Radio Astronomy Across Europe

Total Page:16

File Type:pdf, Size:1020Kb

Radio Astronomy Across Europe Radio astronomy across Europe Wilfred Frieswijk* & ERATec Network Activity [email protected] * ASTRON Netherlands Institute for Radio Astronomy Abstract Europe has a long and outstanding history in radio astronomy. It currently hosts numerous of world-class facilities spread around the globe, some of which well-known, others being less familiar. The map below gives an overview of associated radio observatories accessible for the general astronomical community. Trans-national access (TNA) Capabilities The objectives of the Transnational Access portion of RadioNet3 are ERATec The receivers available on the various • to draw together all of the European radio facilities under one umbrella; The main activity of the RadioNet3 telescopes operate in the radio regime, • to enable the European user community to have easy and transparent European Radio Astronomy Technical covering frequencies from ~10 MHz access to the entire range of facilities; Forum is to organise and support to 1 THz. With dish-sizes ranging • to offer the European user community an integrated, professional and meetings and workshops that help to from ~10 to 100 meters and baselines consistent level of user support. identify synergies and develop up to >1000 kilometers, spatial complementary capabilities at the website: http://www.radionet-eu.org/transnational-access resolutions can be achieved down to observatories, to determine how the sub-arc-second scales, thus matching pooling of resources might lead to those obtained at infrared- and optical Open time common solutions for common Most of the observatories provide telescope time to the general astronomical wavelengths. problems and to share best practice. community through "open access" calls. Onsala Space Observatory Onsala Space Observatory Metsähovi International LOFAR Telescope e-MERLIN/VLBI National Facility ∅: 20 m ∅: 25 m ν: 18 - 116 GHz ν: 1 - 7.5 GHz ∅: 14 m ν: 22, 37 GHz ∅: 3x105 m2 (phased array) EVN ν: 10-90,110-240 MHz ∅: 7 antenna array ν: 1.3-1.8, 4-8, 22-24 GHz Westerbork Synthesis Radio Telescope Ventspils Radio Telescope ∅: European+ Array λ: 1-18 cm (principal bands) Lovell 76-m Jodrell Bank ∅: 14x25 m ∅: 25 m ν: 0.31 - 8.65 GHz Effelsberg 100-m Telescope ν: 1 - 10 GHz ∅: 76 m ν: <5 GHz ∅: 100 m Toruń Radio Telescope ν: 0.3 - 95.5 GHz Nançay Radio Heliograph Nançay Radio Telescope Medicina Radio Telescope ∅: 32 m ν: 1.4, 1.6, 5, 6.8 GHz ∅: 5 - 10 m (array) ν: 150 - 450 MHz (solar) 2 ∅: 200x35 m (aperture meridian) ∅: 32 m Nançay Decametric Array ν: 1 - 3.5 GHz ν: 0.327 - 26 GHz Northern Cross ∅: 3500 m2 (phased array) IRAM Plateau de Bure ν: 10 - 80 MHz Yebes Observatory ∅: 564 x 640 m (30000m2) ν: 408 MHz ∅: 6 x 15 m ν: 80 - 371 GHz (4 bands) ∅: 40 m ν: 2 - 110 GHz Sardinia Radio Telescope Noto Radio Telescope IRAM 30m Pico Veleta ∅: 64 m ν: 0.325 - 26 GHz ∅: 32 m ν: 0.327 - 43 GHz ∅: 30 m λ: 0.9,1,2,3 mm APEX ALMA almascience.eso.org www.ira.inaf.it www.apex-telescope.org www.metsahovi.fi www.mpifr-bonn.mpg.de/effelsberg www.obs-nancay.fr www.e-merlin.ac.uk nrt.obspm.fr www.evlbi.org www.med.ira.inaf.it www.iram-institute.org ∅: 12 m ∅: 12 (+7) m array www.chalmers.se www.virac.venta.lv ν: 214 - 1390 GHz λ: 0.45,0.8,1.3,3 mm www.srt.inaf.it www.astron.nl www.astro.uni.torun.pl www.jb.man.ac.uk www.fomento.gob.es Project supported by the European Commission Contract no: 283393.
Recommended publications
  • Introduction to Radio Astronomy
    Introduction to Radio Astronomy Greg Hallenbeck 2016 UAT Workshop @ Green Bank Outline Sources of Radio Emission Continuum Sources versus Spectral Lines The HI Line Details of the HI Line What is our data like? What can we learn from each source? The Radio Telescope How do we actually detect this stuff? How do we get from the sky to the data? I. Radio Emission Sources The Electromagnetic Spectrum Radio ← Optical Light → A Galaxy Spectrum (Apologies to the radio astronomers) Continuum Emission Radiation at a wide range of wavelengths ❖ Thermal Emission ❖ Bremsstrahlung (aka free-free) ❖ Synchrotron ❖ Inverse Compton Scattering Spectral Line Radiation at a wide range of wavelengths ❖ The HI Line Categories of Emission Continuum Emission — “The Background” Radiation at a wide range of wavelengths ❖ Thermal Emission ❖ Synchrotron ❖ Bremsstrahlung (aka free-free) ❖ Inverse Compton Scattering Spectral Lines — “The Spikes” Radiation at specific wavelengths ❖ The HI Line ❖ Pretty much any element or molecule has lines. Thermal Emission Hot Things Glow Emit radiation at all wavelengths The peak of emission depends on T Higher T → shorter wavelength Regulus (12,000 K) The Sun (6,000 K) Jupiter (100 K) Peak is 250 nm Peak is 500 nm Peak is 30 µm Thermal Emission How cold corresponds to a radio peak? A 3 K source has peak at 1 mm. Not getting any colder than that. Synchrotron Radiation Magnetic Fields Make charged particles move in circles. Accelerating charges radiate. Synchrotron Ingredients Strong magnetic fields High energies, ionized particles. Found in jets: ❖ Active galactic nuclei ❖ Quasars ❖ Protoplanetary disks Synchrotron Radiation Jets from a Protostar At right: an optical image.
    [Show full text]
  • The E-MERLIN Notebook
    The e-MERLIN Notebook IRIS Collaboration F2F Meeting - 4 April 2019 Dr. Rachael Ainsworth Jodrell Bank Centre for Astrophysics University of Manchester @rachaelevelyn Overview ● Motivation ● Brief intro to e-MERLIN ● Pieces of the puzzle: ○ e-MERLIN CASA Pipeline ○ Data Archive ○ Open Notebooks ● Putting everything together: ○ e-MERLIN @ IRIS Motivation (Whitaker 2018, https://doi.org/10.6084/m9.figshare.7140050.v2 ) “Computational science has led to exciting new developments, but the nature of the work has exposed limitations in our ability to evaluate published findings. Reproducibility has the potential to serve as a minimum standard for judging scientific claims when full independent replication of a study is not possible.” (Peng 2011; https://doi.org/10.1126/science.1213847) e-MERLIN (e)MERLIN ● enhanced Multi Element Remotely Linked Interferometer Network ● An array of 7 radio telescopes spanning 217 km across the UK ● Connected by a superfast optical fibre network to its headquarters at Jodrell Bank Observatory. ● Has a unique position in the world with an angular resolution comparable to that of the Hubble Space Telescope and carrying out centimetre wavelength radio astronomy with micro-Jansky sensitivities. http://www.e-merlin.ac.uk/ (e)MERLIN ● Does not have a publicly accessible data archive. http://www.e-merlin.ac.uk/ Radio Astronomy Software: CASA ● The CASA infrastructure consists of a set of C++ tools bundled together under an iPython interface as data reduction tasks. ● This structure provides flexibility to process the data via task interface or as a python script. ● https://casa.nrao.edu/ Pieces of the puzzle e-MERLIN CASA Pipeline ● Developed openly on GitHub (Moldon, et al.) ● Python package composed of different modules that can be run together sequentially to produce calibration tables, calibrated data, assessment plots and a summary weblog.
    [Show full text]
  • The Merlin - Phase 2
    Radio Interferometry: Theory, Techniques and Applications, 381 IAU Coll. 131, ASP Conference Series, Vol. 19, 1991, T.J. Comwell and R.A. Perley (eds.) THE MERLIN - PHASE 2 P.N. WILKINSON University of Manchester, Nuffield Radio Astronomy Laboratories, Jodrell Bank, Macclesfield, Cheshire, SKll 9DL, United Kingdom ABSTRACT The Jodrell Bank MERLIN is currently being upgraded to produce higher sensitivity and higher resolving power. The major capital item has been a new 32m telescope located at MRAO Cambridge which will operate to at least 50 GHz. A brief outline of the upgraded MERLIN and its performance is given. INTRODUCTION The MERLIN (Multi-Element Radio-Linked Interferometer Network), based at Jodrell Bank, was conceived in the mid-1970s and first became operational in 1980. It was a bold concept; no one had made a real-time long-baseline interferometer array with phase-stable local oscillator links before. Six remotely operated telescopes, controlled via telephone lines, are linked to a control computer at Jodrell Bank. The rf signals are transmitted to Jodrell via commercial multi-hop microwave links operating at 7.5 GHz. The local oscillators are coherently slaved to a master oscillator via go-and- return links operating at L-band, the change in the link path-length being taken out in software. This single-frequency L-band link can transfer phase to the equivalent of < 1 picosec (< 0.3 mm of path length) on timescales longer than a few seconds. A detailed description of the MERLIN system has been given by Thomasson (1986). The MERLIN has provided the UK with a unique astronomical facility, one which has made important contributions to extragalactic radio source and OH maser studies.
    [Show full text]
  • Measurement of the Cosmic Microwave Background Radiation at 19 Ghz
    Measurement of the Cosmic Microwave Background Radiation at 19 GHz 1 Introduction Measurements of the Cosmic Microwave Background (CMB) radiation dominate modern experimental cosmology: there is no greater source of information about the early universe, and no other single discovery has had a greater impact on the theories of the formation of the cosmos. Observation of the CMB confirmed the Big Bang model of the origin of our universe and gave us a look into the distant past, long before the formation of the very first stars and galaxies. In this lab, we seek to recreate this founding pillar of modern physics. The experiment consists of a temperature measurement of the CMB, which is actually “light” left over from the Big Bang. A radiometer is used to measure the intensity of the sky signal at 19 GHz from the roof of the physics building. A specially designed horn antenna allows you to observe microwave noise from isolated patches of sky, without interference from the relatively hot (and high noise) ground. The radiometer amplifies the power from the horn by a factor of a billion. You will calibrate the radiometer to reduce systematic effects: a cryogenically cooled reference load is periodically measured to catch changes in the gain of the amplifier circuit over time. 2 Overview 2.1 History The first observation of the CMB occurred at the Crawford Hill NJ location of Bell Labs in 1965. Arno Penzias and Robert Wilson, intending to do research in radio astronomy at 21 cm wavelength using a special horn antenna designed for satellite communications, noticed a background noise signal in all of their radiometric measurements.
    [Show full text]
  • Istituto Di Radioastronomia Inaf
    ISTITUTO DI RADIOASTRONOMIA INAF STATUS REPORT October 2007 http://www.ira.inaf.it/ Chapter 1. STRUCTURE AND ORGANIZATION The Istituto di Radioastronomia (IRA) is presently the only INAF structure with divisions distributed over the national territory. Such an organization came about because IRA was originally a part of the National Council of Research (CNR), which imposed the first of its own reforms in 2001. The transition from CNR to INAF began in 2004 and was completed on January 1st , 2005. The Institute has its headquarters in Bologna in the CNR campus area, and two divisions in Firenze and Noto. The Medicina station belongs to the Bologna headquarters. A fourth division is foreseen in Cagliari at the Sardinia Radiotelescope site. The IRA operates 3 radio telescopes: the Northern Cross Radio Telescope (Medicina), and two 32-m dishes (Medicina and Noto), which are used primarily for Very Long Baseline Interferometry (VLBI) observations. The IRA leads the construction of the Sardinia Radio Telescope (SRT), a 64-m dish of new design. This is one of the INAF large projects nowadays. The aims of the Institute comprise: - the pursuit of excellence in many research areas ranging from observational radio astronomy, both galactic and extragalactic, to cosmology, to geodesy and Earth studies; - the design and management of the Italian radio astronomical facilities; - the design and fabrication of instrumentation operating in bands from radio to infrared and visible. Main activities of the various sites include: Bologna: The headquarters are responsible for the institute management and act as interface with the INAF central headquarters in Roma. Much of the astronomical research is done in Bologna, with major areas in cosmology, extragalactic astrophysics, star formation and geodesy.
    [Show full text]
  • The Meerkat Radio Telescope Rhodes University SKA South Africa E-Mail: a B Pos(Meerkat2016)001 Justin L
    The MeerKAT Radio Telescope PoS(MeerKAT2016)001 Justin L. Jonas∗ab and the MeerKAT Teamb aRhodes University bSKA South Africa E-mail: [email protected] This paper is a high-level description of the development, implementation and initial testing of the MeerKAT radio telescope and its subsystems. The rationale for the design and technology choices is presented in the context of the requirements of the MeerKAT Large-scale Survey Projects. A technical overview is provided for each of the major telescope elements, and key specifications for these components and the overall system are introduced. The results of selected receptor qual- ification tests are presented to illustrate that the MeerKAT receptor exceeds the original design goals by a significant margin. MeerKAT Science: On the Pathway to the SKA, 25-27 May, 2016, Stellenbosch, South Africa ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/ MeerKAT Justin L. Jonas 1. Introduction The MeerKAT radio telescope is a precursor for the Square Kilometre Array (SKA) mid- frequency telescope, located in the arid Karoo region of the Northern Cape Province in South Africa. It will be the most sensitive decimetre-wavelength radio interferometer array in the world before the advent of SKA1-mid. The telescope and its associated infrastructure is funded by the government of South Africa through the National Research Foundation (NRF), an agency of the Department of Science and Technology (DST). Construction and commissioning of the telescope has been the responsibility of the SKA South Africa Project Office, which is a business unit of the PoS(MeerKAT2016)001 NRF.
    [Show full text]
  • History of Radio Astronomy
    History of Radio Astronomy Reading for High School Students Getsemary Báez Introduction form of radiation involved (soon known as electro- Radio Astronomy, a field that has strongly magnetic waves). Nevertheless, it was Oliver Heavi- evolved since the end of World War II, has become side who in conjunction with Willard Gibbs in 1884 one of the most important tools of astronomical ob- modified the equations and put them into modern servations. Radio astronomy has been responsible for vector notation. a great part of our understanding of the universe, its A few years later, Heinrich Hertz (1857- formation, composition, interactions, and even pre- 1894) demonstrated the existence of electromagnetic dictions about its future path. This article intends to waves by constructing a device that had the ability to inform the public about the history of radio astron- transmit and receive electromagnetic waves of about omy, its evolution, connection with solar studies, and 5m wavelength. This was actually the first radio the contribution the STEREO/WAVES instrument on wave transmitter, which is what we call today an LC the STEREO spacecraft will have on the study of oscillator. Just like Maxwell’s theory predicted, the this field. waves were polarized. The radiation emissions were detected using a 1mm thin circle of copper wire. Pre-history of Radio Waves Now that there is evidence of electromag- It is almost impossible to depict the most im- netic waves, the physicist Max Planck (1858-1947) portant facts in the history of radio astronomy with- was responsible for a breakthrough in physics that out presenting a sneak peak where everything later developed into the quantum theory, which sug- started, the development and understanding of the gests that energy had to be emitted or absorbed in electromagnetic spectrum.
    [Show full text]
  • Radio Astronomy
    Edition of 2013 HANDBOOK ON RADIO ASTRONOMY International Telecommunication Union Sales and Marketing Division Place des Nations *38650* CH-1211 Geneva 20 Switzerland Fax: +41 22 730 5194 Printed in Switzerland Tel.: +41 22 730 6141 Geneva, 2013 E-mail: [email protected] ISBN: 978-92-61-14481-4 Edition of 2013 Web: www.itu.int/publications Photo credit: ATCA David Smyth HANDBOOK ON RADIO ASTRONOMY Radiocommunication Bureau Handbook on Radio Astronomy Third Edition EDITION OF 2013 RADIOCOMMUNICATION BUREAU Cover photo: Six identical 22-m antennas make up CSIRO's Australia Telescope Compact Array, an earth-rotation synthesis telescope located at the Paul Wild Observatory. Credit: David Smyth. ITU 2013 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. - iii - Introduction to the third edition by the Chairman of ITU-R Working Party 7D (Radio Astronomy) It is an honour and privilege to present the third edition of the Handbook – Radio Astronomy, and I do so with great pleasure. The Handbook is not intended as a source book on radio astronomy, but is concerned principally with those aspects of radio astronomy that are relevant to frequency coordination, that is, the management of radio spectrum usage in order to minimize interference between radiocommunication services. Radio astronomy does not involve the transmission of radiowaves in the frequency bands allocated for its operation, and cannot cause harmful interference to other services. On the other hand, the received cosmic signals are usually extremely weak, and transmissions of other services can interfere with such signals.
    [Show full text]
  • NATIONAL ACADEMIES of SCIENCES and ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES of AMERICA
    NATIONAL ACADEMIES OF SCIENCES AND ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES OF AMERICA UNITED STATES NATIONAL COMMITTEE International Union of Radio Science National Radio Science Meeting 4-8 January 2000 Sponsored by USNC/URSI University of Colorado Boulder, Colorado U.S.A. United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE PROGRAM AND ABSTRACTS National Radio Science Meeting 4-8 January 2000 Sponsored by USNC/URSI NOTE: Programs and Abstracts of the USNC/URSI Meetings are available from: USNC/URSI National Academy of Sciences 2101 Constitution Avenue, N.W. Washington, DC 20418 at $5 for 1983-1999 meetings. The full papers are not published in any collected format; requests for them should be addressed to the authors who may have them published on their own initiative. Please note that these meetings are national. They are not organized by the International Union, nor are the programs available from the International Secretariat. ii MEMBERSHIP United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE Chair: Gary Brown* Secretary & Chair-Elect: Umran S. !nan* Immediate Past Chair: Susan K. Avery* Members Representing Societies, Groups, and Institutes: American Astronomical Society Thomas G. Phillips American Geophysical Union Donald T. Farley American Meteorological Society vacant IEEE Antennas and Propagation Society Linda P.B. Katehi IEEE Geosciences and Remote Sensing Society Roger Lang IEEE Microwave Theory and Techniques Society Arthur A. Oliner Members-at-Large: Amalia Barrios J. Richard Fisher Melinda Picket-May Ronald Pogorzelski W. Ross Stone Richard Ziolkowski Chairs of the USNC/URSI Commissions: Commission A Moto Kanda Commission B Piergiorgio L. E. Uslenghi Commission C Alfred 0.
    [Show full text]
  • Wikipedia, the Free Encyclopedia
    SKA newsletter Volume 21 - April 2011 The Square Kilometre Array Exploring the Universe with the world’s largest radio telescope www.skatelescope.org Please click the relevant section title to skip to that section 03 Project news 04 From the SPDO 05 SKA science 08 Engineering update 10 Site characterisation 12 Outreach update 14 Industry participation 17 News from around the world 18 Africa 20 Australia and New Zealand 23 Canada 25 China 28 Europe 31 India 33 US 35 Future meetings and events Project news Project news 04 From the SPDO Crucial steps for the SKA project were At its first meeting on 2 April, the Founding taken in the last week of March 2011. A Board decided that the location of the SKA Founding Board was created with the Project Office (SPO) will be at the Jodrell aim of establishing a legal entity for the Bank Observatory near Manchester in the project by the time of the SKA Forum in UK. This decision followed a competitive Canada in early July, as well as agreeing bidding process in which a number of the resourcing of the Project Execution excellent proposals were evaluated in an Plan for the Pre-construction Phase international review process. The SPO, which from 2012 to 2015. The Founding Board is hoped to grow to 60 people over the next replaces the Agencies SKA Group with four years, will supersede the SPDO currently immediate effect. Prof John Womersley based at the University of Manchester. The from the UK’s Science and Technology physical move to a new building at Jodrell Facilities Council (STFC) was elected Bank Observatory is scheduled for mid-2012.
    [Show full text]
  • Table of Contents - 1 - - 2
    Table of contents - 1 - - 2 - Table of Contents Foreword 5 1. The European Consortium for VLBI 7 2. Scientific highlights on EVN research 9 3. Network Operations 35 4. VLBI technical developments and EVN operations support at member institutes 47 5. Joint Institute for VLBI in Europe (JIVE) 83 6. EVN meetings 105 7. EVN publications in 2007-2008 109 - 3 - - 4 - Foreword by the Chairman of the Consortium The European VLBI Network (EVN) is the result of a collaboration among most major radio observatories in Europe, China, Puerto Rico and South Africa. The large radio telescopes hosted by these observatories are operated in a coordinated way to perform very high angular observations of cosmic radio sources. The data are then correlated by using the EVN correlator at the Joint Institute for VLBI in Europe (JIVE). The EVN, when operating as a single astronomical instrument, is the most sensitive VLBI array and constitutes one of the major scientific facilities in the world. The EVN also co-observes with the Very Long Baseline Array (VLBA) and other radio telescopes in the U.S., Australia, Japan, Russia, and with stations of the NASA Deep Space Network to form a truly global array. In the past, the EVN also operated jointly with the Japanese space antenna HALCA in the frame of the VLBI Space Observatory Programme (VSOP). The EVN plans now to co-observe with the Japanese space 10-m antenna ASTRO-G, to be launched by 2012, within the frame of the VSOP-2 project. With baselines in excess of 25.000 km, the space VLBI observations provide the highest angular resolution ever achieved in Astronomy.
    [Show full text]
  • CESRA Workshop 2019: the Sun and the Inner Heliosphere Programme
    CESRA Workshop 2019: The Sun and the Inner Heliosphere July 8-12, 2019, Albert Einstein Science Park, Telegrafenberg Potsdam, Germany Programme and abstracts Last update: 2019 Jul 04 CESRA, the Community of European Solar Radio Astronomers, organizes triennial workshops on investigations of the solar atmosphere using radio and other observations. Although special emphasis is given to radio diagnostics, the workshop topics are of interest to a large community of solar physicists. The format of the workshop will combine plenary sessions and working group sessions, with invited review talks, oral contributions, and posters. The CESRA 2019 workshop will place an emphasis on linking the Sun with the heliosphere, motivated by the launch of Parker Solar Probe in 2018 and the upcoming launch of Solar Orbiter in 2020. It will provide the community with a forum for discussing the first relevant science results and future science opportunities, as well as on opportunity for evaluating how to maximize science return by combining space-borne observations with the wealth of data provided by new and future ground-based radio instruments, such as ALMA, E-OVSA, EVLA, LOFAR, MUSER, MWA, and SKA, and by the large number of well-established radio observatories. Scientific Organising Committee: Eduard Kontar, Miroslav Barta, Richard Fallows, Jasmina Magdalenic, Alexander Nindos, Alexander Warmuth Local Organising Committee: Gottfried Mann, Alexander Warmuth, Doris Lehmann, Jürgen Rendtel, Christian Vocks Acknowledgements The CESRA workshop has received generous support from the Leibniz Institute for Astrophysics Potsdam (AIP), which provides the conference venue at Telegrafenberg. Financial support for travel and organisation has been provided by the Deutsche Forschungsgemeinschaft (DFG) (GZ: MA 1376/22-1).
    [Show full text]