Recovery of Near-Earth Object Science and Planetary Defense Capabilities Lost Due to the Demise of Arecibo a White Paper from the Small Bodies Assessment Group
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cassini RADAR Sequence Planning and Instrument Performance Richard D
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 6, JUNE 2009 1777 Cassini RADAR Sequence Planning and Instrument Performance Richard D. West, Yanhua Anderson, Rudy Boehmer, Leonardo Borgarelli, Philip Callahan, Charles Elachi, Yonggyu Gim, Gary Hamilton, Scott Hensley, Michael A. Janssen, William T. K. Johnson, Kathleen Kelleher, Ralph Lorenz, Steve Ostro, Member, IEEE, Ladislav Roth, Scott Shaffer, Bryan Stiles, Steve Wall, Lauren C. Wye, and Howard A. Zebker, Fellow, IEEE Abstract—The Cassini RADAR is a multimode instrument used the European Space Agency, and the Italian Space Agency to map the surface of Titan, the atmosphere of Saturn, the Saturn (ASI). Scientists and engineers from 17 different countries ring system, and to explore the properties of the icy satellites. have worked on the Cassini spacecraft and the Huygens probe. Four different active mode bandwidths and a passive radiometer The spacecraft was launched on October 15, 1997, and then mode provide a wide range of flexibility in taking measurements. The scatterometer mode is used for real aperture imaging of embarked on a seven-year cruise out to Saturn with flybys of Titan, high-altitude (around 20 000 km) synthetic aperture imag- Venus, the Earth, and Jupiter. The spacecraft entered Saturn ing of Titan and Iapetus, and long range (up to 700 000 km) orbit on July 1, 2004 with a successful orbit insertion burn. detection of disk integrated albedos for satellites in the Saturn This marked the start of an intensive four-year primary mis- system. Two SAR modes are used for high- and medium-resolution sion full of remote sensing observations by a dozen instru- (300–1000 m) imaging of Titan’s surface during close flybys. -
Istituto Di Radioastronomia Inaf
ISTITUTO DI RADIOASTRONOMIA INAF STATUS REPORT October 2007 http://www.ira.inaf.it/ Chapter 1. STRUCTURE AND ORGANIZATION The Istituto di Radioastronomia (IRA) is presently the only INAF structure with divisions distributed over the national territory. Such an organization came about because IRA was originally a part of the National Council of Research (CNR), which imposed the first of its own reforms in 2001. The transition from CNR to INAF began in 2004 and was completed on January 1st , 2005. The Institute has its headquarters in Bologna in the CNR campus area, and two divisions in Firenze and Noto. The Medicina station belongs to the Bologna headquarters. A fourth division is foreseen in Cagliari at the Sardinia Radiotelescope site. The IRA operates 3 radio telescopes: the Northern Cross Radio Telescope (Medicina), and two 32-m dishes (Medicina and Noto), which are used primarily for Very Long Baseline Interferometry (VLBI) observations. The IRA leads the construction of the Sardinia Radio Telescope (SRT), a 64-m dish of new design. This is one of the INAF large projects nowadays. The aims of the Institute comprise: - the pursuit of excellence in many research areas ranging from observational radio astronomy, both galactic and extragalactic, to cosmology, to geodesy and Earth studies; - the design and management of the Italian radio astronomical facilities; - the design and fabrication of instrumentation operating in bands from radio to infrared and visible. Main activities of the various sites include: Bologna: The headquarters are responsible for the institute management and act as interface with the INAF central headquarters in Roma. Much of the astronomical research is done in Bologna, with major areas in cosmology, extragalactic astrophysics, star formation and geodesy. -
Linking the Solar System and Extrasolar Planetary
Linking the Solar System and Extrasolar Planetary Systems with Radar Astronomy Infrastructure for \Ground Truth" Comparison Authors: Joseph Lazio (Jet Propulsion Laboratory, California Institute of Technology), Am- ber Bonsall (Green Bank Observatory), Marina Brozovic (Jet Propulsion Laboratory, California Institute of Technology), Jon D. Giorgini (Jet Propulsion Laboratory, California Institute of Tech- nology), Karen O'Neil (Green Bank Observatory) Edgard Rivera-Valentin (Lunar & Planetary Institute), Anne Katariina Virkki (Univ. Central Florida) Endorsers: Francisco Cordova (Arecibo Observatory; Univ. Central Florida), Michael Busch (SETI Institute), Bruce A. Campbell (Smithsonian Institution), P. G. Edwards (CSIRO Astron- omy & Space Science), Yanga R. Fernandez (Univ. Central Florida), Ed Kruzins (Canberra Deep Space Communications Center), Noemi Pinilla-Alonso (Univ. Central Florida), Martin A. Slade (Jet Propulsion Laboratory, California Institute of Technology), F. C. F. Venditti (Univ. Central Florida) Point of Contact: Joseph Lazio, 818-354-4198; [email protected] (Left) Planetary radar image of Dione Regio on Venus. White arrows indicate radar- bright features that potentially represent debris from previous volcanic eruptions on Earth's twin planet. (Campbell et al. 2017) (Right) Planetary radar image of the near- Earth asteroid 2017 BQ6, acquired by the Goldstone Solar System Radar, showing sharp facets on this object. Near-Earth asteroids display a range of surface features, from which evolution and collisional processes occurring in the Sun's debris disk can be constrained. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The Arecibo Planetary Radar Program is supported by the National Aeronautics and Space Administration's Near-Earth Object Observa- tions Program through Grant No. -
NATIONAL ACADEMIES of SCIENCES and ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES of AMERICA
NATIONAL ACADEMIES OF SCIENCES AND ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES OF AMERICA UNITED STATES NATIONAL COMMITTEE International Union of Radio Science National Radio Science Meeting 4-8 January 2000 Sponsored by USNC/URSI University of Colorado Boulder, Colorado U.S.A. United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE PROGRAM AND ABSTRACTS National Radio Science Meeting 4-8 January 2000 Sponsored by USNC/URSI NOTE: Programs and Abstracts of the USNC/URSI Meetings are available from: USNC/URSI National Academy of Sciences 2101 Constitution Avenue, N.W. Washington, DC 20418 at $5 for 1983-1999 meetings. The full papers are not published in any collected format; requests for them should be addressed to the authors who may have them published on their own initiative. Please note that these meetings are national. They are not organized by the International Union, nor are the programs available from the International Secretariat. ii MEMBERSHIP United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE Chair: Gary Brown* Secretary & Chair-Elect: Umran S. !nan* Immediate Past Chair: Susan K. Avery* Members Representing Societies, Groups, and Institutes: American Astronomical Society Thomas G. Phillips American Geophysical Union Donald T. Farley American Meteorological Society vacant IEEE Antennas and Propagation Society Linda P.B. Katehi IEEE Geosciences and Remote Sensing Society Roger Lang IEEE Microwave Theory and Techniques Society Arthur A. Oliner Members-at-Large: Amalia Barrios J. Richard Fisher Melinda Picket-May Ronald Pogorzelski W. Ross Stone Richard Ziolkowski Chairs of the USNC/URSI Commissions: Commission A Moto Kanda Commission B Piergiorgio L. E. Uslenghi Commission C Alfred 0. -
Wikipedia, the Free Encyclopedia
SKA newsletter Volume 21 - April 2011 The Square Kilometre Array Exploring the Universe with the world’s largest radio telescope www.skatelescope.org Please click the relevant section title to skip to that section 03 Project news 04 From the SPDO 05 SKA science 08 Engineering update 10 Site characterisation 12 Outreach update 14 Industry participation 17 News from around the world 18 Africa 20 Australia and New Zealand 23 Canada 25 China 28 Europe 31 India 33 US 35 Future meetings and events Project news Project news 04 From the SPDO Crucial steps for the SKA project were At its first meeting on 2 April, the Founding taken in the last week of March 2011. A Board decided that the location of the SKA Founding Board was created with the Project Office (SPO) will be at the Jodrell aim of establishing a legal entity for the Bank Observatory near Manchester in the project by the time of the SKA Forum in UK. This decision followed a competitive Canada in early July, as well as agreeing bidding process in which a number of the resourcing of the Project Execution excellent proposals were evaluated in an Plan for the Pre-construction Phase international review process. The SPO, which from 2012 to 2015. The Founding Board is hoped to grow to 60 people over the next replaces the Agencies SKA Group with four years, will supersede the SPDO currently immediate effect. Prof John Womersley based at the University of Manchester. The from the UK’s Science and Technology physical move to a new building at Jodrell Facilities Council (STFC) was elected Bank Observatory is scheduled for mid-2012. -
Exploration of the Planets – 1971
Video Transcript for Archival Research Catalog (ARC) Identifier 649404 Exploration of the Planets – 1971 Narrator: For thousands of years, man observed the rising and setting Sun, the cycle of seasons, the fixed stars, and those he called wanderers, or planets. And from these observations evolved his notions of the universe. The naked eye extended its vision through instruments that saw the craters on the Moon, the changing colors of Mars, and the rings of Saturn. The fantasies, dreams, and visions of space travel became the reality of Apollo. Early in 1970, President Nixon announced the objectives of a balanced space program for the United States that would include the scientific investigation of all the planets in the solar system. Of the nine planets circling the Sun, only the Earth is known to us at firsthand. But observational techniques on Earth and in space have given us some idea of the appearance and movement of the planets. And enable us to depict their physical characteristics in some detail. Mercury, only slightly larger than the Moon, is so close to the Sun that it is difficult to observe by telescope. It is believed to be one large cinder, with no atmosphere and a day-night temperature range of nearly 1,000 degrees. Venus is perpetually cloud-covered. Spacecraft report a surface temperature of 900 degrees Fahrenheit and an atmospheric pressure 100 times greater than Earth’s. We can only guess what the surface is like, possibly a seething netherworld beneath a crushing, poisonous carbon dioxide atmosphere. Of Mars, the Red Planet, we have evidence of its cratered surface, photographed by the Mariner spacecraft. -
Table of Contents - 1 - - 2
Table of contents - 1 - - 2 - Table of Contents Foreword 5 1. The European Consortium for VLBI 7 2. Scientific highlights on EVN research 9 3. Network Operations 35 4. VLBI technical developments and EVN operations support at member institutes 47 5. Joint Institute for VLBI in Europe (JIVE) 83 6. EVN meetings 105 7. EVN publications in 2007-2008 109 - 3 - - 4 - Foreword by the Chairman of the Consortium The European VLBI Network (EVN) is the result of a collaboration among most major radio observatories in Europe, China, Puerto Rico and South Africa. The large radio telescopes hosted by these observatories are operated in a coordinated way to perform very high angular observations of cosmic radio sources. The data are then correlated by using the EVN correlator at the Joint Institute for VLBI in Europe (JIVE). The EVN, when operating as a single astronomical instrument, is the most sensitive VLBI array and constitutes one of the major scientific facilities in the world. The EVN also co-observes with the Very Long Baseline Array (VLBA) and other radio telescopes in the U.S., Australia, Japan, Russia, and with stations of the NASA Deep Space Network to form a truly global array. In the past, the EVN also operated jointly with the Japanese space antenna HALCA in the frame of the VLBI Space Observatory Programme (VSOP). The EVN plans now to co-observe with the Japanese space 10-m antenna ASTRO-G, to be launched by 2012, within the frame of the VSOP-2 project. With baselines in excess of 25.000 km, the space VLBI observations provide the highest angular resolution ever achieved in Astronomy. -
Radio Astronomy Across Europe
Radio astronomy across Europe Wilfred Frieswijk* & ERATec Network Activity [email protected] * ASTRON Netherlands Institute for Radio Astronomy Abstract Europe has a long and outstanding history in radio astronomy. It currently hosts numerous of world-class facilities spread around the globe, some of which well-known, others being less familiar. The map below gives an overview of associated radio observatories accessible for the general astronomical community. Trans-national access (TNA) Capabilities The objectives of the Transnational Access portion of RadioNet3 are ERATec The receivers available on the various • to draw together all of the European radio facilities under one umbrella; The main activity of the RadioNet3 telescopes operate in the radio regime, • to enable the European user community to have easy and transparent European Radio Astronomy Technical covering frequencies from ~10 MHz access to the entire range of facilities; Forum is to organise and support to 1 THz. With dish-sizes ranging • to offer the European user community an integrated, professional and meetings and workshops that help to from ~10 to 100 meters and baselines consistent level of user support. identify synergies and develop up to >1000 kilometers, spatial complementary capabilities at the website: http://www.radionet-eu.org/transnational-access resolutions can be achieved down to observatories, to determine how the sub-arc-second scales, thus matching pooling of resources might lead to those obtained at infrared- and optical Open time common solutions -
CESRA Workshop 2019: the Sun and the Inner Heliosphere Programme
CESRA Workshop 2019: The Sun and the Inner Heliosphere July 8-12, 2019, Albert Einstein Science Park, Telegrafenberg Potsdam, Germany Programme and abstracts Last update: 2019 Jul 04 CESRA, the Community of European Solar Radio Astronomers, organizes triennial workshops on investigations of the solar atmosphere using radio and other observations. Although special emphasis is given to radio diagnostics, the workshop topics are of interest to a large community of solar physicists. The format of the workshop will combine plenary sessions and working group sessions, with invited review talks, oral contributions, and posters. The CESRA 2019 workshop will place an emphasis on linking the Sun with the heliosphere, motivated by the launch of Parker Solar Probe in 2018 and the upcoming launch of Solar Orbiter in 2020. It will provide the community with a forum for discussing the first relevant science results and future science opportunities, as well as on opportunity for evaluating how to maximize science return by combining space-borne observations with the wealth of data provided by new and future ground-based radio instruments, such as ALMA, E-OVSA, EVLA, LOFAR, MUSER, MWA, and SKA, and by the large number of well-established radio observatories. Scientific Organising Committee: Eduard Kontar, Miroslav Barta, Richard Fallows, Jasmina Magdalenic, Alexander Nindos, Alexander Warmuth Local Organising Committee: Gottfried Mann, Alexander Warmuth, Doris Lehmann, Jürgen Rendtel, Christian Vocks Acknowledgements The CESRA workshop has received generous support from the Leibniz Institute for Astrophysics Potsdam (AIP), which provides the conference venue at Telegrafenberg. Financial support for travel and organisation has been provided by the Deutsche Forschungsgemeinschaft (DFG) (GZ: MA 1376/22-1). -
Michael W. Busch Updated June 27, 2019 Contact Information
Curriculum Vitae: Michael W. Busch Updated June 27, 2019 Contact Information Email: [email protected] Telephone: 1-612-269-9998 Mailing Address: SETI Institute 189 Bernardo Ave, Suite 200 Mountain View, CA 94043 USA Academic & Employment History BS Physics & Astrophysics, University of Minnesota, awarded May 2005. PhD Planetary Science, Caltech, defended April 5, 2010. JPL Planetary Science Summer School, July 2006. Hertz Foundation Graduate Fellow, September 2007 to June 2010. Postdoctoral Researcher, University of California Los Angeles, August 2010 – August 2011. Jansky Fellow, National Radio Astronomy Observatory, August 2011 – August 2014. Visiting Scholar, University of Colorado Boulder, July – August 2012. Research Scientist, SETI Institute, August 2013 – present. Current Funding Sources: NASA Near Earth Object Observations. Research Interests: • Shapes, spin states, trajectories, internal structures, and histories of asteroids. • Identifying and characterizing targets for both robotic and human spacecraft missions. • Ruling out potential future asteroid-Earth impacts. • Radio and radar astronomy techniques. Selected Recent Papers: Marshall, S.E., and 24 colleagues, including Busch, M.W., 2019. Shape modeling of potentially hazardous asteroid (85989) 1999 JD6 from radar and lightcurve data, Icarus submitted. Reddy, V., and 69 colleagues, including Busch, M.W., 2019. Near-Earth asteroid 2012 TC4 campaign: results from global planetary defense exercise, Icarus 326, 133-150. Brozović, M., and 16 colleagues, including Busch, M.W., 2018. Goldstone and Arecibo radar observations of (99942) Apophis in 2012-2013, Icarus 300, 115-128. Brozović, M., and 19 colleagues, including Busch, M.W., 2017. Goldstone radar evidence for short-axis mode non-principal axis rotation of near-Earth asteroid (214869) 2007 PA8. Icarus 286, 314-329. -
Presentazione Standard Di Powerpoint
G. Serra, F. Gaudiomonte e G.Valente [email protected] Italian National Institute for Astrophysics Sardinia Radio Telescope Astronomical Observatory of Cagliari PhD Summer School “Seminario di eccellenza Italo Gorini” Selargius, OAC, September 8, 2016 In the morning 9:30-12:30, at OAC General talk about radio astronomy and SRT (G. Serra) Introduction to Radio Frequency measurement by Vectorial Network Analyzer (VNA), (G. Valente) Introduction to Radio Frequency Interference (RFI) measurement (F. Gaudiomonte) Labs tour: ◦ VNA calibration and S-parameter measurement of a Low Noise Amplifier (at room temp) ◦ Visit at mechanical shop and electronic/optical laboratory In the afternoon 4-5:30, at SRT site ◦ a close look at telescope, control room and apparatus box ◦ an experience with the RFI mobile laboratory Agenda Radio Frequency Measurements for SRT Radio astronomy in a nutshell ◦ System temperature ◦ Antenna temperature ◦ Large reflector antennas ◦ Radio cosmic signals ◦ Receivers noise temperature ◦ Antenna temperature due to atmosphere ◦ Telescope system sensitivity ◦ Frequency bands allocated to radio astronomy service (RAS) ◦ Radio Frequency Interference (RFI) monitoring Sardinia Radio Telescope Summary Agenda “Radio astronomy is the study of radio waves originating outside the Earth. The radio range of frequency (ν) ( or wavelength (λ)) is loosely defined by three factors” [see http://www.cv.nrao.edu/course]: atmospheric transparency quantum thermal noise current technology “Together they yield a boundary between radio and far-infrared astronomy”: Upper limit: ν~ 1 THz (1012 Hz) or λ =c/ν ~ 0.3 mm (molecular absorption of the atmosphere) Lower limit: ν~ 50 MHz (107 Hz) or λ =c/ν ~ 6 m (ionosheric refraction) c = speed of light Radio astronomy in a nutshell The water vapor start affecting the ground based radio astronomical observations above 10 GHz (λ < 3 cm) Radio astronomy in a nutshell The water vapour (IWV) content is the main limiting factor for ground based radio astronomical observations (at frequency >20 GHz). -
Neue Ergebnisse Und Perspektiven Der Radioastronomie
Sommersemester 2006 Neue Ergebnisse und Perspektiven der Radioastronomie 1 Neue Ergebnisse und Perspektiven der Radioastronomie • 05.05: Einführung & Übersicht • 12.05. Radioteleskope & Radiobilder & RFI Themen • 26.05. Der Radiohimmel im Licht der 21cm-Linie & Radioteleskop-Katastrophen & Daten • 09.06. Pulsar-Astronomie (heute & in Zukunft) • 23.06. AGN & Binäre Schwarze Löcher (NEUES!) • 07.07. Maser & das Interstellare Medium & AGN & Merger • 21.07. 2 12.05. Radioteleskope & Radiobilder • Radiostrahlung und Radioantennen – Aktive Oberflächen (Effelsberg, GBT) • Neue Radioteleskope (z.Bsp. GBT, Sardinien, Yebes) • Neues Weltraumteleskop • Neue Interferometer – Fragestellungen beim Interferometerbau – Neues im mm-Bereich Übersicht – LOFAR und SKA (Antennenkonzepte) • RFI – Radiointerferenz 3 Radioteleskope zeigen Phänomene, die für optische Teleskope unsichtbar sind Optisch / Radio Radioteleskope Optische sehen Teleskope sehen hauptsächlich vorwiegend Phänomene wie thermische hochenergetische Objekte wie Elektronen Sterne 5 Radiostrahlung & Radioantennen 6 Vom Weidezaun zur Parabolantenne 7 Mauritius (151 MHz) 2km und 1km Armlänge Image of a Supernova remnant at 4' x 9' Nancay 200m x 40m Molonglo (U. Syd) 1 mile x 40 ft. (843 MHz) Antennenmontierung • Günstiger • Beam rotiert nicht am Himmel •Teurer • Bessere Nachführgenauigkeit • Beam rotiert am Himmel • Probleme mit Gravitation • Gravitation macht keine • Wie für optische Teleskope Probleme • Kleine Teleskope (<25m) • Größere Teleskope • Muß nur um eine Achse rotieren 11 REFLEKTOR