Guide to Identification and Ecology of New Zealand Subfossil Chironomids Found in Lake Sediment

Total Page:16

File Type:pdf, Size:1020Kb

Guide to Identification and Ecology of New Zealand Subfossil Chironomids Found in Lake Sediment Guide to Identification and Ecology of New Zealand Subfossil Chironomids Found in Lake Sediment Ann C. Dieffenbacher-Krall 1,2 , Marcus J. Vandergoes 1,2,3 , Craig A. Woodward 4, and Ian K.G. Boothroyd 5. 1Corresponding authors: Ann C. Dieffenbacher-Krall, 112 Sawyer Research Center, University of Maine, Orono, ME 04449, USA <ann.dieffenbacher AT umit.maine.edu> Marcus J. Vandergoes, GNS Science, P.O. Box 30-368, Lower Hutt, New Zealand <m.vandergoes AT gns.cri.nz>. 2Climate Change Institute, University of Maine, Orono, ME 04449, USA 3GNS Science, Lower Hutt, New Zealand 4 Center for Chronology, Environment and Climate,Queens University, Belfast, Ireland 5Golder Associates (NZ) Ld., P.O. Box 33-849, Takapuna, Auckland, New Zealand Last updated 06/10/2008 Suggested citation: Dieffenbacher-Krall, A.C., M.J. Vandergoes, C.A. Woodward, and I.K.G. Boothroyd. 2008.0610. Guide to Identification and Ecology of New Zealand Subfossil Chironomids Found in Lake Sediment. Climate Change Institute, University of Maine, Orono, ME <http://www.climatechange.umaine.edu/Research/facilities/perl/nzguide.html>. Contact Ann Dieffenbacher-Krall to request this guide on CD. Comments on this guide will be most welcomed. Drawings by Dieffenbacher-Krall. Photographs by Dieffenbacher-Krall, Vandergoes, and Woodward. This taxonomic guide is a result of work to build New Zealand subfossil chironomid training sets to enable quantitative environmental reconstructions from chironomid larvae head capsule (Dieffenbacher-Krall et al. 2007, Woodward and Shulmeister 2006). We offer this guide as a taxonomic reference for anyone working with subfossil chironomids from New Zealand or other Southern Hemisphere locations, particularly in the fields of ecological and environmental analysis and reconstruction. The guide will be updated periodically as our research progresses. We have made this subfossil taxonomy as consistent with the current full organism taxonomy for New Zealand as possible. We have opted to use a numbering system for unnamed Orthocladiinae rather than the lettering system of Boothroyd (unpub.) because numbers are unlimited. Synyonmy with Boothroyd’s lettered Orthocladiinae is noted on individual pages. In many cases, the name given to a subfossil taxon was determined by examination of Boothroyd’s mounts of modern larvae. We have been conservative in naming the taxa. For some New Zealand taxa there is only one species known from full organism studies. We have not used species names unless subfossil head capsules typically contain a feature distinguishing the species from other species within the genera, whether other species are found in New Zealand or not. We have not attempted to synchronize this taxonomy with the descriptions and photographs provided by Boubee (1983) and Schakau (1993) because we are not able to examine the original material. We prefer to avoid misclassification that might result from relying solely on verbal descriptions or single-view photographs provided in their theses, which may not show features critical to diagnosis of some taxa. At this point in time, this guide is based exclusively on South Island material, although many of the types can certainly also be found on North Island, or smaller New Zealand islands. We currently recognize 60 subfossil types, of which 22 are Chironominae (5 of which are Tanytarsus funebris types), 2 are Diamesinae, 30 are Orthocladiinae, 1 is Podonominae, and 5 are Tanypodinae Numbered Orthocladiinae: In an effort to standardize subfossil chironomid taxonomy across at least a portion of the Southern Hemisphere, we have coordinated our unnamed Orthocladiinae numbering with Julietta Massaferro (Universidad de Bariloche, Argentina), who is currently developing a similar guide for South America. Missing numbers represent either taxa found in South America but not in New Zealand, or taxa for which we were finally able to assign a name. Retired numbers are not reused to avoid confusion. Lakes: Most numbered lakes listed in this document are described in Dieffenbacher-Krall et al. (2007). A few were not included in that article and information about these additional sites can be requested from Dieffenbacher-Krall. Named lakes are described in Woodward and Shulmeister (2006). For chironomid taxa found only in late-glacial age sediment, we have named the lakes. Descriptions of late-glacial chironomid studies will be forthcoming over the next several years. “Reference” describes slides made with 2 one head capsule per slide for the purpose of developing the taxonomy (Vandergoes and Dieffenbacher-Krall, unpub.). We are currently working together to establish taxonomic consistency between the two inference model studies (Dieffenbacher-Krall et al. 2007, Woodward and Shulmeister 2006) based on this guide. The training sets from the two studies will then be combined. Woodward and Shulmeister (2006) lakes noted in this taxonomic guide include only those which we (Woodward, Vandergoes, and Dieffenbacher-Krall) have recounted using this standardized taxonomy. We have completed recounting 15 of the Woodward and Shulmeister (2006) sites and will update this guide as we complete more. Some of the Woodward and Shulmeister (2006) lakes were deemed inappropriate for the combined training set (e.g., too big, too much obvious human impact) and were excluded. Recounted lakes to date are Iron, Sylvester, Little Sylvester, Rainbow Skifield W, Rainbow Skifield E, Sedgemere, Princess Bath, Emma, Sylvan, Harris, Mackenzie, Gertrude Saddle/Black, Howden, Sugarbowl Tarn, and Alta. Ecological information: We have provided GLM models (using Canoco) for mean summer temperature (SmT), log10 chlorophyll a (Chla), log10 conductivity (CON), and log10 percentage sediment organic content (ORG; based on 550 EC, 2 hour, loss on ignition) for all taxa (using square root of percentages) for which there is a significant (p<0.005) relationship, including only lakes from Dieffenbacher-Krall et al. (2007). When we have completed combining the two training sets, we will repeat the analyses including Woodward and Shulmeister (2006) lakes and update these pages. Methods were described by Dieffenbacher-Krall et al. (2007). Optimum and tolerance is indicated if calculated. We also generated HOF models (Huisman et al. 1993) for SmT for taxa found in a minimum of 10 sites (http://cc.oulu.fi/~jarioksa/; Oksanen and Minchin 2002). A Roman numeral in the corner of the graph indicates the HOF model type. For those taxa for which we have sufficient data, we provide a verbal description of subfossil ecology based solely on the sites described in Dieffenbacher-Krall et al. (2007). Subfossil chironomid ecology in lakes that are different from those included in that data set, such as North Island, highly eutrophic or disturbed, less than one meter deep, or large, may be quite different. Additional subfossil ecological information observed by Woodward and Shulmeister (2006) is noted where provided. The data for the two training sets was collected using the same methods, but the suite of lakes included in each study is somewhat different. The altitudinal and temperature ranges of the two sets of lakes overlap, but the Dieffenbacher-Krall et al. (2007) set extends to a higher altitude and lower mean February temperatures than the Woodward and Shulmeister (2006) lake set. The latter has broader ranges of chlorophyll a and conductivity than the former (Table 1). Both studies avoided lakes with obvious human impacts. Note well: Subfossil head ecology and full larvae ecology are not the same. Issues of taphonomy, how larvae head capsules are deposited and preserve in sediment, 3 necessitate modern studies based on the subfossil assemblage from sediment taken from the deepest part of lakes. Whole organism studies of the larval, adult, or pupal life phases may be biased with respect to season of sampling or sampling location within a lake. The preservable subfossil head capsules are extremely small and light weight and the remains of both littoral and profundal species become incorporated in deep water sediments (Iovino 1975, Wiederholm 1979, Brodin 1982, Boubee 1983, Schmäh 1993). The top half-centimeter of sediment contains subfossil material deposited over a number of years, whereas full organism sampling generally includes only those individuals living at the time of sampling. Typically, a far greater number of taxa are found by subfossil sampling than by full organism sampling. Table 1. Range of values for various environmental variables for lakes included in Woodward and Shulmeister (2006) and Dieffenbacher-Krall et al. (2007) studies. Altitude Mean Feb. # sites m a.s.l lake depth m # taxa/lake SmT temp Chla CON min-max min-max min-max mean oC oC mg/m 3 µS/cm Woodward and Shulmeister 0.15- 6.9- 2006 46 20-1882 0.74-40 1-21 10.5 n/a 8.2-18.1 181 1180 Dieffenbacher- Krall et al. 2007 61 120-2070 1-37 3-20 11.6 6.4-15.2 7.4-15.8 <0.1-5.9 3-96 We have provided ecological information gleaned from other sources. Note, this information is based on full organism studies unless otherwise noted. Extreme caution must be exercised when using this information to interpret subfossil assemblages. Although researchers who study New Zealand chironomids at the organism level have been extremely productive, the size of the country and the great variety of habitat types relative to the number of researchers leave much room for continued research. Research about chironomid ecology remains in its infancy. Definitions/Abbreviations: cephalic setation - pattern of spots on Tanypodinae head capsules formed by pores and hair bases Chla – chlorophyll a CON - conductivity Laterals - side teeth Median - central tooth or teeth Mentum - full set of teeth NI – North Island ORG – organic content (% loss-on-ignition, 550 oC, 2 hours) SI – South Island SmT – mean summer temperature (January, February, March) VMP - ventromental plate POP – post occipital plate 4 Additional taxa that are apt to occur in New Zealand lake sediment: We have included only those taxa which we found represented in the subfossil assemblage.
Recommended publications
  • New Species of Insects Described from the Empire of Japan in 1938
    Title New Species of Insects described from the Empire of Japan in 1938 Citation Insecta matsumurana, 13(4), 163-174 Issue Date 1939-07 Doc URL http://hdl.handle.net/2115/9425 Type bulletin (article) File Information 13(4)_p163-174.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP NEW SPECIES OF INSECTS DESCRIBED FROM THE EMPIRE OF JAPAN IN 1938* HYMENOPTERA Ishii, T.: Descriptions of six new Species belonging to the Aphelinae from Japan (Kontyu, XII, pp. 27 - 32). Aspidotiphagus pseudoaonidiae, p. 27; Prospaltella thoracaphis, p. 28; P. citri, p. 29; P. bemisiae, p. 30; Physcus bifasciatus, p. 31; Eretmocerus aleurolobi, p. 32. ____ : Chalcidoid and Proctotrypoid-Wasps reared from Dendrolimus spectabilis BUTLER and D. albolineatus MATSUMURA and their Insects Parasites, with Descriptions of three new Species (KontyQ, XII, pp. 97-105). Euterus tabatae, p. 99; E. kojimae, p. 100; Calliceras (Ceraphron) kamiyae, p. 105. _: Descriptions of two new Trichogrammatids from Japan (KontyQ, XII, pp. 179-181). Japania andoi, p. 179; Oligostia shibuyae, p. 180. ____ : Eucharidae of Japan, with Descriptions of three new Species (Kontyfi, XII, pp. 194-198). Eucharis esakii, p. 195; Schizaspidia yakushimensis, p. 197; S. taiwanensis, p. 198. Malaise, R.: Two new Tenthredo from Japan (Hym. Tenth.) (Opusc. Ent., ur, pp. 91-94). Tenthredo basizonata, p. 91 ; T. grandiceps, p. 93; T. sortitor (n. n.) for (abdominalis MATSUMURA, nec FAHR. 1798). Shinji, 0.: Hosan Tamabachi·ka no Kenkyu (Studies on Japanese Cynipidae) (Zool. Mag., Japan, 50, pp 427-438). Diplolepis kunugi, p. 430; Andricus noli-quercicoJa, p. 433; Neuroterus narae, p.
    [Show full text]
  • Dear Colleagues
    NEW RECORDS OF CHIRONOMIDAE (DIPTERA) FROM CONTINENTAL FRANCE Joel Moubayed-Breil Applied ecology, 10 rue des Fenouils, 34070-Montpellier, France, Email: [email protected] Abstract Material recently collected in Continental France has allowed me to generate a list of 83 taxa of chironomids, including 37 new records to the fauna of France. According to published data on the chironomid fauna of France 718 chironomid species are hitherto known from the French territories. The nomenclature and taxonomy of the species listed are based on the last version of the Chironomidae data in Fauna Europaea, on recent revisions of genera and other recent publications relevant to taxonomy and nomenclature. Introduction French territories represent almost the largest Figure 1. Major biogeographic regions and subregions variety of aquatic ecosystems in Europe with of France respect to both physiographic and hydrographic aspects. According to literature on the chironomid fauna of France, some regions still are better Sites and methodology sampled then others, and the best sampled areas The identification of slide mounted specimens are: The northern and southern parts of the Alps was aided by recent taxonomic revisions and keys (regions 5a and 5b in figure 1); western, central to adults or pupal exuviae (Reiss and Säwedal and eastern parts of the Pyrenees (regions 6, 7, 8), 1981; Tuiskunen 1986; Serra-Tosio 1989; Sæther and South-Central France, including inland and 1990; Soponis 1990; Langton 1991; Sæther and coastal rivers (regions 9a and 9b). The remaining Wang 1995; Kyerematen and Sæther 2000; regions located in the North, the Middle and the Michiels and Spies 2002; Vårdal et al.
    [Show full text]
  • Chironominae 8.1
    CHIRONOMINAE 8.1 SUBFAMILY CHIRONOMINAE 8 DIAGNOSIS: Antennae 4-8 segmented, rarely reduced. Labrum with S I simple, palmate or plumose; S II simple, apically fringed or plumose; S III simple; S IV normal or sometimes on pedicel. Labral lamellae usually well developed, but reduced or absent in some taxa. Mentum usually with 8-16 well sclerotized teeth; sometimes central teeth or entire mentum pale or poorly sclerotized; rarely teeth fewer than 8 or modified as seta-like projections. Ventromental plates well developed and usually striate, but striae reduced or vestigial in some taxa; beard absent. Prementum without dense brushes of setae. Body usually with anterior and posterior parapods and procerci well developed; setal fringe not present, but sometimes with bifurcate pectinate setae. Penultimate segment sometimes with 1-2 pairs of ventral tubules; antepenultimate segment sometimes with lateral tubules. Anal tubules usually present, reduced in brackish water and marine taxa. NOTESTES: Usually the most abundant subfamily (in terms of individuals and taxa) found on the Coastal Plain of the Southeast. Found in fresh, brackish and salt water (at least one truly marine genus). Most larvae build silken tubes in or on substrate; some mine in plants, dead wood or sediments; some are free- living; some build transportable cases. Many larvae feed by spinning silk catch-nets, allowing them to fill with detritus, etc., and then ingesting the net; some taxa are grazers; some are predacious. Larvae of several taxa (especially Chironomus) have haemoglobin that gives them a red color and the ability to live in low oxygen conditions. With only one exception (Skutzia), at the generic level the larvae of all described (as adults) southeastern Chironominae are known.
    [Show full text]
  • Spatial and Temporal Distribution of Aquatic Insects in the Dicle (Tigris) River Basin, Turkey, with New Records
    Turkish Journal of Zoology Turk J Zool (2017) 41: 102-112 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1512-56 Spatial and temporal distribution of aquatic insects in the Dicle (Tigris) River Basin, Turkey, with new records Fatma ÇETİNKAYA, Aysel BEKLEYEN* Department of Biology, Faculty of Science, Dicle University, Diyarbakır, Turkey Received: 21.12.2015 Accepted/Published Online: 01.06.2016 Final Version: 25.01.2017 Abstract: We investigated insects of the Dicle (Tigris) River Basin in terms of their composition and spatiotemporal distribution. Larvae, pupae, pupal exuviae, and nymphs of insects were obtained from samples collected by a plankton net monthly during a 1-year period in 2008 and 2009 at seven different sites of the Dicle (Tigris) River Basin. A total of 35 taxa from the orders Trichoptera (1 taxon), Ephemeroptera (3 taxa), and Diptera (31 taxa) were identified. Chironomidae (Diptera) was the most diverse group and was represented by three major subfamilies, namely Tanypodinae (2 taxa), Orthocladiinae (19 taxa), and Chironominae (7 taxa). Among these species, Nanocladius (Nanocladius) spiniplenus Saether, 1977 is a new record for Turkey as well as for western Asia. In addition, the Psychomyia larvae found for the first time in the Dicle (Tigris) River Basin (Turkey) were described. Both taxa have been illustrated to warrant validation. Taxa number varied spatially from 6 to 14 and temporally from 2 to 12 during the sampling period. Along the river, Cricotopus bicinctus and Orthocladius (S.) holsatus were the most common taxa. Key words: Diptera, Ephemeroptera, Trichoptera, Insecta, Dicle (Tigris) River 1.
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • Checklist of the Family Chironomidae (Diptera) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 63–90 (2014)Checklist of the family Chironomidae (Diptera) of Finland 63 doi: 10.3897/zookeys.441.7461 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the family Chironomidae (Diptera) of Finland Lauri Paasivirta1 1 Ruuhikoskenkatu 17 B 5, FI-24240 Salo, Finland Corresponding author: Lauri Paasivirta ([email protected]) Academic editor: J. Kahanpää | Received 10 March 2014 | Accepted 26 August 2014 | Published 19 September 2014 http://zoobank.org/F3343ED1-AE2C-43B4-9BA1-029B5EC32763 Citation: Paasivirta L (2014) Checklist of the family Chironomidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 63–90. doi: 10.3897/zookeys.441.7461 Abstract A checklist of the family Chironomidae (Diptera) recorded from Finland is presented. Keywords Finland, Chironomidae, species list, biodiversity, faunistics Introduction There are supposedly at least 15 000 species of chironomid midges in the world (Armitage et al. 1995, but see Pape et al. 2011) making it the largest family among the aquatic insects. The European chironomid fauna consists of 1262 species (Sæther and Spies 2013). In Finland, 780 species can be found, of which 37 are still undescribed (Paasivirta 2012). The species checklist written by B. Lindeberg on 23.10.1979 (Hackman 1980) included 409 chironomid species. Twenty of those species have been removed from the checklist due to various reasons. The total number of species increased in the 1980s to 570, mainly due to the identification work by me and J. Tuiskunen (Bergman and Jansson 1983, Tuiskunen and Lindeberg 1986).
    [Show full text]
  • Table of Contents 2
    Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels 1 March 2011 Austin Brady Richards and D. Christopher Rogers Table of Contents 2 1.0 Introduction 4 1.1 Acknowledgments 5 2.0 Standard Taxonomic Effort 5 2.1 Rules for Developing a Standard Taxonomic Effort Document 5 2.2 Changes from the Previous Version 6 2.3 The SAFIT Standard Taxonomic List 6 3.0 Methods and Materials 7 3.1 Habitat information 7 3.2 Geographic Scope 7 3.3 Abbreviations used in the STE List 8 3.4 Life Stage Terminology 8 4.0 Rare, Threatened and Endangered Species 8 5.0 Literature Cited 9 Appendix I. The SAFIT Standard Taxonomic Effort List 10 Phylum Silicea 11 Phylum Cnidaria 12 Phylum Platyhelminthes 14 Phylum Nemertea 15 Phylum Nemata 16 Phylum Nematomorpha 17 Phylum Entoprocta 18 Phylum Ectoprocta 19 Phylum Mollusca 20 Phylum Annelida 32 Class Hirudinea Class Branchiobdella Class Polychaeta Class Oligochaeta Phylum Arthropoda Subphylum Chelicerata, Subclass Acari 35 Subphylum Crustacea 47 Subphylum Hexapoda Class Collembola 69 Class Insecta Order Ephemeroptera 71 Order Odonata 95 Order Plecoptera 112 Order Hemiptera 126 Order Megaloptera 139 Order Neuroptera 141 Order Trichoptera 143 Order Lepidoptera 165 2 Order Coleoptera 167 Order Diptera 219 3 1.0 Introduction The Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) is charged through its charter to develop standardized levels for the taxonomic identification of aquatic macroinvertebrates in support of bioassessment. This document defines the standard levels of taxonomic effort (STE) for bioassessment data compatible with the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols (Ode, 2007) or similar procedures.
    [Show full text]
  • Terrestrial Arthropods)
    Spring 2001 Vol. 20, No. 1 NEWSLETTER OF THE BIOLOGICAL SURVEY OF CANADA (TERRESTRIAL ARTHROPODS) Table of Contents General Information and Editorial Notes ............(inside front cover) News and Notes Activities at the Entomological Societies’ Meeting ...............1 Summary of the Scientific Committee Meeting.................5 Canadian Biodiversity Network Conference .................12 Biological Survey Website Update ......................12 The E.H. Strickland Entomological Museum .................13 Project Update: Arthropods of Canadian Grasslands .............14 The Quiz Page..................................16 Arctic Corner Introduction .................................17 Arctic Insects, Global Warming and the ITEX Program ............17 Selected Future Conferences ..........................24 Answers to Faunal Quiz.............................26 Quips and Quotes ................................27 List of Requests for Material or Information ..................28 Cooperation Offered ..............................34 List of Email Addresses.............................34 List of Addresses ................................36 Index to Taxa ..................................38 General Information The Newsletter of the Biological Survey of Canada (Terrestrial Arthropods) appears twice yearly. All material without other accreditation is prepared by the Secretariat for the Biological Survey. Editor: H.V. Danks Head, Biological Survey of Canada (Terrestrial Arthropods) Canadian Museum of Nature P.O. Box 3443, Station “D” Ottawa, Ontario
    [Show full text]
  • Nearctic Chironomidae
    Agriculture I*l Canada A catalog of Nearctic Chironomidae A catalog of Catalogue des Nearctic Chironomidae Chironomidae delardgion ndarctique D.R. Oliver and M.E. Dillon D.R. Oliver et M.E. Dillon Biosystematics Research Centre Centre de recherches biosyst6matiques Ottawa, Ontario Ottawa (Ontario) K1A 0C6 K1A 0C6 and et P.S. Cranston P.S. Cranston Commonwealth Scientific and Organisation de la recherche Industrial Research scientifique et industrielle du Organization, Entomology Commonwealth, Entomologie Canberra ACT 2601 Canberra ACT 2601 Australia Australie Research Branch Direction g6n6rale de la recherche Agriculture Canada Agriculture Canada Publication 185718 Publication 185718 1 990 1 990 @Minister of Supply and Services Canada 1990 oMinistre des Approvisionnement et Services Canada 1990 Available in Canada through En vente au Canada par I'entremise de nos Authorized Bookstore Agents agents libraires agr66s et autres and other bmkstores libraires. or by mail from ou par la poste au Canadian Govemnent Publishing Centre Centre d'6dition du gouvemement du Supply and Servies Canada Canada Oltawa, Canada K1A 0S9 Approvisionnements et Seryies Canada Ottawa (Canada) K1A 0S9 Cat No. A43-I85'7ll99O N" de cat A43-785117990 ISBN 0-660-55839-4 ISBN 0-660-55839-4 Price subject to change without notic€ Prix sujet i changemenl sans pr6avis Canadian Cataloguing in Publication Data Donn6ee de catalogage avant publication (Canada) Oliver, D.R. Oliver, D.R. A mtalog of Nearctic Chironomidae A atalog of Nearctic Chironomidae (Publication ; 1857/8) (Publiation ; 18578) Text in English and French- Texle en anglais et en frangais. Includes bibliographiel referenes. Comprend des r6f6rences bibliogr. Issued by Research Branch, Agriculture Canada.
    [Show full text]
  • The Early Stages of Ablabesmyia Annulata (Say) (Diptera, Chironomidae)1
    170 DWIGHT M. BELONG AND CANDACE MARTINSON Vol. 72 THE EARLY STAGES OF ABLABESMYIA ANNULATA (SAY) (DIPTERA, CHIRONOMIDAE)1 M. W. BOESEL Zoology Department, Miami University, Oxford, Ohio 45056 ABSTRACT The larva of Ablabesmyia annulata is remarkably similar to Malloch's Tanypus sp. A, briefly described in 1915. It differs from other American species in the following char- acteristics: 3 inner teeth of lingua truncate, all claws of posterior prolegs yellow, and both anterior and posterior prolegs apically and densely armed with spinules. In the pupa, the respiratory organ is smooth and ovate, lacking a terminal papilla. The respir- tory opening is distinctly preapical. The species is widely distributed in Ohio. INTRODUCTION This study was initiated when larvae bearing a similarity to Tanypus sp. A of Malloch (1915) were collected by Randy Kingsley near Oxford. One of these larvae was carried to adulthood and found to be Ablabesmyia annulata (Say). The species was also reared 12 times previously at Put-in-Bay, Ohio. At the time when the Put-in-Bay material was collected, there was still some confusion about the identity of A. annulata and A. monilis. Ablabesmyia monilis was described by Linnaeus in 1758 (as Tipula monilis) from the Old World, but has been widely reported from the Nearctic region. The first American species of the genus as now constituted was A. annulata, described by Say (1823) (as Tanypus annulatus) from Pennsylvania. Johannscn, in his monographic work in 1905, regarded T. annulatus as a synonym of A. monilis. Malloch (1915) likewise did not distinguish between the two species.
    [Show full text]
  • Bibliograp Bibliography
    BIBLIOGRAPHY 9.1 BIBLIOGRAPHY 9 Adam, J.I & O.A. Sæther. 1999. Revision of the records for the southern United States genus Nilothauma Kieffer, 1921 (Diptera: (Diptera: Chironomidae). J. Ga. Ent. Soc. Chironomidae). Ent. scand. Suppl. 56: 1- 15:69-73. 107. Beck, W.M., Jr. & E.C. Beck. 1966. Chironomidae Ali, A. 1991. Perspectives on management of pest- (Diptera) of Florida - I. Pentaneurini (Tany- iferous Chironomidae (Diptera), an emerg- podinae). Bull. Fla. St. Mus. Biol. Sci. ing global problem. J. Am. Mosq. Control 10:305-379. Assoc. 7: 260-281. Beck, W.M., Jr., & E.C. Beck. 1970. The immature Armitage, P., P.S. Cranston & L.C.V. Pinder (eds). stages of some Chironomini (Chiro- 1995. The Chironomidae. Biology and nomidae). Q.J. Fla. Acad. Sci. 33:29-42. ecology of non-biting midges. Chapman & Bilyj, B. 1984. Descriptions of two new species of Hall, London. 572 pp. Tanypodinae (Diptera: Chironomidae) from Ashe, P. 1983. A catalogue of chironomid genera Southern Indian Lake, Canada. Can. J. Fish. and subgenera of the world including syn- Aquat. Sci. 41: 659-671. onyms (Diptera: Chironomidae). Ent. Bilyj, B. 1985. New placement of Tanypus pallens scand. Suppl. 17: 1-68. Coquillett, 1902 nec Larsia pallens (Coq.) Barton, D.R., D.R. Oliver & M.E. Dillon. 1993. sensu Roback 1971 (Diptera: Chironomi- The first Nearctic record of Stackelbergina dae) and redescription of the holotype. Can. Shilova and Zelentsov (Diptera: Chironomi- Ent. 117: 39-42. dae): Taxonomic and ecological observations. Bilyj, B. 1988. A taxonomic review of Guttipelopia Aquatic Insects 15: 57-63. (Diptera: Chironomidae).
    [Show full text]
  • Journal of the Royal Society of Western Australia
    Journal of the Royal Society of Western Australia ISSN 0035-922X CONTENTS Page RESEARCH PAPERS Influence of climatic gradients on metacommunities of aquatic invertebrates on granite outcrops in southern Western Australia B V Timms 125 Foraminifera from microtidal rivers with large seasonal salinity variation, southwest Western Australia D B Ostrognay & D W Haig 137 Abundance, distribution and new records of scleractinian corals at Barrow Island and Southern Montebello Islands, Pilbara (Offshore) Bioregion Z T Richards & N L Rosser 155 RESEARCH NOTES Searching for signs of bilby (Macrotis lagotis) activity in central Western Australia using observers on horseback N Burrows, J Dunlop & S Burrows 167 Hydrated body-fluid osmolality values for species of Cyclorana S J Reynolds 171 AUTHOR INDEX VOLUME 95 175 SUBJECT INDEX VOLUME 95 176 CONTENTS VOLUME 95 Volume 95 Parts 3, 4 November 2012 The Royal Society of Western Australia To promote and foster science in Western Australia Patron Her Majesty the Queen Vice-Patrons His Excellency Mr Malcolm J McCusker, AC CVO QC Governor of Western Australia Professor Lyn Beazley AO FTSE MA PhD COUNCIL 2011-2013 President P O'Brien Hon Librarian Immediate Past President L Milne Journal Manager Vice-President H Bekle Councillors Vice-President K Trinajstic A W R Bevan Hon Secretaries L Collins Council L Milne C Florides Membership J Rosser M Gallegos Proceedings W A Loneragan Hon Treasurer P O'Brien S Toby Hon Editor A E Cockbain K Wright EDITORIAL BOARD 2011-2013 Editor-in-chief K A Haskard, Data Analysis Australia A E Cockbain, South Perth P Ladd, Murdoch University Associate Editors D Laird, Murdoch University H Bekle, Notre Dame University K Trinajstic, Curtin University A Bevan, Western Australian Museum M Van Keulen, Murdoch University R Davis, Edith Cowan University K Wright, Curtin University The Royal Society of Western Australia was founded in 1914.
    [Show full text]