Numbers and Types of Arthropods Overwintering on Common Mullein, Verbascum Thapsus L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
4Th National IPM Symposium
contents Foreword . 2 Program Schedule . 4 National Roadmap for Integrated Pest Management (IPM) . 9 Whole Systems Thinking Applied to IPM . 12 Fourth National IPM Symposium . 14 Poster Abstracts . 30 Poster Author Index . 92 1 foreword Welcome to the Fourth National Integrated Pest Management The Second National IPM Symposium followed the theme “IPM Symposium, “Building Alliances for the Future of IPM.” As IPM Programs for the 21st Century: Food Safety and Environmental adoption continues to increase, challenges facing the IPM systems’ Stewardship.” The meeting explored the future of IPM and its role approach to pest management also expand. The IPM community in reducing environmental problems; ensuring a safe, healthy, has responded to new challenges by developing appropriate plentiful food supply; and promoting a sustainable agriculture. The technologies to meet the changing needs of IPM stakeholders. meeting was organized with poster sessions and workshops covering 22 topic areas that provided numerous opportunities for Organization of the Fourth National Integrated Pest Management participants to share ideas across disciplines, agencies, and Symposium was initiated at the annual meeting of the National affiliations. More than 600 people attended the Second National IPM Committee, ESCOP/ECOP Pest Management Strategies IPM Symposium. Based on written and oral comments, the Subcommittee held in Washington, DC, in September 2001. With symposium was a very useful, stimulating, and exciting experi- the 2000 goal for IPM adoption having passed, it was agreed that ence. it was again time for the IPM community, in its broadest sense, to come together to review IPM achievements and to discuss visions The Third National IPM Symposium shared two themes, “Putting for how IPM could meet research, extension, and stakeholder Customers First” and “Assessing IPM Program Impacts.” These needs. -
Thysanoptera: Phlaeothripidae): Redefinition and Key to Species
The southern Palaearctic genus Neoheegeria (Thysanoptera: Phlaeothripidae): redefinition and key to species Kambiz Minaei, Parvaneh Azemayeshfard & Laurence A. Mound Problems in character state definition and interpretation in the Haplothrips-group are discussed, together with their implications for species identification and systematics. As a result, Neoheegeria Schmutz, 1909 is redefined to include only those species in this group that have three sensoria on the third antennal segment. The subgenus Haplothrips (Gigaplothrips) Priesner, 1949 is synonymised with Neoheegeria, and four species are recognized as valid; N. dalmatica Schmutz, 1909, N. gigantea (Priesner, 1934) comb.n., N. persica Priesner, 1954, and N. sinaitica Priesner, 1934. Three new synonyms are recognized under N. dalmatica; N. ballotae Priesner, 1951, N. hamanni Priesner, 1961 and N. nevskyi Moulton, 1946, and this species is widely distributed in the southern Palearctic. In contrast, N. persica and N. sinaitica are known only from Iran and Egypt respectively, and N. gigantea from Egypt to Morocco. The following six new combinations involve species with less than three sensoria on the third antennal segment: Haplothrips biroi (Priesner, 1928), H. faurei (Zur Strassen, 1966), H. hrasvamukha (Ramakrishna, 1928), H. johni (Priesner, 1925), H. lederi (Priesner, 1924), and H. verbasci (Osborn, 1897). One new combination involves an unrelated species from India, Xylaplothrips montanus (Ananthakrishnan & Jagadish, 1970). The available biological data suggest that species of Neoheegeria are associated particularly with the flowers of Lamiaceae. K. Minaei * & P. Azemayeshfard, ����������������Plant Protection D����������epartment, F���������aculty of Horticultural Science and Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Iran, [email protected] L.A. -
Evaluation of Methyl Salicylate Lures on Populations of Typhlodromus Pyri (Acari: Phytoseiidae) and Other Natural Enemies in Western Oregon Vineyards ⇑ Angela N
Biological Control 63 (2012) 48–55 Contents lists available at SciVerse ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Evaluation of methyl salicylate lures on populations of Typhlodromus pyri (Acari: Phytoseiidae) and other natural enemies in western Oregon vineyards ⇑ Angela N. Gadino a, , Vaughn M. Walton a, Jana C. Lee b a Department of Horticulture, Oregon State University, Corvallis, OR 97331-7304, USA b USDA-ARS Horticultural Crops Research Laboratory, 3420 NW Orchard Ave., Corvallis, OR 97330, USA highlights graphical abstract " The effect of methyl salicylate (MeSA) was evaluated on natural enemies and pests. " Attraction to MeSA was not consistent for Typhlodromus pyri between vineyards. " Coccinellids were attracted to MeSA treatments showing higher seasonal abundance. " MeSA lures did not impact pest populations in the investigated vineyards. article info abstract Article history: Methyl salicylate (MeSA), a herbivore-induced plant volatile, can elicit control of pests through attraction Received 6 April 2012 of beneficial arthropods. This study evaluates the effect of synthetic MeSA lures (PredaLure) on arthropod Accepted 18 June 2012 populations during the 2009 and 2010 seasons in two Oregon vineyards (Dayton and Salem). MeSA lures Available online 26 June 2012 were deployed at a low (4/plot or 260 lures/ha) and high (8/plot or 520 lures/ha) rate in 152 m2 plots while control plots contained no lure. The predatory mite Typhlodromus pyri Scheuten is considered to be Keywords: a key biological control agent of the grapevine rust mite, Calepitrimerus vitis Nalepa in Oregon vineyards. Herbivore-induced plant volatile Leaf samples were collected to assess T. -
Insect Management It All Started Long Before We Got Here…
1/23/2017 Why are these herbivores eating MY plants? Organic Insect Management It all started long before we got here…. • Vegetable Pests • Vegetable crops: – Adapted to secondary chemicals – ‘early succession’ – Use chemical cues to – Disturbed habitat locate host plants Ruth Hazzard – Rapid, succulent growth – Can only develop on University of Massachusetts Extension – Protected by secondary specific plant group Vegetable Program chemicals – Colonize & reproduce 2013 Beginning Farmer Professional Develoopment – ‘plant families’ rapidly Insects with wider host range What do these insects have in common? (multiple crop families) Life cycle: clues to management Just a few things to know about your pest…. Photo by Jude Boucher • Where and how does it spend the winter? Large Pupal • What plants does it feed on (‘hosts’)? larvae stage is in • When and how does it find the crop? soil • Are there preferences for some varieties or stages? • Which crop stages are damaged? • How, where and when does it reproduce during the summer? Small • How many generations per year? Larvae Adult • What life stages of the insect cause damage? • What life stages are most vulnerable? • What cultural practices protect the crop & reduce the pest? • Are there natural enemies (wild or released) • Are there effective insecticides? What do we need • How do I scout for it? to know about Eggs this insect? • What is the threshold or cue for action? 1 1/23/2017 Things to know about your farm IPM means prevention first: cultural practices • Plant date • Rotation options • Transplants • Row covers • Fallow & field areas nearby? • Mulches • Floral resources for • Other farms nearby? natural enemies • Resources for row • Crop rotation • Fallow periods, cover cover, pesticides, crops sprayers • Tolerant varieties Photo by M Spellman. -
Insecticides - Development of Safer and More Effective Technologies
INSECTICIDES - DEVELOPMENT OF SAFER AND MORE EFFECTIVE TECHNOLOGIES Edited by Stanislav Trdan Insecticides - Development of Safer and More Effective Technologies http://dx.doi.org/10.5772/3356 Edited by Stanislav Trdan Contributors Mahdi Banaee, Philip Koehler, Alexa Alexander, Francisco Sánchez-Bayo, Juliana Cristina Dos Santos, Ronald Zanetti Bonetti Filho, Denilson Ferrreira De Oliveira, Giovanna Gajo, Dejane Santos Alves, Stuart Reitz, Yulin Gao, Zhongren Lei, Christopher Fettig, Donald Grosman, A. Steven Munson, Nabil El-Wakeil, Nawal Gaafar, Ahmed Ahmed Sallam, Christa Volkmar, Elias Papadopoulos, Mauro Prato, Giuliana Giribaldi, Manuela Polimeni, Žiga Laznik, Stanislav Trdan, Shehata E. M. Shalaby, Gehan Abdou, Andreia Almeida, Francisco Amaral Villela, João Carlos Nunes, Geri Eduardo Meneghello, Adilson Jauer, Moacir Rossi Forim, Bruno Perlatti, Patrícia Luísa Bergo, Maria Fátima Da Silva, João Fernandes, Christian Nansen, Solange Maria De França, Mariana Breda, César Badji, José Vargas Oliveira, Gleberson Guillen Piccinin, Alan Augusto Donel, Alessandro Braccini, Gabriel Loli Bazo, Keila Regina Hossa Regina Hossa, Fernanda Brunetta Godinho Brunetta Godinho, Lilian Gomes De Moraes Dan, Maria Lourdes Aldana Madrid, Maria Isabel Silveira, Fabiola-Gabriela Zuno-Floriano, Guillermo Rodríguez-Olibarría, Patrick Kareru, Zachaeus Kipkorir Rotich, Esther Wamaitha Maina, Taema Imo Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2013 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. -
Haplothrips Leucanthemi Distinguishing Features Both Sexes Fully Winged
Haplothrips leucanthemi Distinguishing features Both sexes fully winged. Body brown to dark brown, fore tarsi and base of antennal segment III yellow; fore wing pale with base extensively shaded. Head slightly longer than wide; maxillary stylets one third of head width apart, retracted to postocular setae, maxillary bridge complete; postocular setae short and acute, usually not reaching posterior margin of compound eyes. Antennae 8-segmented, segment III with 2 sense cones, IV with 4 sense cones; VIII short and broad at base. Pronotal setae small and acute, anteromarginal and midlateral setae no longer than discal setae; prosternal basantra and ferna present, mesopresternum eroded to paired lateral triangles. Fore tarsal tooth minute in female. Fore wing constricted medially, with 7–12 duplicated cilia, sub-basal setae acute or blunt. Tergite Antenna IX setae S1 bluntly pointed, much shorter than tube, S2 acute. Male with large fore tarsal tooth; tergite IX setae S2 short and stout; pseudovirga of aedeagus slender. Related species The genus Haplothrips comprises 240 described species worldwide, of which only four are recorded from New Zealand, and none of these seems to be endemic. H. leucanthemi is a European species that is particularly associated with the flowers of Chrysanthemum leucanthemum. A form of this species is associated with red clover flowers and has been known as H. niger, but this is considered to be a parthenogenetic strain of H. leucanthemi. This thrips is remarkable among Haplothrips species in Head & pronotum having unusually short setae on the head and pronotum. Biological data Breeding and pupating within flowers, particularly Chrysanthemum leucanthemum (Asteraceae), but also Trifolium sp. -
Evaluation of a New Bt Toxin, Cry51aa2.834 16, for Control of Thrips and Tarnished Plant Bug in Cotton
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2018 Evaluation of a New Bt Toxin, Cry51Aa2.834_16, for Control of Thrips and Tarnished Plant Bug in Cotton Scott Hester Graham University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Graham, Scott Hester, "Evaluation of a New Bt Toxin, Cry51Aa2.834_16, for Control of Thrips and Tarnished Plant Bug in Cotton. " PhD diss., University of Tennessee, 2018. https://trace.tennessee.edu/utk_graddiss/5316 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Scott Hester Graham entitled "Evaluation of a New Bt Toxin, Cry51Aa2.834_16, for Control of Thrips and Tarnished Plant Bug in Cotton." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Entomology, Plant Pathology and Nematology. Scott D. Stewart, Major Professor We have read this dissertation and recommend its acceptance: Eric Blinka, Jerome Grant, Tyson Raper Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Evaluation of a New Bt Toxin, Cry51Aa2.834_16, for Control of Thrips and Tarnished Plant Bug in Cotton A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Scott Hester Graham December 2018 Copyright © 2018 by Scott H. -
Verbascum Thapsus By: Dave Long, UCCE Master Gardener of Lake Tahoe
UCCE Master Gardeners of Lake Tahoe (Invasive) Tahoe Plants and Trees Wooley Mullein – Verbascum Thapsus By: Dave Long, UCCE Master Gardener of Lake Tahoe The Wooley or Common Mullein is one of those plants that looks like it belongs here in the Tahoe Basin but is in reality not a native plant, originating in Eurasia. It is considered a noxious weed in some states and an invasive weed having a limited environmental impact statewide in California. The plant is fairly common in disturbed areas, especially dry gravelly areas next to water channels and soil benches of braided streams. Mullein is also found along roadsides and in reclamation areas. The Common Mullein is a member of the figwort family (Scrophulariaceae) that also includes our many types of native Indian paintbrush (Castilleja spp.) and the non-native garden snapdragon (Antirrhinum majus). The plant is an annual, biennial or short lived perennial (depending on environmental conditions) that during the first year (or 2) maintains a compact basal rosette of wooly, grey green oblong-obovate leaves, that may be up to 10 inches in length. During the second (occasionally 3rd) year a central flower stalk forms with leaves of decreasing size along the lower portion of the flower stalk. Under favorable conditions the flower stock may reach 5 foot or more in height. Cold and numerous freeze thaw cycles have little effect on the appearance of the leaved basal rosette, which is one of the first plants to emerge from winter dormancy. The flower stalk may remain erect, though dry and dead for a season or more. -
Twenty-Five Pests You Don't Want in Your Garden
Twenty-five Pests You Don’t Want in Your Garden Prepared by the PA IPM Program J. Kenneth Long, Jr. PA IPM Program Assistant (717) 772-5227 [email protected] Pest Pest Sheet Aphid 1 Asparagus Beetle 2 Bean Leaf Beetle 3 Cabbage Looper 4 Cabbage Maggot 5 Colorado Potato Beetle 6 Corn Earworm (Tomato Fruitworm) 7 Cutworm 8 Diamondback Moth 9 European Corn Borer 10 Flea Beetle 11 Imported Cabbageworm 12 Japanese Beetle 13 Mexican Bean Beetle 14 Northern Corn Rootworm 15 Potato Leafhopper 16 Slug 17 Spotted Cucumber Beetle (Southern Corn Rootworm) 18 Squash Bug 19 Squash Vine Borer 20 Stink Bug 21 Striped Cucumber Beetle 22 Tarnished Plant Bug 23 Tomato Hornworm 24 Wireworm 25 PA IPM Program Pest Sheet 1 Aphids Many species (Homoptera: Aphididae) (Origin: Native) Insect Description: 1 Adults: About /8” long; soft-bodied; light to dark green; may be winged or wingless. Cornicles, paired tubular structures on abdomen, are helpful in identification. Nymph: Daughters are born alive contain- ing partly formed daughters inside their bodies. (See life history below). Soybean Aphids Eggs: Laid in protected places only near the end of the growing season. Primary Host: Many vegetable crops. Life History: Females lay eggs near the end Damage: Adults and immatures suck sap from of the growing season in protected places on plants, reducing vigor and growth of plant. host plants. In spring, plump “stem Produce “honeydew” (sticky liquid) on which a mothers” emerge from these eggs, and give black fungus can grow. live birth to daughters, and theygive birth Management: Hide under leaves. -
IOBC/WPRS Working Group “Integrated Plant Protection in Fruit
IOBC/WPRS Working Group “Integrated Plant Protection in Fruit Crops” Subgroup “Soft Fruits” Proceedings of Workshop on Integrated Soft Fruit Production East Malling (United Kingdom) 24-27 September 2007 Editors Ch. Linder & J.V. Cross IOBC/WPRS Bulletin Bulletin OILB/SROP Vol. 39, 2008 The content of the contributions is in the responsibility of the authors The IOBC/WPRS Bulletin is published by the International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palearctic Regional Section (IOBC/WPRS) Le Bulletin OILB/SROP est publié par l‘Organisation Internationale de Lutte Biologique et Intégrée contre les Animaux et les Plantes Nuisibles, section Regionale Ouest Paléarctique (OILB/SROP) Copyright: IOBC/WPRS 2008 The Publication Commission of the IOBC/WPRS: Horst Bathon Luc Tirry Julius Kuehn Institute (JKI), Federal University of Gent Research Centre for Cultivated Plants Laboratory of Agrozoology Institute for Biological Control Department of Crop Protection Heinrichstr. 243 Coupure Links 653 D-64287 Darmstadt (Germany) B-9000 Gent (Belgium) Tel +49 6151 407-225, Fax +49 6151 407-290 Tel +32-9-2646152, Fax +32-9-2646239 e-mail: [email protected] e-mail: [email protected] Address General Secretariat: Dr. Philippe C. Nicot INRA – Unité de Pathologie Végétale Domaine St Maurice - B.P. 94 F-84143 Montfavet Cedex (France) ISBN 978-92-9067-213-5 http://www.iobc-wprs.org Integrated Plant Protection in Soft Fruits IOBC/wprs Bulletin 39, 2008 Contents Development of semiochemical attractants, lures and traps for raspberry beetle, Byturus tomentosus at SCRI; from fundamental chemical ecology to testing IPM tools with growers. -
Onion Thrips (Thrips Tabaci)
Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-117-08PR March 2008 Onion Thrips (Thrips tabaci) Diane G. Alston, Entomologist • Daniel Drost, Vegetable Specialist What You Should Know • Onion thrips are the most injurious insect pest to onions in Utah. • Immature and adult thrips prefer to feed on young leaves in the inner neck of plants. • Moderate to severe thrips feeding causes reduced bulb size. • Insecticides are a major tool for their control, but thrips are prone to develop resistance. • Long-term, sustainable management of thrips includes crop cultural practices, onion varietal resistance, biological control, and insecticide resistance management. nion thrips, thrips Thrips tabaci (Order Thysanoptera, Thysanoptera OFamily Thripidae), is a key insect pest in most onion production regions of the world. Immature and adult thrips feed with a punch-and-suck behavior that removes leaf chlorophyll causing white to silver patches and Fig. 2. Adult onion thrips have fringed or hairy wings 2 streaks (Fig. 1). Thrips populations increase rapidly under and 7-segmented antennae. hot, arid conditions and can lead to economic crop unsustainable management. Life history characteristics loss. The early bulb enlargement stage of onion growth of onion thrips that enhance their pest status include is the most sensitive to thrips feeding. Insecticides have a short generation time, high reproductive potential, been the primary tactic for their management; however, asexual reproduction by females (parthenogenesis), repeated applications often lead to resistance in the and occurrence of protected, non-feeding life stages. thrips population, suppression of natural enemies, and Recent research has shown that the majority of onion thrips on a plant are in the non-feeding egg stage (60- 75% of total population on an onion plant during late June to August), and thus, not exposed to insecticides and other suppressive tactics. -
Western Flower Thrips Management on Greenhouse-Grown Crops
Western Flower Thrips Management on Greenhouse-Grown Crops Greenhouse producers worldwide are familiar with the Eggs hatch in two to four days. Nymphs feed on both western flower thrips, Frankliniella occidentalis (Pergande), leaves and flowers. The first nymphal stage lasts one to one of the most destructive insect pests of greenhouse- two days; the second nymphal stage, two to four days. grown crops. Western flower thrips, the primary thrips Second instar nymphs are typically more active and tend species encountered by greenhouse producers, is extremely to feed more than first instar nymphs. The second instar polyphagous, feeding on a wide-variety of horticultural nymph eventually migrates to the plant base and enters crops grown in both commercial and research greenhouses. the growing medium to pupate. Western flower thrips also This insect pest has been included in greenhouse pest pupate in leaf debris, on the plant, and in the open flowers control brochures since 1949. It was not considered a of certain types of plants including chrysanthemum. There major insect pest of greenhouse-grown crops until the are actually two “pupal” stages: a prepupa (or propupa) and 1980s. This publication addresses biology and damage; pupa. Both stages commonly occur in growing medium or scouting; and cultural, physical, insecticidal, and biological soil underneath benches. management. The issues discussed should provide insight Growing medium or soil type and pH and pupation depth on the importance of dealing with western flower thrips may influence pupal survival. Pupation depth depends on holistically instead of solely relying on insecticides. growing medium or soil type. Pupae stages do not feed Biology and Feeding Damage and are tolerant or immune to most insecticides commonly Knowledge of biology and damage is important in applied to manage western flower thrips nymphs and understanding the challenges associated with developing adults.