEE Geosciences and Remote Sensing Society Roger Lang IEEE Microwave Theory and Techniques Society Arthur A. Oliner Members-at-Large: Amalia Barrios J. Richard Fisher Melinda Picket-May Ronald Pogorzelski W. Ross Stone Richard Ziolkowski Chairs of the USNC/URSI Commissions: Commission A Moto Kanda Commission B Piergiorgio L. E. Uslenghi Commission C Alfred 0. -
Wikipedia, the Free Encyclopedia
SKA newsletter Volume 21 - April 2011 The Square Kilometre Array Exploring the Universe with the world’s largest radio telescope www.skatelescope.org Please click the relevant section title to skip to that section 03 Project news 04 From the SPDO 05 SKA science 08 Engineering update 10 Site characterisation 12 Outreach update 14 Industry participation 17 News from around the world 18 Africa 20 Australia and New Zealand 23 Canada 25 China 28 Europe 31 India 33 US 35 Future meetings and events Project news Project news 04 From the SPDO Crucial steps for the SKA project were At its first meeting on 2 April, the Founding taken in the last week of March 2011. A Board decided that the location of the SKA Founding Board was created with the Project Office (SPO) will be at the Jodrell aim of establishing a legal entity for the Bank Observatory near Manchester in the project by the time of the SKA Forum in UK. This decision followed a competitive Canada in early July, as well as agreeing bidding process in which a number of the resourcing of the Project Execution excellent proposals were evaluated in an Plan for the Pre-construction Phase international review process. The SPO, which from 2012 to 2015. The Founding Board is hoped to grow to 60 people over the next replaces the Agencies SKA Group with four years, will supersede the SPDO currently immediate effect. Prof John Womersley based at the University of Manchester. The from the UK’s Science and Technology physical move to a new building at Jodrell Facilities Council (STFC) was elected Bank Observatory is scheduled for mid-2012. -
Table of Contents - 1 - - 2
Table of contents - 1 - - 2 - Table of Contents Foreword 5 1. The European Consortium for VLBI 7 2. Scientific highlights on EVN research 9 3. Network Operations 35 4. VLBI technical developments and EVN operations support at member institutes 47 5. Joint Institute for VLBI in Europe (JIVE) 83 6. EVN meetings 105 7. EVN publications in 2007-2008 109 - 3 - - 4 - Foreword by the Chairman of the Consortium The European VLBI Network (EVN) is the result of a collaboration among most major radio observatories in Europe, China, Puerto Rico and South Africa. The large radio telescopes hosted by these observatories are operated in a coordinated way to perform very high angular observations of cosmic radio sources. The data are then correlated by using the EVN correlator at the Joint Institute for VLBI in Europe (JIVE). The EVN, when operating as a single astronomical instrument, is the most sensitive VLBI array and constitutes one of the major scientific facilities in the world. The EVN also co-observes with the Very Long Baseline Array (VLBA) and other radio telescopes in the U.S., Australia, Japan, Russia, and with stations of the NASA Deep Space Network to form a truly global array. In the past, the EVN also operated jointly with the Japanese space antenna HALCA in the frame of the VLBI Space Observatory Programme (VSOP). The EVN plans now to co-observe with the Japanese space 10-m antenna ASTRO-G, to be launched by 2012, within the frame of the VSOP-2 project. With baselines in excess of 25.000 km, the space VLBI observations provide the highest angular resolution ever achieved in Astronomy. -
Radio Astronomy Across Europe
Radio astronomy across Europe Wilfred Frieswijk* & ERATec Network Activity [email protected] * ASTRON Netherlands Institute for Radio Astronomy Abstract Europe has a long and outstanding history in radio astronomy. It currently hosts numerous of world-class facilities spread around the globe, some of which well-known, others being less familiar. The map below gives an overview of associated radio observatories accessible for the general astronomical community. Trans-national access (TNA) Capabilities The objectives of the Transnational Access portion of RadioNet3 are ERATec The receivers available on the various • to draw together all of the European radio facilities under one umbrella; The main activity of the RadioNet3 telescopes operate in the radio regime, • to enable the European user community to have easy and transparent European Radio Astronomy Technical covering frequencies from ~10 MHz access to the entire range of facilities; Forum is to organise and support to 1 THz. With dish-sizes ranging • to offer the European user community an integrated, professional and meetings and workshops that help to from ~10 to 100 meters and baselines consistent level of user support. identify synergies and develop up to >1000 kilometers, spatial complementary capabilities at the website: http://www.radionet-eu.org/transnational-access resolutions can be achieved down to observatories, to determine how the sub-arc-second scales, thus matching pooling of resources might lead to those obtained at infrared- and optical Open time common solutions -
Millimeter Astronomy Linked to the Far-Infrared
MMiilllliimmeetteerr AAssttrroonnoommyy lliinnkkeedd ttoo tthhee FFaarr--IInnffrraarreedd CCaarrsstteenn KKrraammeerr IIRRAAMM,, GGrraannaaddaa Millimeter Astronomy – linked to the Far Infrared IRAM 30m Summerschool, September 2009 MM3333 Millimeter Astronomy – linked to the Far Infrared IRAM 30m Summerschool, September 2009 AAnn eexxaammppllee:: TThhee nneeaarrbbyy ssppiirraall ggaallaaxxyy MM3333 Optical image (B,V,I,Ha) + 21cm line of HI in blue (Rector, Hanna 2005) Millimeter Astronomy – linked to the Far Infrared IRAM 30m Summerschool, September 2009 TThhee nneeaarrbbyy ssppiirraall ggaallaaxxyy MM3333 + Morphological type: SA(s)cd + Major & minor diameters: 70.8, 41.7 arcmin + PA = 22.5 deg, Incl.: 55.0 deg + Distance = 840 kpc (180 kpc from M31) + 12 arcsec = 49 pc + Brightest HII complex in Local Group (NGC604) + Metallicity: subsolar by a factor 2-3 Shallow gradient Millimeter Astronomy – linked to the Far Infrared IRAM 30m Summerschool, September 2009 TThhee nneeaarrbbyy ssppiirraall ggaallaaxxyy MM3333 Location of Giant Molecular Clouds (GMCs) overlaid upon an integrated intensity map of the HI 21cm line (Engargiola et al. 2003). GMCs are formed from large structures of atomic gas. Millimeter Astronomy – linked to the Far Infrared IRAM 30m Summerschool, September 2009 NNGGCC660033//MM3333 The HII region NGC603 in M33. (Optical image by HST) Millimeter Astronomy – linked to the Far Infrared IRAM 30m Summerschool, September 2009 TThhee IInntteerrsstteellllaarr MMeeddiiuumm iinn GGaallaaxxiieess Phases of the Interstellar Medium and their main constituents and tracers: HII Regions HII, NII, CII T~104K Warm Ionized Medium (WIM) HII, NII, CII n~10-3cm-3, T~105K Warm Neutral Medium (WNM) HI, CII n~0.3cm-3, T~8000K Cold Neutral Medium (CNM) HI, CII n~40cm-3, T~70K Dense Molecular Clouds H , CII, CI, CO n~103-6cm-3, T~10-100K 2 All stars form inside molecular clouds ! McKee & Ostriker 1977, Wolfire et al. -
CESRA Workshop 2019: the Sun and the Inner Heliosphere Programme
CESRA Workshop 2019: The Sun and the Inner Heliosphere July 8-12, 2019, Albert Einstein Science Park, Telegrafenberg Potsdam, Germany Programme and abstracts Last update: 2019 Jul 04 CESRA, the Community of European Solar Radio Astronomers, organizes triennial workshops on investigations of the solar atmosphere using radio and other observations. Although special emphasis is given to radio diagnostics, the workshop topics are of interest to a large community of solar physicists. The format of the workshop will combine plenary sessions and working group sessions, with invited review talks, oral contributions, and posters. The CESRA 2019 workshop will place an emphasis on linking the Sun with the heliosphere, motivated by the launch of Parker Solar Probe in 2018 and the upcoming launch of Solar Orbiter in 2020. It will provide the community with a forum for discussing the first relevant science results and future science opportunities, as well as on opportunity for evaluating how to maximize science return by combining space-borne observations with the wealth of data provided by new and future ground-based radio instruments, such as ALMA, E-OVSA, EVLA, LOFAR, MUSER, MWA, and SKA, and by the large number of well-established radio observatories. Scientific Organising Committee: Eduard Kontar, Miroslav Barta, Richard Fallows, Jasmina Magdalenic, Alexander Nindos, Alexander Warmuth Local Organising Committee: Gottfried Mann, Alexander Warmuth, Doris Lehmann, Jürgen Rendtel, Christian Vocks Acknowledgements The CESRA workshop has received generous support from the Leibniz Institute for Astrophysics Potsdam (AIP), which provides the conference venue at Telegrafenberg. Financial support for travel and organisation has been provided by the Deutsche Forschungsgemeinschaft (DFG) (GZ: MA 1376/22-1).