On Lygus Lineolaris (Heteroptera, Miridae) and Other Arthropods
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vol. 16, No. 2 Summer 1983 the GREAT LAKES ENTOMOLOGIST
MARK F. O'BRIEN Vol. 16, No. 2 Summer 1983 THE GREAT LAKES ENTOMOLOGIST PUBLISHED BY THE MICHIGAN EN1"OMOLOGICAL SOCIErry THE GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 16 No.2 ISSN 0090-0222 TABLE OF CONTENTS Seasonal Flight Patterns of Hemiptera in a North Carolina Black Walnut Plantation. 7. Miridae. J. E. McPherson, B. C. Weber, and T. J. Henry ............................ 35 Effects of Various Split Developmental Photophases and Constant Light During Each 24 Hour Period on Adult Morphology in Thyanta calceata (Hemiptera: Pentatomidae) J. E. McPherson, T. E. Vogt, and S. M. Paskewitz .......................... 43 Buprestidae, Cerambycidae, and Scolytidae Associated with Successive Stages of Agrilus bilineatus (Coleoptera: Buprestidae) Infestation of Oaks in Wisconsin R. A. Haack, D. M. Benjamin, and K. D. Haack ............................ 47 A Pyralid Moth (Lepidoptera) as Pollinator of Blunt-leaf Orchid Edward G. Voss and Richard E. Riefner, Jr. ............................... 57 Checklist of American Uloboridae (Arachnida: Araneae) Brent D. Ope II ........................................................... 61 COVER ILLUSTRATION Blister beetles (Meloidae) feeding on Siberian pea-tree (Caragana arborescens). Photo graph by Louis F. Wilson, North Central Forest Experiment Station, USDA Forest Ser....ice. East Lansing, Michigan. THE MICHIGAN ENTOMOLOGICAL SOCIETY 1982-83 OFFICERS President Ronald J. Priest President-Elect Gary A. Dunn Executive Secretary M. C. Nielsen Journal Editor D. C. L. Gosling Newsletter Editor Louis F. Wilson The Michigan Entomological Society traces its origins to the old Detroit Entomological Society and was organized on 4 November 1954 to " ... promote the science ofentomology in all its branches and by all feasible means, and to advance cooperation and good fellowship among persons interested in entomology." The Society attempts to facilitate the exchange of ideas and information in both amateur and professional circles, and encourages the study of insects by youth. -
Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden
Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden George Retseck Objectives • Learn about Spiders as Animals • Learn to recognize common spiders to family • Learn about spider ecology • Learn to Collect and Preserve Spiders Kingdom - Animalia Phylum - Arthropoda Subphyla - Mandibulata Chelicerata Class - Arachnida Orders - Acari Opiliones Pseudoscorpiones Araneae Spiders Arachnids of Illinois • Order Acari: Mites and Ticks • Order Opiliones: Harvestmen • Order Pseudoscorpiones: Pseudoscorpions • Order Araneae: Spiders! Acari - Soil Mites Characteriscs of Spiders • Usually four pairs of simple eyes although some species may have less • Six pair of appendages: one pair of fangs (instead of mandibles), one pair of pedipalps, and four pair of walking legs • Spinnerets at the end of the abdomen, which are used for spinning silk threads for a variety of purposes, such as the construction of webs, snares, and retreats in which to live or to wrap prey • 1 pair of sensory palps (often much larger in males) between the first pair of legs and the chelicerae used for sperm transfer, prey manipulation, and detection of smells and vibrations • 1 to 2 pairs of book-lungs on the underside of abdomen • Primitively, 2 body regions: Cephalothorax, Abdomen Spider Life Cycle • Eggs in batches (egg sacs) • Hatch inside the egg sac • molt to spiderlings which leave from the egg sac • grows during several more molts (instars) • at final molt, becomes adult – Some long-lived mygalomorphs (tarantulas) molt after adulthood Phenology • Most temperate -
Arachnids (Excluding Acarina and Pseudoscorpionida) of the Wichita Mountains Wildlife Refuge, Oklahoma
OCCASIONAL PAPERS THE MUSEUM TEXAS TECH UNIVERSITY NUMBER 67 5 SEPTEMBER 1980 ARACHNIDS (EXCLUDING ACARINA AND PSEUDOSCORPIONIDA) OF THE WICHITA MOUNTAINS WILDLIFE REFUGE, OKLAHOMA JAMES C. COKENDOLPHER AND FRANK D. BRYCE The Wichita Mountains are located in eastern Greer, southern Kiowa, and northwestern Comanche counties in Oklahoma. Since their formation more than 300 million years ago, these rugged mountains have been fragmented and weathered, until today the highest peak (Mount Pinchot) stands only 756 meters above sea level (Tyler, 1977). The mountains are composed predominantly of granite and gabbro. Forests of oak, elm, and walnut border most waterways, while at elevations from 153 to 427 meters prair ies are the predominant vegetation type. A more detailed sum mary of the climatic and biotic features of the Wichitas has been presented by Blair and Hubbell (1938). A large tract of land in the eastern range of the Wichita Moun tains (now northeastern Comanche County) was set aside as the Wichita National Forest by President McKinley during 1901. In 1905, President Theodore Roosevelt created a game preserve on those lands managed by the Forest Service. Since 1935, this pre serve has been known as the Wichita Mountains Wildlife Refuge. Numerous papers on Oklahoma spiders have been published (Bailey and Chada, 1968; Bailey et al., 1968; Banks et al, 1932; Branson, 1958, 1959, 1966, 1968; Branson and Drew, 1972; Gro- thaus, 1968; Harrel, 1962, 1965; Horner, 1975; Rogers and Horner, 1977), but only a single, comprehensive work (Banks et al., 1932) exists covering all arachnid orders in the state. Further additions and annotations to the arachnid fauna of Oklahoma can be found 2 OCCASIONAL PAPERS MUSEUM TEXAS TECH UNIVERSITY in recent revisionary studies. -
Insect Management It All Started Long Before We Got Here…
1/23/2017 Why are these herbivores eating MY plants? Organic Insect Management It all started long before we got here…. • Vegetable Pests • Vegetable crops: – Adapted to secondary chemicals – ‘early succession’ – Use chemical cues to – Disturbed habitat locate host plants Ruth Hazzard – Rapid, succulent growth – Can only develop on University of Massachusetts Extension – Protected by secondary specific plant group Vegetable Program chemicals – Colonize & reproduce 2013 Beginning Farmer Professional Develoopment – ‘plant families’ rapidly Insects with wider host range What do these insects have in common? (multiple crop families) Life cycle: clues to management Just a few things to know about your pest…. Photo by Jude Boucher • Where and how does it spend the winter? Large Pupal • What plants does it feed on (‘hosts’)? larvae stage is in • When and how does it find the crop? soil • Are there preferences for some varieties or stages? • Which crop stages are damaged? • How, where and when does it reproduce during the summer? Small • How many generations per year? Larvae Adult • What life stages of the insect cause damage? • What life stages are most vulnerable? • What cultural practices protect the crop & reduce the pest? • Are there natural enemies (wild or released) • Are there effective insecticides? What do we need • How do I scout for it? to know about Eggs this insect? • What is the threshold or cue for action? 1 1/23/2017 Things to know about your farm IPM means prevention first: cultural practices • Plant date • Rotation options • Transplants • Row covers • Fallow & field areas nearby? • Mulches • Floral resources for • Other farms nearby? natural enemies • Resources for row • Crop rotation • Fallow periods, cover cover, pesticides, crops sprayers • Tolerant varieties Photo by M Spellman. -
Evaluation of a New Bt Toxin, Cry51aa2.834 16, for Control of Thrips and Tarnished Plant Bug in Cotton
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2018 Evaluation of a New Bt Toxin, Cry51Aa2.834_16, for Control of Thrips and Tarnished Plant Bug in Cotton Scott Hester Graham University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Graham, Scott Hester, "Evaluation of a New Bt Toxin, Cry51Aa2.834_16, for Control of Thrips and Tarnished Plant Bug in Cotton. " PhD diss., University of Tennessee, 2018. https://trace.tennessee.edu/utk_graddiss/5316 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Scott Hester Graham entitled "Evaluation of a New Bt Toxin, Cry51Aa2.834_16, for Control of Thrips and Tarnished Plant Bug in Cotton." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Entomology, Plant Pathology and Nematology. Scott D. Stewart, Major Professor We have read this dissertation and recommend its acceptance: Eric Blinka, Jerome Grant, Tyson Raper Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Evaluation of a New Bt Toxin, Cry51Aa2.834_16, for Control of Thrips and Tarnished Plant Bug in Cotton A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Scott Hester Graham December 2018 Copyright © 2018 by Scott H. -
Twenty-Five Pests You Don't Want in Your Garden
Twenty-five Pests You Don’t Want in Your Garden Prepared by the PA IPM Program J. Kenneth Long, Jr. PA IPM Program Assistant (717) 772-5227 [email protected] Pest Pest Sheet Aphid 1 Asparagus Beetle 2 Bean Leaf Beetle 3 Cabbage Looper 4 Cabbage Maggot 5 Colorado Potato Beetle 6 Corn Earworm (Tomato Fruitworm) 7 Cutworm 8 Diamondback Moth 9 European Corn Borer 10 Flea Beetle 11 Imported Cabbageworm 12 Japanese Beetle 13 Mexican Bean Beetle 14 Northern Corn Rootworm 15 Potato Leafhopper 16 Slug 17 Spotted Cucumber Beetle (Southern Corn Rootworm) 18 Squash Bug 19 Squash Vine Borer 20 Stink Bug 21 Striped Cucumber Beetle 22 Tarnished Plant Bug 23 Tomato Hornworm 24 Wireworm 25 PA IPM Program Pest Sheet 1 Aphids Many species (Homoptera: Aphididae) (Origin: Native) Insect Description: 1 Adults: About /8” long; soft-bodied; light to dark green; may be winged or wingless. Cornicles, paired tubular structures on abdomen, are helpful in identification. Nymph: Daughters are born alive contain- ing partly formed daughters inside their bodies. (See life history below). Soybean Aphids Eggs: Laid in protected places only near the end of the growing season. Primary Host: Many vegetable crops. Life History: Females lay eggs near the end Damage: Adults and immatures suck sap from of the growing season in protected places on plants, reducing vigor and growth of plant. host plants. In spring, plump “stem Produce “honeydew” (sticky liquid) on which a mothers” emerge from these eggs, and give black fungus can grow. live birth to daughters, and theygive birth Management: Hide under leaves. -
Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015)
Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015) By Richard Henderson Research Ecologist, WI DNR Bureau of Science Services Summary This is a preliminary list of insects that are either well known, or likely, to be closely associated with Wisconsin’s original native prairie. These species are mostly dependent upon remnants of original prairie, or plantings/restorations of prairie where their hosts have been re-established (see discussion below), and thus are rarely found outside of these settings. The list also includes some species tied to native ecosystems that grade into prairie, such as savannas, sand barrens, fens, sedge meadow, and shallow marsh. The list is annotated with known host(s) of each insect, and the likelihood of its presence in the state (see key at end of list for specifics). This working list is a byproduct of a prairie invertebrate study I coordinated from1995-2005 that covered 6 Midwestern states and included 14 cooperators. The project surveyed insects on prairie remnants and investigated the effects of fire on those insects. It was funded in part by a series of grants from the US Fish and Wildlife Service. So far, the list has 475 species. However, this is a partial list at best, representing approximately only ¼ of the prairie-specialist insects likely present in the region (see discussion below). Significant input to this list is needed, as there are major taxa groups missing or greatly under represented. Such absence is not necessarily due to few or no prairie-specialists in those groups, but due more to lack of knowledge about life histories (at least published knowledge), unsettled taxonomy, and lack of taxonomic specialists currently working in those groups. -
Effects of Chronic Exposure to the Herbicide, Mesotrione, on Spiders
Susquehanna University Scholarly Commons Senior Scholars Day Apr 28th, 12:00 AM - 12:00 AM Effects of Chronic Exposure to the Herbicide, Mesotrione, on Spiders Maya Khanna Susquehanna University Joseph Evans Susquehanna University Matthew Persons Susquehanna University Follow this and additional works at: https://scholarlycommons.susqu.edu/ssd Khanna, Maya; Evans, Joseph; and Persons, Matthew, "Effects of Chronic Exposure to the Herbicide, Mesotrione, on Spiders" (2020). Senior Scholars Day. 34. https://scholarlycommons.susqu.edu/ssd/2020/posters/34 This Event is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Senior Scholars Day by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Effects of Chronic Exposure to the Herbicide, Mesotrione on Spiders Maya Khanna, Joseph Evans, and Matthew Persons Department of Biology, Susquehanna University, PA 17870 Tigrosa helluo Trochosa ruricola Mecaphesa asperata Frontinella pyramitela Tetragnatha laboriosa Hogna lenta Pisaurina mira Abstract Methods All spiders were collected on Table 1. The predicted lethality of mesotrione on each spider species based upon soil association levels and species size. Toxicity is predicted to increase with smaller size and Mesotrione is a widely used agricultural herbicide and is frequently used alone or as an adjuvant for the Susquehanna University’s campus. Each spider was housed in a 473 ml (16oz) greater soil contact. Sample sizes for each species are indicated to the left. A total of 615 herbicides glyphosate and atrazine. The effects of mesotrione are largely untested on beneficial non-target spiders were used in this study. species such as spiders. -
Arthropods of Elm Fork Preserve
Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux. -
Numbers and Types of Arthropods Overwintering on Common Mullein, Verbascum Thapsus L
J. ENTOMOL. SOC. BRIT. COLUMBIA 100, DECEMBER 2003 79 Numbers and types of arthropods overwintering on common mullein, Verbascum thapsus L. (Scrophulariaceae), in a central Washington fruit-growing region DAVID R. HORTON and TAMERA M. LEWIS USDA-ARS, 5230 KONNOWAC PASS Rd., WAPATO, WA, UNITED STATES 98951 ABSTRACT Densities and types of arthropods overwintering on common mullein, Verbascum thapsus L., in a fruit-growing region of Central Washington were determined. Over 45,000 arthropods were collected from 55 plants (5 plants from each of 11 sites), dominated numerically by Acari and Thysanoptera. Insects representing 8 orders and 29 families were identified, distributed both in the basal leaf rosettes and in the stalk material of the plants. One specialist insect herbivore of mullein, the mullein thrips, Haplothrips verbasci (Osborn), was abundant at all sites. Several pest and predatory taxa that commonly occur in orchards were also collected, suggesting that mullein may be a source of overwintered pests or predators moving into orchards in early spring. Pest taxa included primarily western flower thrips (Frankliniella occidentalis (Pergande)), Lygus spp., and tetranychid spider mites. Common predators included phytoseiid mites and minute pirate bugs (Orius tristicolor (White)). Sites that were geographically close to one another were not more similar (in taxonomic composition of overwintering arthropods) than more distantly separated sites. Key words: common mullein, overwintering, orchard pests, predatory arthropods, mullein thrips, western flower thrips, Orius tristicolor, mites INTRODUCTION Common mullein, Verbascum thapsus L. (Scrophulariaceae), is a biennial herb native to Eurasia (Munz 1959) but now common throughout North America. The species occurs in open waste areas, along fence lines, in overgrazed pastures, and along river bottoms, often found growing in large single-species stands. -
Can Spiders Effectively Control Pest Populations?
ISSN 1070–1524 Spider Predation in Agroecosystems: Can Spiders Effectively Control Pest Populations? Darlene Maloney Francis A. Drummond and Randy Alford Technical Bulletin 190 August 2003 MAINE AGRICULTURAL AND FOREST EXPERIMENT STATION The University of Maine Spider Predation in Agroecosystems: Can Spiders Effectively Control Pest Populations? Darlene Maloney Graduate Student Francis A. Drummond Professor and Randy Alford Professor Department of Biological Sciences The University of Maine Orono ME 04469 The Maine Agricultural and Forest Experiment Station provides equal program opportunities without regard to race, age, sex or preference, creed, national origin, or disability. CONTENTS SPIDERS AS PREDATORS IN AGRICULTURAL ECOSYSTEMS ......................................................................... 5 REDUCTION OF INSECT PEST DENSITIES BY SPIDERS ................................................................................... 6 Top-Down Effects .................................................................... 8 Wasteful Killing ...................................................................... 12 Spider Assemblages............................................................... 13 Prey Specialization ................................................................ 14 Role of the Generalist Spider ............................................... 16 Functional Response ............................................................. 17 Numerical Response ............................................................. 20 EFFECTS -
Common Kansas Spiders
A Pocket Guide to Common Kansas Spiders By Hank Guarisco Photos by Hank Guarisco Funded by Westar Energy Green Team, American Arachnological Society and the Chickadee Checkoff Published by the Friends of the Great Plains Nature Center i Table of Contents Introduction • 2 Arachnophobia • 3 Spider Anatomy • 4 House Spiders • 5 Hunting Spiders • 5 Venomous Spiders • 6-7 Spider Webs • 8-9 Other Arachnids • 9-12 Species accounts • 13 Texas Brown Tarantula • 14 Brown Recluse • 15 Northern Black Widow • 16 Southern & Western Black Widows • 17-18 Woodlouse Spider • 19 Truncated Cellar Spider • 20 Elongated Cellar Spider • 21 Common Cellar Spider • 22 Checkered Cobweb Weaver • 23 Quasi-social Cobweb Spider • 24 Carolina Wolf Spider • 25 Striped Wolf Spider • 26 Dotted Wolf Spider • 27 Western Lance Spider • 28 Common Nurseryweb Spider • 29 Tufted Nurseryweb Spider • 30 Giant Fishing Spider • 31 Six-spotted Fishing Spider • 32 Garden Ghost Spider Cover Photo: Cherokee Star-bellied Orbweaver ii Eastern Funnelweb Spider • 33 Eastern and Western Parson Spiders • 34 Garden Ghost Spider • 35 Bark Crab Spider • 36 Prairie Crab Spider • 37 Texas Crab Spider • 38 Black-banded Crab Spider • 39 Ridge-faced Flower Spider • 40 Striped Lynx Spider • 41 Black-banded Common and Convict Zebra Spiders • 42 Crab Spider Dimorphic Jumping Spider • 43 Bold Jumping Spider • 44 Apache Jumping Spider • 45 Prairie Jumping Spider • 46 Emerald Jumping Spider • 47 Bark Jumping Spider • 48 Puritan Pirate Spider • 49 Eastern and Four-lined Pirate Spiders • 50 Orchard Spider • 51 Castleback Orbweaver • 52 Triangulate Orbweaver • 53 Common & Cherokee Star-bellied Orbweavers • 54 Black & Yellow Garden Spider • 55 Banded Garden Spider • 56 Marbled Orbweaver • 57 Eastern Arboreal Orbweaver • 58 Western Arboreal Orbweaver • 59 Furrow Orbweaver • 60 Eastern Labyrinth Orbweaver • 61 Giant Long-jawed Orbweaver • 62 Silver Long-jawed Orbweaver • 63 Bowl and Doily Spider • 64 Filmy Dome Spider • 66 References • 67 Pocket Guides • 68-69 1 Introduction This is a guide to the most common spiders found in Kansas.