Terrestrial Arthropods)

Total Page:16

File Type:pdf, Size:1020Kb

Terrestrial Arthropods) Spring 2001 Vol. 20, No. 1 NEWSLETTER OF THE BIOLOGICAL SURVEY OF CANADA (TERRESTRIAL ARTHROPODS) Table of Contents General Information and Editorial Notes ............(inside front cover) News and Notes Activities at the Entomological Societies’ Meeting ...............1 Summary of the Scientific Committee Meeting.................5 Canadian Biodiversity Network Conference .................12 Biological Survey Website Update ......................12 The E.H. Strickland Entomological Museum .................13 Project Update: Arthropods of Canadian Grasslands .............14 The Quiz Page..................................16 Arctic Corner Introduction .................................17 Arctic Insects, Global Warming and the ITEX Program ............17 Selected Future Conferences ..........................24 Answers to Faunal Quiz.............................26 Quips and Quotes ................................27 List of Requests for Material or Information ..................28 Cooperation Offered ..............................34 List of Email Addresses.............................34 List of Addresses ................................36 Index to Taxa ..................................38 General Information The Newsletter of the Biological Survey of Canada (Terrestrial Arthropods) appears twice yearly. All material without other accreditation is prepared by the Secretariat for the Biological Survey. Editor: H.V. Danks Head, Biological Survey of Canada (Terrestrial Arthropods) Canadian Museum of Nature P.O. Box 3443, Station “D” Ottawa, Ontario K1P 6P4 TEL: 613-566-4787 FAX: 613-364-4021 E-mail: [email protected] Queries, comments, and contributions to the Newsletter are welcomed by the editor. Deadline for material for the Fall 2001 issue is July 16, 2001. ************ Editorial Notes The Biological Survey of Canada (Terrestrial Arthropods) develops and coordinates national initiatives in taxonomic and ecological entomology on behalf of the Canadian Museum of Nature (formerly the National Museum of Natural Sciences) and the Entomological Society of Canada. This Newsletter communicates information about systematic and faunistic entomology that may be of interest in Canada, and reports especially on activities relevant to the Biological Survey. This newsletter will also be available soon on the Survey’s website at: http://www.biology.ualberta.ca/esc.hp/bschome.htm Vol. 20, No. 1 1 News and Notes Activities at the Entomological Societies’ Meeting he 2000 Joint Annual Meeting of the Ento- biology; Biology, ecology and behaviour; Medi- Tmological Society, Société d’entomologie cal and veterinary entomology; Regulatory and du Québec and Entomological Society of extension entomology; and Crop protection ento- America took place in Montreal 2-6 December mology. 2000. The meeting was attended by nearly 3000 Poster sessions, grouped in the same way. people, and this large meeting, which included A student paper competition, in many subsections, the Entomological Society of America for the for both talks and posters. first time since 1982, comprised about 15 si- multaneous sessions, with a full range of sym- The Linnaean games posia, contributed papers, posters and other The ESC Gold Medal Address. events. In all the meeting had more than 1000 Governing Board and Annual General papers and more than 800 posters. Meetings also took place, and various honours Items in the program (emphasizing were awarded by the Societies. Because the those of particular interest to the Biological meeting was so large, and its core structure or- Survey) included: ganized by the ESA, there was no banquet, and An opening plenary session no complimentary coffee during the sessions, and some other events normal at the ESC meet- Symposia or conferences on: Acarology; Soil mites: systematics, biodiversity and ecology in ing were abbreviated or took a different form. four dimensions; Coleoptera systematics: per- However, the SEQ and ESC organized a very spectives and philosophical approaches; Water well attended evening President’s reception at relations and winter survival of insects; the Château Ramezay Museum for members of Modelling insect seasonality; Insects in art and those societies. illustration: will we always need scientific illus- The meeting also featured an extensive trators; Arthropod diversity and management in display area, with numerous booths showing dryland cropping systems; Mining the scientific books, equipment, and other items. A Coleopteran holomorph; North American Canadian pavilion included displays from orga- Dipterists Society; Coleoptera Society: The sys- nizations such as the Entomological Society of tematics of Coleoptera: a millennium view; Canada, including the Biological Survey, the Heteroptera Society: Contributions of Thomas R. Yonke to Hemipterology in collaboration with Société d’entomologie du Québec, the Associa- his students and colleagues; Why is the Insecta so tion des entomologistes amateurs du Québec, diverse and species rich: a phylogenetic perspec- the Insectarium de Montréal, the Biodome de tive; Aquatic insect studies: old questions, new Montréal, and the Cooperation Entomofaune tools; Arthropods of grasslands: current status du Québec. and future directions; International Society of The Biological Survey showed a general Hymenopterists; The science of entomology: a poster at the ESC booth, displayed selected view of the past and lessons for the future; Pro- publications, and made available leaflets about tecting and promoting our pollinators. the Survey, as well as its for-sale and free-of- Many other symposia, formal and informal confer- charge publications. ences, typically convened (like those above) by The program was so diverse that a sum- American and Canadian coorganizers. mary of individual titles of interest would be ex- Submitted papers, grouped by the ESA sections: tremely long. However, presentations by Cana- Systematics, morphology and evolution; Physi- dian entomologists on systematics and related ology, biochemistry, toxicology, and molecular themes included the following titles: 2 Newsletter of the Biological Survey of Canada (Terrestrial Arthropods) Ascid mites (Acari: Mesostigmata) of soil and adja- Generic relationships of the subfamily cent habitats in lowland tropical rainforest of La Dolichopodinae (Diptera: Dolichopodidae). S. Selva, Costa Rica: An example of underesti- Brooks mated acarine biodiversity. E. Lindquist Supercooling capacity and survival of low tempera- Patterns of diversity in the Ceratozetoidea (Acari: tures by a pyrethroid-resistant strain of Oribatida): A global assessment. V. Typhlodromus pyri Scheuten (Acari: Behan-Pelletier Phytoseiidae). D. Moreau and J. Hardman Mites on a rampage: Exploration of arboreal sus- Realized host range assessment of European pended soils in ancient rainforests. N. Winches- Peristenus species. H. White and U. Kuhlmann ter Psithyrus invasions of bumblebee field colonies. L. What’s on the Horizon?: Coleopteran systematics Pelletier and J. McNeil st in the 21 Century. R. Anderson Differential dispersal and resource partitioning ex- Water balance in insects dormant for the winter. H. plain the coexistence of competing parasitoid Danks species. B. Van Hezewijk and J. Roland. Modeling gypsy moth diapause: The key to a geo- Insect succession on pig carrion in Manitoba. G. graphically robust phenology? D. Gray Gill, T. Galloway and G. Anderson Grasshopper seasonality in the Northern Great The pollination ecology of cloudberry (Rubus Plains. D. Johnson chamaemorus). A. Brown and J. McNeil The stability of gypsy moth seasonality in coastal After the 1998 ice storm: Temporal and spatial re- British Columbia: A study of persistence. J. sponses by a scolytid and its associated preda- Régnière tors. K. Ryall and S. Smith Phylogeny of the Papilio machaon species group: Does forest fragmentation affect the lepidopteran Are P. joanae and P. brevicauda hybrid species? host assemblages of forest tent caterpillar A. Mitchell and F. Sperling parasitoids? C. Schmidt and J. Roland Biological assessment of the link between mito- Biodiversity of Torymus (Hymenoptera: chondrial DNA sequences, Dioryctria morphol- Torymidae) associated with galls of Diplolepis ogy and larval host. F. Sperling, G. Roux, N. (Hymenoptera: Cynipidae) in western vs. eastern Rappaport, J. Stein and G. Grant Canada. S. Rempel and J. Shorthouse Phylogenetic relationships of the genus Thricops Implications of spruce budworm management for Rondani and the status of Alloeostylus Schnabl the ecological diversity of moths and carabid (Diptera: Muscidae). J. Savage beetles in the boreal forest. C. Wytrykush and A taxonomic revision of North American members N. Holliday of Gyretes Brullé (Coleoptera: Gyrinidae), North Large-scale population genetic structure of an al- of Mexico. J. Babin and Y. Alarie pine butterfly: Effects of landscape, dispersal, Cladistics of the Tryphoninae (Hymenoptera: and population history. N. Keyghobadi, J. Ichneumonidae) with comments on tribal rela- Roland and C. Strobeck tionships, classification and adaptive radiation. Flying beetle biodiversity and the effect of inte- A. Bennett grated pest management in mature northern Inte- The higher Diptera community of sedge meadows rior Douglas-fir, Dendroctonus pseudotsugae. S. (Carex: Cyperaceae) in southern Quebec. F. Carson Beaulieu Comparison of arthropod abundance, diversity and The use of molecules and morphology in delineat- trophic richness within intercropped agroforesty ing bumble bee species. T. Whidden and monoculture
Recommended publications
  • 4Th National IPM Symposium
    contents Foreword . 2 Program Schedule . 4 National Roadmap for Integrated Pest Management (IPM) . 9 Whole Systems Thinking Applied to IPM . 12 Fourth National IPM Symposium . 14 Poster Abstracts . 30 Poster Author Index . 92 1 foreword Welcome to the Fourth National Integrated Pest Management The Second National IPM Symposium followed the theme “IPM Symposium, “Building Alliances for the Future of IPM.” As IPM Programs for the 21st Century: Food Safety and Environmental adoption continues to increase, challenges facing the IPM systems’ Stewardship.” The meeting explored the future of IPM and its role approach to pest management also expand. The IPM community in reducing environmental problems; ensuring a safe, healthy, has responded to new challenges by developing appropriate plentiful food supply; and promoting a sustainable agriculture. The technologies to meet the changing needs of IPM stakeholders. meeting was organized with poster sessions and workshops covering 22 topic areas that provided numerous opportunities for Organization of the Fourth National Integrated Pest Management participants to share ideas across disciplines, agencies, and Symposium was initiated at the annual meeting of the National affiliations. More than 600 people attended the Second National IPM Committee, ESCOP/ECOP Pest Management Strategies IPM Symposium. Based on written and oral comments, the Subcommittee held in Washington, DC, in September 2001. With symposium was a very useful, stimulating, and exciting experi- the 2000 goal for IPM adoption having passed, it was agreed that ence. it was again time for the IPM community, in its broadest sense, to come together to review IPM achievements and to discuss visions The Third National IPM Symposium shared two themes, “Putting for how IPM could meet research, extension, and stakeholder Customers First” and “Assessing IPM Program Impacts.” These needs.
    [Show full text]
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • To the Mid-Cretaceous
    Biosis: Biological Systems (2020) 1(1): 33-38 https://doi.org/10.37819/biosis.001.01.0049 ORIGINAL RESEARCH A New Genus of Crickets (Orthoptera: Gryllidae) in Mid-Cretaceous Myanmar Amber George Poinar, Jr.a*, You Ning Sub and Alex E. Brownc aDepartment of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA. bAustralian National Insect Collection, CSIRO, Clunies Ross St, Acton, ACT 2601, Canberra, Australia. b629 Euclid Avenue, Berkeley, CA 94708, USA. *Corresponding Author: George Poinar, Jr. Email: [email protected] © The Author(s) 2020 ABSTRACT Crickets (Orthoptera: Grylloidea) are a highly diverse and successful group that due ARTICLE HISTORY to their chirping are often heard more often than they are seen. Their omnivorous diet Received 28 December 2019 allows them to exist in a variety of terrestrial habitats around the world. In some Revised 10 January 2020 environments, cricket populations can build up and become plagues, resulting in Accepted 15 January 2020 significant damage to seedling crops. A new genus and species of cricket, Pherodactylus micromorphus gen. et sp. nov. (Orthoptera: Gryllidae) is described KEYWORDS from mid-Cretaceous Myanmar amber. The new genus is characterized by the Gryllidae following features: head without prominent bristles, pronotum longer than wide, mid-Cretaceous middle of pronotal disk with two distinct large dark “eyespots”, fore leg robust and 3 Myanmar amber apical spurs arranged on inner side of fore leg tibia. Shed portions of a lizard skin comparative morphology adjacent to the specimen reveal possible evidence of attempted predation. Pherodactylus micromorphus cricket Introduction cricket in Myanmar amber. While the specimen is in its last instar, it possesses all of the adult features except Crickets (Orthoptera: Grylloidea) are an extremely those of the reproductive system and is considered worthy diverse and successful group and occur globally except of description for this reason as well as to the rarity of at the Poles.
    [Show full text]
  • Evaluation of Methyl Salicylate Lures on Populations of Typhlodromus Pyri (Acari: Phytoseiidae) and Other Natural Enemies in Western Oregon Vineyards ⇑ Angela N
    Biological Control 63 (2012) 48–55 Contents lists available at SciVerse ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Evaluation of methyl salicylate lures on populations of Typhlodromus pyri (Acari: Phytoseiidae) and other natural enemies in western Oregon vineyards ⇑ Angela N. Gadino a, , Vaughn M. Walton a, Jana C. Lee b a Department of Horticulture, Oregon State University, Corvallis, OR 97331-7304, USA b USDA-ARS Horticultural Crops Research Laboratory, 3420 NW Orchard Ave., Corvallis, OR 97330, USA highlights graphical abstract " The effect of methyl salicylate (MeSA) was evaluated on natural enemies and pests. " Attraction to MeSA was not consistent for Typhlodromus pyri between vineyards. " Coccinellids were attracted to MeSA treatments showing higher seasonal abundance. " MeSA lures did not impact pest populations in the investigated vineyards. article info abstract Article history: Methyl salicylate (MeSA), a herbivore-induced plant volatile, can elicit control of pests through attraction Received 6 April 2012 of beneficial arthropods. This study evaluates the effect of synthetic MeSA lures (PredaLure) on arthropod Accepted 18 June 2012 populations during the 2009 and 2010 seasons in two Oregon vineyards (Dayton and Salem). MeSA lures Available online 26 June 2012 were deployed at a low (4/plot or 260 lures/ha) and high (8/plot or 520 lures/ha) rate in 152 m2 plots while control plots contained no lure. The predatory mite Typhlodromus pyri Scheuten is considered to be Keywords: a key biological control agent of the grapevine rust mite, Calepitrimerus vitis Nalepa in Oregon vineyards. Herbivore-induced plant volatile Leaf samples were collected to assess T.
    [Show full text]
  • Data Quality, Performance, and Uncertainty in Taxonomic Identification for Biological Assessments
    J. N. Am. Benthol. Soc., 2008, 27(4):906–919 Ó 2008 by The North American Benthological Society DOI: 10.1899/07-175.1 Published online: 28 October 2008 Data quality, performance, and uncertainty in taxonomic identification for biological assessments 1 2 James B. Stribling AND Kristen L. Pavlik Tetra Tech, Inc., 400 Red Brook Blvd., Suite 200, Owings Mills, Maryland 21117-5159 USA Susan M. Holdsworth3 Office of Wetlands, Oceans, and Watersheds, US Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Mail Code 4503T, Washington, DC 20460 USA Erik W. Leppo4 Tetra Tech, Inc., 400 Red Brook Blvd., Suite 200, Owings Mills, Maryland 21117-5159 USA Abstract. Taxonomic identifications are central to biological assessment; thus, documenting and reporting uncertainty associated with identifications is critical. The presumption that comparable results would be obtained, regardless of which or how many taxonomists were used to identify samples, lies at the core of any assessment. As part of a national survey of streams, 741 benthic macroinvertebrate samples were collected throughout the eastern USA, subsampled in laboratories to ;500 organisms/sample, and sent to taxonomists for identification and enumeration. Primary identifications were done by 25 taxonomists in 8 laboratories. For each laboratory, ;10% of the samples were randomly selected for quality control (QC) reidentification and sent to an independent taxonomist in a separate laboratory (total n ¼ 74), and the 2 sets of results were compared directly. The results of the sample-based comparisons were summarized as % taxonomic disagreement (PTD) and % difference in enumeration (PDE). Across the set of QC samples, mean values of PTD and PDE were ;21 and 2.6%, respectively.
    [Show full text]
  • Identification Key to the Subfamilies of Ichneumonidae (Hymenoptera)
    Identification key to the subfamilies of Ichneumonidae (Hymenoptera) Gavin Broad Dept. of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Notes on the key, February 2011 This key to ichneumonid subfamilies should be regarded as a test version and feedback will be much appreciated (emails to [email protected]). Many of the illustrations are provisional and more characters need to be illustrated, which is a work in progress. Many of the scanning electron micrographs were taken by Sondra Ward for Ian Gauld’s series of volumes on the Ichneumonidae of Costa Rica. Many of the line drawings are by Mike Fitton. I am grateful to Pelle Magnusson for the photographs of Brachycyrtus ornatus and for his suggestion as to where to include this subfamily in the key. Other illustrations are my own work. Morphological terminology mostly follows Fitton et al. (1988). A comprehensively illustrated list of morphological terms employed here is in development. In lateral views, the anterior (head) end of the wasp is to the left and in dorsal or ventral images, the anterior (head) end is uppermost. There are a few exceptions (indicated in figure legends) and these will rectified soon. Identifying ichneumonids Identifying ichneumonids can be a daunting process, with about 2,400 species in Britain and Ireland. These are currently classified into 32 subfamilies (there are a few more extralimitally). Rather few of these subfamilies are reconisable on the basis of simple morphological character states, rather, they tend to be reconisable on combinations of characters that occur convergently and in different permutations across various groups of ichneumonids.
    [Show full text]
  • The Associations Between Pteridophytes and Arthropods
    FERN GAZ. 12(1) 1979 29 THE ASSOCIATIONS BETWEEN PTERIDOPHYTES AND ARTHROPODS URI GERSON The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel. ABSTRACT Insects belonging to 12 orders, as well as mites, millipedes, woodlice and tardigrades have been collected from Pterldophyta. Primitive and modern, as well as general and specialist arthropods feed on pteridophytes. Insects and mites may cause slight to severe damage, all plant parts being susceptible. Several arthropods are pests of commercial Pteridophyta, their control being difficult due to the plants' sensitivity to pesticides. Efforts are currently underway to employ insects for the biological control of bracken and water ferns. Although Pteridophyta are believed to be relatively resistant to arthropods, the evidence is inconclusive; pteridophyte phytoecdysones do not appear to inhibit insect feeders. Other secondary compounds of preridophytes, like prunasine, may have a more important role in protecting bracken from herbivores. Several chemicals capable of adversely affecting insects have been extracted from Pteridophyta. The litter of pteridophytes provides a humid habitat for various parasitic arthropods, like the sheep tick. Ants often abound on pteridophytes (especially in the tropics) and may help in protecting these plants while nesting therein. These and other associations are discussed . lt is tenatively suggested that there might be a difference in the spectrum of arthropods attacking ancient as compared to modern Pteridophyta. The Osmundales, which, in contrast to other ancient pteridophytes, contain large amounts of ·phytoecdysones, are more similar to modern Pteridophyta in regard to their arthropod associates. The need for further comparative studies is advocated, with special emphasis on the tropics.
    [Show full text]
  • Zootaxa, a Check-List of Ensifera from Algeria (Insecta: Orthoptera)
    Zootaxa 2432: 1–44 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) A check-list of Ensifera from Algeria (Insecta: Orthoptera) AOUAOUCHE MOHAMED SAHNOUN1,4, SALAH EDDINE DOUMANDJI2 & LAURE DESUTTER-GRANDCOLAS3 1Université Mouloud Mammeri de Tizi-Ouzou, Faculté des sciences Biologiques et des Sciences Agronomiques, Département d’Agronomie B.P. 17 RP Tizi-Ouzou, Algeria 2Institut National d’Agronomie, Laboratoire de Zoologie agricole et forestière, Avenue Pasteur Hassan Badi 16200 El Harrach, Algiers, Algeria 3Muséum national d’Histoire naturelle, Département Systématique et évolution, UMR 7205 CNRS, 57 rue Cuvier, CP 50 (Entomologie), 75231 Paris cedex 05, France 4Corresponding author. E-mail: [email protected] Table of contents Abstract ............................................................................................................................................................................... 2 Introduction ......................................................................................................................................................................... 2 Material and method ........................................................................................................................................................... 2 List of Algerian Ensifera ....................................................................................................................................................
    [Show full text]
  • Spatial and Temporal Distribution of Aquatic Insects in the Dicle (Tigris) River Basin, Turkey, with New Records
    Turkish Journal of Zoology Turk J Zool (2017) 41: 102-112 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1512-56 Spatial and temporal distribution of aquatic insects in the Dicle (Tigris) River Basin, Turkey, with new records Fatma ÇETİNKAYA, Aysel BEKLEYEN* Department of Biology, Faculty of Science, Dicle University, Diyarbakır, Turkey Received: 21.12.2015 Accepted/Published Online: 01.06.2016 Final Version: 25.01.2017 Abstract: We investigated insects of the Dicle (Tigris) River Basin in terms of their composition and spatiotemporal distribution. Larvae, pupae, pupal exuviae, and nymphs of insects were obtained from samples collected by a plankton net monthly during a 1-year period in 2008 and 2009 at seven different sites of the Dicle (Tigris) River Basin. A total of 35 taxa from the orders Trichoptera (1 taxon), Ephemeroptera (3 taxa), and Diptera (31 taxa) were identified. Chironomidae (Diptera) was the most diverse group and was represented by three major subfamilies, namely Tanypodinae (2 taxa), Orthocladiinae (19 taxa), and Chironominae (7 taxa). Among these species, Nanocladius (Nanocladius) spiniplenus Saether, 1977 is a new record for Turkey as well as for western Asia. In addition, the Psychomyia larvae found for the first time in the Dicle (Tigris) River Basin (Turkey) were described. Both taxa have been illustrated to warrant validation. Taxa number varied spatially from 6 to 14 and temporally from 2 to 12 during the sampling period. Along the river, Cricotopus bicinctus and Orthocladius (S.) holsatus were the most common taxa. Key words: Diptera, Ephemeroptera, Trichoptera, Insecta, Dicle (Tigris) River 1.
    [Show full text]
  • Phytoseiids As Biological Control Agents of Phytophagous Mites
    PHYTOSEIIDS AS BIOLOGICAL CONTROL AGENTS OF PHYTOPHAGOUS MITES IN WASHINGTON APPLE ORCHARDS By REBECCA ANN SCHMIDT-JEFFRIS A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Entomology MAY 2015 © Copyright by REBECCA ANN SCHMIDT-JEFFRIS, 2015 All Rights Reserved © Copyright by REBECCA ANN SCHMIDT-JEFFRIS, 2015 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of REBECCA ANN SCHMIDT-JEFFRIS find it satisfactory and recommend that it be accepted. Elizabeth H. Beers, Ph.D., Chair David W. Crowder, Ph.D. Richard S. Zack, Ph.D. Thomas R. Unruh, Ph.D. Nilsa A. Bosque-Pérez, Ph.D. ii ACKNOWLEDGEMENT I would like to thank Dr. Elizabeth Beers for giving me the opportunity to work in her lab and for several years of exceptional mentoring. She has provided me with an excellent experience and is an outstanding role model. I would also like to thank the other members of my committee, Drs. Thomas Unruh, David Crowder, Nilsa Bosque-Pérez, and Richard Zack for comments on these (and other) manuscripts, and invaluable advice throughout my graduate career. Additionally, I thank the entomology faculty of Washington State University and the University of Idaho for coursework that acted as the foundation for this degree, especially Dr. Sanford Eigenbrode and Dr. James “Ding” Johnson. I also thank Dr. James McMurtry, for input on manuscripts and identification confirmation of mite specimens. I would like to acknowledge the assistance I received in conducting these experiments from our laboratory technicians, Bruce Greenfield and Peter Smytheman, my labmate Alix Whitener, and the many undergraduate technicians that helped collect data: Denise Burnett, Allie Carnline, David Gutiérrez, Kylie Martin, Benjamin Peterson, Mattie Warner, Alyssa White, and Shayla White.
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]