The Resinous Cargo of the Java Sea Wreck*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indonesian Marine Fisheries Development and Strategy Under Extended Maritime Jurisdiction
East-West Environment and Policy Institute Research Report No. 13 Indonesian Marine Fisheries Development and Strategy under Extended Maritime Jurisdiction by Salvatore Comitini Sutanto Hardjolukito East-West Center Honolulu, Hawaii THE EAST-WEST CENTER is an educational institution established in Hawaii in 1960 by the United States Congress. The Center's mandate is "to promote better relations and understanding among the nations of Asia, the Pacific, and the United States through cooperative study, training, and research." Each year more than 1,500 graduate students, scholars, professionals in business and government, and visiting specialists engage in research with the Center's interna• tional staff on major issues and problems facing the Asian and Pacific region. Since 1960, more than 30,000 men and women from the region have participated in the Center's cooperative programs. The Center's research and educational activities are conducted in five institutes- Communication, Culture Learning, Environment and Policy, Population, and Re• source Systems—and in its Pacific Islands Development Program, Open Grants, and Center-wide programs. Although principal funding continues to come from the U.S. Congress, more than 20 Asian and Pacific governments, as well as private agencies and corporations, have provided contributions for program support. The East-West Center is a public, nonprofit corporation with an international board of governors. THE EAST-WEST ENVIRONMENT AND POLICY INSTITUTE was established in October 1977 to increase understanding of the interrelationships among policies designed to meet a broad range of human and societal needs over time and the nat• ural systems and resources on which these policies depend or impact. -
General Circulation in the Malacca Strait and Andaman Sea: a Numerical Model Study
American Journal of Environmental Science, 2012, 8 (5), 479-488 ISSN: 1553-345X ©2012 Science Publication doi:10.3844/ajessp.2012.479.488 Published Online 8 (5) 2012 (http://www.thescipub.com/ajes.toc) General Circulation in the Malacca Strait and Andaman Sea: A Numerical Model Study 1Syamsul Rizal, 2Peter Damm, 1Mulyadi A. Wahid, 2Jurgen Sundermann, 1Yopi Ilhamsyah, 3Taufiq Iskandar and 1Muhammad 1Jurusan Ilmu Kelautan, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia 2Institut fur Meereskunde, Universität Hamburg, Bundesstr. 53, 20146 Hamburg, Germany 3Jurusan Matematika, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia Received 2012-05-10, Revised 2012-08-11; Accepted 2012-08-11 ABSTRACT In the Andaman Sea and Malacca Strait, as in other parts of the Indian Ocean, the seasonal change of the wind plays a most important role: the south-west (hereafter SW) is monsoon active from June through September and the north-east (hereafter NE) monsoon is active from December through February. During the NE monsoon the winds are directed from the north and northeast to the south-west, and during the SW monsoon from the south-west to the north-east. Strong winds between June and September lead to maximum rainfall over most parts of the Indian subcontinent. These areas are also greatly influenced by the tides. The circulation in the Andaman Sea and the Malacca Strait is simulated with a three-dimensional baroclinic primitive equation model. In order to run the model, the HAMSOM model is used. The model is forced by tides at the open boundaries as well as by wind and heat flux. -
C3 Primitive Angiosperms
Magnoliids & other Primitive Angiosperms Revised 5th of May 2015 Angiosperm, pl angiosperms; Angiospermae n (Greek anggeion (angeion), vessel, small container, & Greek σπέρµα, sperma, seed) A major division of the plant kingdom, commonly called flowering plants as their reproductive organs are in flowers, having seeds which develop in a closed ovary made of carpels, a very reduced gametophyte, & endosperm develop from a triple fusion nucleus; flowering plant producing seeds enclosed in a structure derived from the ovary; flowering plant, plants with ovules enclosed in ovary. A division of the seed plants (spermatophytes) that bear ovules & seeds in closed megaspores (carpels) in contrast to gymnosperms, which have exposed ovules & seeds, born “naked” on the megasporophylls. Angiosperms are distinguished by a unique process of sexual reproduction called “double fertilization”. According to the number of leaves (cotyledons) present in the embryo, two major groups are distinguished, the Monocotyledons & the Dicotyledons. Angiosperms are commonly referred to as “flowering plants: even though the reproductive organs of some gymnosperms are also borne in structures that fulfill the definition of a flower. Cf gymnosperm. Angiosperms have traditionally been split into monocotyledons & dicotyledons, or plants with one or two seed leaves respectively. One group of plants that have two seeds leaves was problematic, as it also had primitive flowers & some traits in common with monocots. This group is the Magnoliids, or primitive angiosperms. The remainder of the dicots are called Eudicots, the prefix eu-, from Greek ἐὐς, eus, good, meaning the good dicots. Magnoliids (Eumagnoliids?) About 8,500 (5,000-9,000) spp in 20 angiosperm families, of large trees, shrubs, vines, lianas, & herbs that are neither eudicotyledons nor monocotyledons, distributed in tropical & temperate areas. -
Forest'assessment'of'''''''''''''''''' Lower'sugut'forest'reserve'
FOREST'ASSESSMENT'OF'''''''''''''''''' LOWER'SUGUT'FOREST'RESERVE' Reuben&Nilus&&&John&B.&Sugau&&&&&&&&&&&&&&&&&&&&&&&&! FOREST!RESEARCH!CENTRE!!!!!!!!!!!!!!!!!!!!!! FEBRUARY!2015! FOREST ASSESSMENT OF LOWER SUGUT FOREST RESERVES FOREST ASSESSMENT OF LOWER SUGUT FOREST RESERVE Reuben Nilus & John B. Sugau Sabah Forestry Department February 2015 INTRODUCTION Lower Sugut Forest Reserve (LSFR) is a Class I Protection Forest with a total area of 8,680 ha (Fig. 1). The Beluran District Forestry Office administers the reserve. The Forestry Department through the Forest Research Centre has conducted forest quality assessment in Lower Sugut FR from the 22th till 27th September 2014. The objective of the survey is to determine vegetation quality in the various forest types. This information will provide forest ecosystems background for Lower Sugut Forest Management Unit. STUDY SITE Location and access Lower Sugut FR is situated about 75 km northwest of Sandakan town (Fig. 1). It is geographically located between latitude 06° 16’ 44.9”–06° 24’ 32.3” N and longitude 117° 02’ 19.6”–117° 21’ 14.9” E. The reserve can be accessed through Sapi–Nangoh highway and traverse through IJM oil palm estate; and also through the sea by boat. Soil There are seven major soil association underlie Lower Sugut FR (Fig. 2). About 69% of the FMU is affected by high water table: 30% under tidal influenced and the soil is categorised as Weston association; 39% under freshwater influenced and categorised as Sapi (26%), Kinabatangan (12%) and Klias (15 ha) soil associations. The other soil associations that consider as dryland, such as Maliau and Tanjung Aru associations that underlie 19% and 11% of the reserve area, respectively, are categorised as intermediate fertily in plant nutrient aspect (Acres et al., 1975). -
Reporting Service 2004, No
ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service Paris, 2004-10-01 Reporting Service 2004, No. 10 CONTENTS 2004/143 - EPPO declaration: Plant Health Endangered 2004/144 - First report of Thrips palmi in Portugal 2004/145 - Presence of ‘Candidatus Liberobacter asiaticus’ confirmed in Brazil 2004/146 - Results of the 2003/2004 surveys on Pepino mosaic potexvirus done in United Kingdom 2004/147 - Absence of Pepino mosaic potexvirus in Slovakia 2004/148 - Pepino mosaic potexvirus does not occur in Sweden 2004/149 - Pepino mosaic potexvirus does not occur in Estonia 2004/150 - Phytophthora ramorum does not occur in Estonia 2004/151 - Phytophthora ramorum does not occur in Slovakia 2004/152 - First report of Cerataphis brasiliensis in France on imported palms 2004/153 - First report of Acizzia jamatonica in France: addition to the EPPO Alert List 2004/154 - Details on the situation of Helicoverpa armigera in Serbia 2004/155 - Further details on earlier findings of Ralstonia solanacearum biovar 2 race 3 in Pelargonium zonale cuttings in Europe 2004/156 - Lysichiton americanus (Araceae): addition to the EPPO Alert List 2004/157 - International Workshop ‘Invasive Plants in the Mediterranean Type Regions of the World’ (2005-05-25/27, Montpellier, FR) 2004/158 - Two Regional Standards for Phytosanitary Measures adopted by APPPC 2004/159 - Accession of the European Union to the revised IPPC 1, rue Le Nôtre Tel. : 33 1 45 20 77 94 E-mail : [email protected] 75016 Paris Fax : 33 1 42 24 89 43 Web : www.eppo.org EPPO Reporting Service 2004/143 EPPO declaration: Plant Health Endangered At the EPPO Conference on Quality of Diagnosis and New Diagnostic Methods for Plant Pests (Noordwijkerhout, NL, 2004-04-19/22), serious concerns were raised about knowledge erosion and decrease of specialists in the field of plant health. -
1. Geography 2. Socioeconomy
Chapter 1 The Brantas River Basin 1. Geography (1) Location......................................................,.........................4 (2) Population................................,....................,........................5 (3) Topographyandgeology.............................................................7 (4) Climate..."..".."."........."...........".."."..m."."""....."."....."".9 (5) Rivers..................................................................................11 2. Socioeconomy (1) Society and culture...................................................................I3 (2) Politicsandnationaldefense....................................................,...15 (3) Economy..............................................................................17 (4) Industry..m.",.,........."..""."..,......................"......m..".....""18 3. Brantas Basin Characteristics (1) Watercourseoutline............................,...,........,........................25 (2) Hydrology"".".".."."....."."."""."........"..........."..",".".."".28 (3) Irrigation.,..............,..............................................................30 (4) Rainfallandrunoffcharacteristics..................................................31 (5) Floodwaters ofBrantas'mainstream ............................................33 (6) Eruption of Mount Kelud...""......."........"...""..""".............""..35 Chapter 2 History of Brantas River Basin Development Project 1. Brantas Project Development (1) Overview..............................................................................40 -
Hydrographic Observations . •
• HYDROGRAPHIC OBSERVATIONS . • Morphology of the Java Sea and the S. China Sea, and of the Strait of Malacca. Limits, extents and contents. The entire bottom of the Java Sea, the S. China Sea and the Str8it of Malacca is part of the East Asiatic shelf which, as far as the Neth. East Jndies • are concerned, sLetches. as far as the roo fathom line of the Strait ofMalacca, the West coast of Sumatra and the South coast of Java. To the East this shelf • is bounded by the same depth line in the Strait of Macassar and :,n the Bali Sea. The accompanying deep sea charts on which the isobathic lines for ro, 20, 3°,40 M. etc. have been traced, were composed after the soundings occur• .ring on the sea charts issued by the N.E.I. Admiralty, complemented with soundings taken on boar4 the exploration craft "Brak" itself. The courses followed being mostly at right angles to the depth lines, and the stations on each of the cruises being different, these depth lines could be traced with a fair degree of accuracy, thanks to the numerous soundings. The 20 M. line in the Java Sea E. of Sumatra and that for 50 M. and upwards in the eastern• most part of that sea are less accurate owing to the inequality of the sea-bot• tom there. The sea-charts of the area situated between 6° Lat. S. and the Kangean islands have not yet appeared; these waters indeed we had to avoid as the navigation was too perilous for us to explore them. -
Resurrection of Angelesia, a Southeast Asian Genus of Chrysobalanaceae
Blumea 59, 2014: 103–105 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE http://dx.doi.org/10.3767/000651914X684880 Resurrection of Angelesia, a Southeast Asian genus of Chrysobalanaceae C.A. Sothers1, G.T. Prance2 Key words Abstract Licania subg. Angelesia is composed of only three species restricted to Southeast Asia and is cur- rently delimited as one of four subgenera of Licania, a species-rich genus of mostly Neotropical taxa. Molecular Licania phylogenetic studies involving Chrysobalanaceae have revealed that Licania is polyphyletic. Here we propose pantropical to re-establish Licania subg. Angelesia to generic rank based on molecular and morphological evidence and the polyphyletic three species currently placed in Licania subg. Angelesia (Licania fusicarpa, L. palawanensis and L. splendens) taxonomy are here re-instated and transferred to Angelesia, as appropriate. This new generic delimitation renders Licania an exclusively Neotropical genus, and Angelesia an endemic Southeast Asian genus. Published on 30 September 2014 INTRODUCTION Following the views of Hallier (1903), who suggested that Mo quilea and Angelesia should be united under Licania based Licania comprises a genus of c. 220 species, and is currently di- on anatomical studies, Moquilea, Angelesia, and Afrolicania, vided into four subgenera: subg. Licania, subg. Moquilea, subg. a monospecific genus described by Mildbraed (1921: 483), Parinariopsis and subg. Angelesia. All four subgenera share were placed in the synonymy of Licania (Prance 1967, 1972, the characters of a unilocular ovary inserted at or near the base Letouzey & White 1978a, b, respectively). Subgenus Parinari of the receptacle and an essentially actinomorphic receptacle. opsis was subsequently described (Prance & White 1988) to However, generic instability concerning the circumscription of accommodate the Neotropical L. -
Variability of Sea Surface Features in the Western Indonesian Archipelago: Inferences from the COADS Dataset
, Variability of Sea Surface Features in the Western Indonesian Archipelago: Inferences from the COADS Dataset CLAUDE ROY Centre ORSTOM de Brest 6.R 70 - Plouzane, France ROY, C. 1996. Variability of sea surface features in the Western Indonesian archipelago: inferencesfrom the COADS dataset [Keragaman D. p. sifat-sifatpermukaanlauf di kepulauan Indonesia bagian barat: diambil dari kumpulan data COADS], p. 15-23.ln Pauly and Martosubroto (eds.) Baseline studies of biodiversity: the fish resources of Western Indonesia. ICLARM Stud. Rev. 23, 312 p. Abstract Following a brief review of their key propeFties (based mainly on K. Wyrtki’s Naga Report of 19611, sea surface features of the Western Indonesian archipelago are characterized using time series extracted from the Comprehensive Oceanographic and Atmospheric Dataset (COADS), and covering the period from 1950 to 1990. Abstrak Diawali dengan tinjauan singkat sifat-sifatpokok dari laut (terutama berdasarkan pengamatan Naga Report 1961 dari K. Wy&& sifat-sifatpermukaanlaut kepulauan Indonesia bagian baratselanjutnya dianalisis berdasarkan data COA DS (Comprehensive Oceanographic and Atmospheric Dataset) tahun 1950-1990. Introduction production and system dynamics, all of which interact generate ecological enigma’’ (Sharp, this vol.). By compari? This account of the regional oceanography of Western with other marine ecosystems (see, for example, Parrish et Indonesia, presented here as background to the surveys 1983 or Pauly andTsukayama 1987), any kind of generaliza? documented in this volume, is meant to explain observed remains hazardous. patterns of productivity (Fig. 1). This account explicitly builds After a review of some important characteristics of on the comprehensive review of Wyrtki (1 961), from which three atmospheric and marine climate of the area, the seasonal a sections were adapted, other sources of information on the interannual variability of selected surface parameters in oceanography of the SoutheastAsian region being scarce. -
Incidence of Extra-Floral Nectaries and Their Effect on the Growth and Survival of Lowland Tropical Rain Forest Trees
Incidence of Extra-Floral Nectaries and their Effect on the Growth and Survival of Lowland Tropical Rain Forest Trees Honors Research Thesis Presented in Partial Fulfillment of the Requirements for graduation “with Honors Research Distinction in Evolution and Ecology” in the undergraduate colleges of The Ohio State University by Andrew Muehleisen The Ohio State University May 2013 Project Advisor: Dr. Simon Queenborough, Department of Evolution, Ecology and Organismal Biology Incidence of Extra-Floral Nectaries and their Effect on the Growth and Survival of Lowland Tropical Rain Forest Trees Andrew Muehleisen Evolution, Ecology & Organismal Biology, The Ohio State University, OH 43210, USA Summary Mutualistic relationships between organisms have long captivated biologists, and extra-floral nectaries (EFNs), or nectar-producing glands, found on many plants are a good example. The nectar produced from these glands serves as food for ants which attack intruders that may threaten their free meal, preventing herbivory. However, relatively little is known about their impact on the long-term growth and survival of plants. To better understand the ecological significance of EFNs, I examined their incidence on lowland tropical rain forest trees in Yasuni National Park in Amazonian Ecuador. Of those 896 species that were observed in the field, EFNs were found on 96 species (11.2%), widely distributed between different angiosperm families. This rate of incidence is high but consistent with other locations in tropical regions. Furthermore, this study adds 13 new genera and 2 new families (Urticaceae and Caricaceae) to the list of taxa exhibiting EFNs. Using demographic data from a long-term forest dynamics plot at the same site, I compared the growth and survival rates of species that have EFNs with those that do not. -
(12) United States Patent (10) Patent N0.: US 8,222,011 B2 Fujikura (45) Date of Patent: Jul
US008222011B2 (12) United States Patent (10) Patent N0.: US 8,222,011 B2 Fujikura (45) Date of Patent: Jul. 17, 2012 (54) PROCESS FOR PRODUCING A RUBBER FOREIGN PATENT DOCUMENTS ANTI-AGING AGENT, A VULCANIZATION JP 2005-139239 A 6/2005 ACCELERATOR OR MODIFIED RUBBER BY JP 2006-152171 A 6/2006 MEANS OF A MICROORGANISM OTHER PUBLICATIONS (75) Inventor: Keitaro Fujikura, Kobe (JP) Humphrey and Deidoerfer, 1960; Microbiological Process Report, pp. 359-385.* (73) Assignees: Sumitomo Rubber Industries, Ltd., Huang and Tang 2007. Bioprocessing for value-added products from Kobe (JP); Research Institute of renewable resources: New Technologies and applicationsChapter 8iBacterial and yeast culturs-process characteristic, pr:oducts and Innovative Technology for the Earth, applications,, pp. 185-223.* KiZugawa (JP) Deidoerfer et al. 1961. Fermentatio process Report. Microbiological Process Report pp. 273-303.* ( * ) Notice: Subject to any disclaimer, the term of this Moore et al. 2002. Journal of Natural Products vol. 65 pp. 1956 patent is extended or adjusted under 35 1962* U.S.C. 154(b) by 296 days. Hertweck et al. Chembiochem (2001) No. 10, pp. 784-786.* Hertweck et al. Tetrahedron (2000) 56: 9115-9120.* (21) Appl.No.: 12/469,939 Lebel et al. Organic Lett. (2006) 8(25): 57l7-5720.* Arzoumanidis et al. J. Org. Chem. (1981) 46: 3930-3932.* (22) Filed: May 21, 2009 Translation of Of?ce Action dated Mar. 9, 2012 for German Appli cation No. 10 2009 024 402.6. (65) Prior Publication Data Organikum, 23. Auglage, Weinheim: Wiley-VCH Verlag, 2009, S. pp. 679-681. US 2009/0306431 A1 Dec. -
Maps of Pleistocene Sea Levels in Southeast Asia: Shorelines, River Systems and Time Durations Harold K
^ Journal of Biogeography, 27, I 153-l I67 , Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations Harold K. Voris Field Museum of Natural History, Chicago, Illinois, USA Abstract Aim Glaciation and deglaciation and the accompanying lowering and rising of sealevels during the late Pleistoceneare known to have greatly affected land massconfigurations in SoutheastAsia. The objective of this report is to provide a seriesof mapsthat estimatethe areasof exposed land in the Indo-Australian region during periods of the Pleistocenewhen sealevels were below present day levels. Location The maps presentedhere cover tropical SoutheastAsia and Austral-Asia. The east-westcoverage extends 8000 km from Australia to Sri Lanka. The north-south coverage extends 5000 km from Taiwan to Australia. Methods Present-day bathymetric depth contours were used to estimate past shore lines and the locations of the major drowned river systemsof the Sunda and Sahul shelves. The timing of sea level changesassociated with glaciation over the past 250,000 years was taken from multiple sourcesthat, in some cases,account for tectonic uplift and sub- sidenceduring the period in question. Results This report provides a seriesof maps that estimate the areasof exposed land in the Indo-Australian region during periods of 17,000, 150,000 and 250,000 years before present. The ancient shorelinesare basedon present day depth contours of 10, 20, 30, 40,50,75, 100 and 120 m. On the maps depicting shorelinesat 75,100 and 120 m below present levels the major Pleistoceneriver systemsof the Sunda and Sahul shelves are depicted. Estimatesof the number of major sealevel fluctuation events and the duration of time that sealevels were at or below the illustrated level are provided.