Effects of Chronic Exposure to the Herbicide, Mesotrione, on Spiders

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Chronic Exposure to the Herbicide, Mesotrione, on Spiders Susquehanna University Scholarly Commons Senior Scholars Day Apr 28th, 12:00 AM - 12:00 AM Effects of Chronic Exposure to the Herbicide, Mesotrione, on Spiders Maya Khanna Susquehanna University Joseph Evans Susquehanna University Matthew Persons Susquehanna University Follow this and additional works at: https://scholarlycommons.susqu.edu/ssd Khanna, Maya; Evans, Joseph; and Persons, Matthew, "Effects of Chronic Exposure to the Herbicide, Mesotrione, on Spiders" (2020). Senior Scholars Day. 34. https://scholarlycommons.susqu.edu/ssd/2020/posters/34 This Event is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Senior Scholars Day by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Effects of Chronic Exposure to the Herbicide, Mesotrione on Spiders Maya Khanna, Joseph Evans, and Matthew Persons Department of Biology, Susquehanna University, PA 17870 Tigrosa helluo Trochosa ruricola Mecaphesa asperata Frontinella pyramitela Tetragnatha laboriosa Hogna lenta Pisaurina mira Abstract Methods All spiders were collected on Table 1. The predicted lethality of mesotrione on each spider species based upon soil association levels and species size. Toxicity is predicted to increase with smaller size and Mesotrione is a widely used agricultural herbicide and is frequently used alone or as an adjuvant for the Susquehanna University’s campus. Each spider was housed in a 473 ml (16oz) greater soil contact. Sample sizes for each species are indicated to the left. A total of 615 herbicides glyphosate and atrazine. The effects of mesotrione are largely untested on beneficial non-target spiders were used in this study. species such as spiders. Different spider species may be differentially susceptible due to size differences, container with two plastic coffee stirrers microhabitat, and levels of exposure to this herbicide via soil contact. We tested mortality differences of serving as stem-like support structures. Genus Common Name Microhabitat Size Predicted lethality seven species of spider when exposed to field-relevant concentrations of mesotrione-treated soil over a 55- All collected spiders were randomly and day period. We tested the web-building spiders Frontinella pyramitela and Tetragnatha laboriosa. We also evenly split by sex across herbicide and Frontinella Bowl and doily Suspension Very small Low n= 130 pyramitela spider web-builder tested the stem and leaf-dwelling ambush spiders Mecaphesa asperata and Pisaurina mira and three species control treatments. Each container was Tetragnatha Long-jawed orb of ground-dwelling wolf spiders that vary in their burrowing propensities: Hogna lenta (infrequent sprayed with either water (control) or n= 74 Web-builder Small Moderate/ laboriosa weaver & vegetation Low burrower), Tigrosa helluo (facultative burrower) and a habitually burrowing wolf spider Trochosa ruricola. All recommended field dosage of tenacity Crab spider (mesotrione) prior to introducing a n= 38 Mecaphesa Vegetation Small Moderate seven of these species commonly occur in mesotrione-treated agricultural systems. We found that the web- asperata building spider Frontinella but not Tetragnatha showed increased mortality compared to control treatments. single test subject. Each spider was then observed daily for mortality over a 55 Pisaurina Nurseryweb Vegetation & Moderate Moderate Mecaphesa, Pisaurina, Trochosa, and Tigrosa all showed large significant increases in mortality under chronic n= 70 spider day period. Spiders were fed ad libitum mira soil surface exposure to mesotrione-treated soil whereas the wolf spider Hogna lenta was unaffected. We also found Hogna lenta Wolf spider Soil surface Large High sex-specific mortality effects in Pisaurina with males having higher mortality. Several species showed once weekly appropriately sized n= 71 crickets. Spider position in the container significant shifts in space use when exposed to mesotrione and we found significant interaction between Tigrosa Wolf spider n= 156 Soil surface Large High spider weight gain and herbicide treatment. In general, mesotrione is an unsafe herbicide for some species was noted daily and spiders were helluo and burrow weighed every 12 days and/or until the of spiders. Alternative herbicides to mesotrione should be considered to minimize the negative biocontrol n= 76 Trochosa Wolf spider Soil surface Moderate Very High impact on beneficial spiders within integrated pest management systems. day they died. ruricola and burrow Introduction Herbicide use has drastically increased in the United States since the 1960s. In recent years corn has been the most dosed crop, with 98% of agriculture crop dosed with herbicides. Results Summary (2014. Fernandez-Cornejo, et al.) Mesotrione is a widely used herbicide in crop systems and 60 residential lawns. It is a relatively new herbicide, officially registered in 2001 * * * • Chronic exposure to field-relevant concentrations of 9Mesotrione.2001). The lethal and sublethal effects of mesotrione on non-target species 50 mesotrione adversely affects spiders but not all * * have been poorly tested and largely restricted to bacteria, earthworms, and aquatic animals 40 species were equally impacted. (Zhang et al. 2019; Carles et al. 2017; EFSA, 2016). Although spiders are significant biocontrol Control 30 Mesotrione agents in agricultural systems, possible negative effects of mesotrione residue on • Mesotrione shortened the lifespan of Frontinella, Mecaphesa, chronically-exposed spiders has not been measured. 20 Pisaurina, Tigrosa, and Trochosa but not Tetragnatha or Hogna. 10 Mortality was different for spiders of similar size that occupy similar Days alive after exposure after alive Days microhabitats (i.e. Tigrosa and Hogna for ground-dwellers and We tested seven different spider species commonly found in agricultural systems. These 0 Mecaphesa Pisaurina Hogna Tigrosa Trochosa Frontinella and Tetragnatha for web-builders). This suggests that species comprise five families and prefer different microhabitats within crop systems. One Frontinella Tetragnatha W W/V V V/G G G G spider contact with soil alone or feeding modality is not a good species, the small bowl-and-doily spider, Frontinella pyramitela, spends nearly all of its time Figure 1. Mean number of days alive (±SE) since mesotrione herbicide application of soil for seven species of spider that vary in their predictor of toxicity. suspended in a horizontal web with almost no vegetation or soil contact. Another species is microhabitat use. W= web-builders, V= vegetation-dwelling, and G=ground dwelling. Asterisks = significant differences between • We found no significant sex difference in mesotrione-induced the long-jawed orb-weaver, Tetragnatha laboriosa, which feeds from a horizontal web but herbicide and control pairs. Two-way ANOVA, Species effect: F6,601=30.05, p<0.0001; Mesotrione effect: F1,601=93.86, p<0.0001; mortality among wolf spiders however we did find that male nursery- Species*Mesotrione: F6,601=7.26, p<0.0001. Spiders observed on the side of the container web spiders, Pisaurina, had significantly higher mortality than females also spends time walking on vegetation. Two other species include the crab spider, Spider Weight Gain over 12 Days * 120 10 and Pisaurina spent significantly more time on the sides of the Mecaphesa asperata, and nursery-web spider, Pisaurina mira. These species do not build Control * Control 9 container in the mesotrione treatment. We also found significant shifts 100 Mesotrione webs and spend most of their time hunting on vertical surfaces of the vegetation. The Mesotrione 8 in spatial position for other spider species except those that were 7 remaining spiders include three ground-dwelling wolf spiders, Trochosa ruricola, Tigrosa 80 ground-dwelling, suggesting that non-wolf spiders may be able to * 6 helluo, and Hogna lenta. These species live on the ground surface although Tigrosa helluo 60 5 behaviorally mitigate the effects of mesotrione through avoidance. and Hogna lenta spend some time in low vegetation while Trochosa ruricola spends most of 4 There were significant weight gain differences by species and 40 * 3 their time within excavated burrows during the day. Tigrosa helluo, the largest of the three 12 (mg) 1 to day herbicide treatment with Hogna and Trochosa gaining significantly Observations on side Observations 2 Mean weight gain from from gain weight Mean 20 more weight in the mesotrione treatment while the opposite was true species, also shows the greatest sexual size dimorphism with females being four to ten times 1 Tigrosa. 0 0 for heavier than males. Hogna Pisaurina Tigrosa Trochosa lenta mira helluo ruricola Hogna Tigrosa Conclusions Trochosa Figure 2. Mean weight gain between start of experiment and day 12 (±SE). Pisaurina Frontinella Mecaphesa We examined how species differences in spatial preferences, size, and feeding ecology may Asterisks = significant differences in weight between control and mesotrione Tetragnatha The herbicide, mesotrione, has large and significant lethal effects treatments within that species. Two-way ANOVA, Species effect: F =13.8, Figure 3. Mean number of observations on side of container over a contribute to differences in toxicological sensitivity to the herbicide mesotrione. To prevent 3,352 twenty day period (±SE). Asterisks = significant differences between on a variety of agriculturally-important spider species, but spider p<0.0001; Herbicide effect: F1,352=0.535,
Recommended publications
  • 22 3 259 263 Mikhailov Alopecosa.P65
    Arthropoda Selecta 22(3): 259263 © ARTHROPODA SELECTA, 2013 Tarentula Sundevall, 1833 and Alopecosa Simon, 1885: a historical account (Aranei: Lycosidae) Tarentula Sundevall, 1833 è Alopecosa Simon, 1885: èñòîðè÷åñêèé îáçîð (Aranei: Lycosidae) K.G. Mikhailov Ê.Ã. Ìèõàéëîâ Zoological Museum MGU, Bolshaya Nikitskaya Str. 6, Moscow 125009 Russia. Çîîëîãè÷åñêèé ìóçåé ÌÃÓ, óë. Áîëüøàÿ Íèêèòñêàÿ, 6, Ìîñêâà 125009 Ðîññèÿ. KEY WORDS: Tarentula, Alopecosa, nomenclature, synonymy, spiders, Lycosidae. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: Tarentula, Alopecosa, íîìåíêëàòóðà, ñèíîíèìèÿ, ïàóêè, Lycosidae. ABSTRACT. History of Tarentula Sundevall, 1833 genus Lycosa to include the following 11 species (the and Alopecosa Simon, 1885 is reviewed. Validity of current species assignments follow the catalogues by Alopecosa Simon, 1885 is supported. Reimoser [1919], Roewer [1954a], and, especially, Bonnet [1955, 1957, 1959]): ÐÅÇÞÌÅ. Äàí îáçîð èñòîðèè ðîäîâûõ íàçâà- Lycosa Fabrilis [= Alopecosa fabrilis (Clerck, 1758)], íèé Tarentula Sundevall, 1833 è Alopecosa Simon, L. trabalis [= Alopecosa inquilina (Clerck, 1758), male, 1885. Îáîñíîâàíà âàëèäíîñòü íàçâàíèÿ Alopecosa and A. trabalis (Clerck, 1758), female], Simon, 1885. L. vorax?, male [= either Alopecosa trabalis or A. trabalis and A. pulverulenta (Clerck, 1758), according Introduction to different sources], L. nivalis male [= Alopecosa aculeata (Clerck, 1758)], The nomenclatorial problems concerning the ge- L. barbipes [sp.n.] [= Alopecosa barbipes Sundevall, neric names Tarantula Fabricius, 1793, Tarentula Sun- 1833, = A. accentuata (Latreille, 1817)], devall, 1833 and Alopecosa Simon, 1885 have been L. cruciata female [sp.n.] [= Alopecosa barbipes Sun- discussed in the arachnological literature at least twice devall, 1833, = A. accentuata (Latreille, 1817)], [Charitonov, 1931; Bonnet, 1951]. However, the arach- L. pulverulenta [= Alopecosa pulverulenta], nological community seems to have overlooked or ne- L.
    [Show full text]
  • Herbicide Mode of Action Table High Resistance Risk
    Herbicide Mode of Action Table High resistance risk Chemical family Active constituent (first registered trade name) GROUP 1 Inhibition of acetyl co-enzyme A carboxylase (ACC’ase inhibitors) clodinafop (Topik®), cyhalofop (Agixa®*, Barnstorm®), diclofop (Cheetah® Gold* Decision®*, Hoegrass®), Aryloxyphenoxy- fenoxaprop (Cheetah®, Gold*, Wildcat®), fluazifop propionates (FOPs) (Fusilade®), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) Cyclohexanediones (DIMs) butroxydim (Factor®*), clethodim (Select®), profoxydim (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) Phenylpyrazoles (DENs) pinoxaden (Axial®) GROUP 2 Inhibition of acetolactate synthase (ALS inhibitors), acetohydroxyacid synthase (AHAS) Imidazolinones (IMIs) imazamox (Intervix®*, Raptor®), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, Lightning®*, Midas®* OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) Pyrimidinyl–thio- bispyribac (Nominee®), pyrithiobac (Staple®) benzoates Sulfonylureas (SUs) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*, Trimac Plus®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron (Logran®, Logran® B-Power®*), tribenuron (Express®),
    [Show full text]
  • CFS Science Comments I
    April 27, 2012 Docket No. APHIS–2010–0103 Regulatory Analysis and Development PPD, APHIS Station 3A-03.8 4700 River Road Unit 118 Riverdale, MD 20737-1238 Comments to USDA APHIS on Environmental Assessment for the Determination of Nonregulated Status of Herbicide-Tolerant DAS-40278-9 Corn, Zea mays, Event DAS- 40278-9 Center for Food Safety, Science Comments I – By Bill Freese, Science Policy Analyst These comments submitted by Center for Food Safety are one of three sets of comments from our organization. Legal comments and a second set of science comments are also being submitted. The references cited have been uploaded as supporting materials. The filenames for these documents match the citations in the text, and are all incorporated as (e.g. Benbrook 2012). Full citations are included at the end of each section. THE IMPACT OF DAS-40278-9 ON CORN HERBICIDE USE Summary of herbicide use Dow’s DAS-402787-9 corn is genetically engineered for resistance to 2,4-D and quizalofop, and if deregulated would be marketed with additional resistance to glyphosate and likely glufosinate – fostering greater use of three to four herbicide classes. APHIS must assess DAS-42078-9 as Dow intends it to be used, as a weed control system. DAS-40278-9 eliminates the risk of crop injury that currently limits 2,4-D use on corn, and is thus reasonably projected to trigger an up to 30-fold increase in the use of this toxic herbicide on corn, equivalent to a four-fold increase in overall agricultural use of 2,4-D, by the end of the decade.
    [Show full text]
  • On Lygus Lineolaris (Heteroptera, Miridae) and Other Arthropods
    Young, O . P. 1889 . Predation by Pisaurina mira (Araneae, Pisauridae) on Lygus lineolaris (Heteroptera, Miridae) and other arthropods. J. Arachnol., 17 :43-48 . PREDATION BY PISA URINA MIRA (ARANEAE, PISAURIDAE) ON LYGUS LINEOLARIS (HETEROPTERA, MIRIDAE) AND OTHER ARTHROPODS Orrey P. Young Southern Field Crop Insect Management Laboratory ARS-USDA, P.O. Box 346 Stoneville, Mississippi 38776 USA ABSTRACT In the Delta area of Mississippi, a 13-month sampling program in old-field habitats adjacent to cotton fields demonstrated high densities of Pisaurina mira in June, which was coincident with high Lygus lineolaris populations . In July, P. mira populations were lower by 50% and L . lineolaris by almost 100% . From August through October, P. mira populations continued to decline while L . lineolaris increased . Field observations in the same old-field habitats', indicated L . lineolaris to be the most frequently captured prey item of P. mira . In laboratory feeding experiments over a 3-year period, all P. mira individuals consumed L . lineolaris and 22 of 35 other species of co-occurring potential arthropod prey . These data suggest that the predator P. mira may affect L . lineolaris populations and can survive on other prey when L. lineolaris is less abundant . INTRODUCTION Members of the Pisauridae in North America are wandering spiders that do not build snares and are typically found on vegetation or at water margins throughout North America (Carico' 1972) . Pisaurina mira (Walckenaer) is one of the most common spiders in the eastern United States and occurs in woods, old- fields, and meadows, but is especially abundant in th'o ecotonal areas between woods and fields (Carico 1972) .
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • (Aminomethyl)Phosphonic Acid, and Glyphosate-Based Formulations for Genotoxicity and Oxidative Stress Using in Vitro Approaches
    Evaluation of Glyphosate, (Aminomethyl)phosphonic Acid, and Glyphosate-Based Formulations for Genotoxicity and Oxidative Stress Using In Vitro Approaches Stephanie L. Smith-Roe, Ph.D. Genetic Toxicology Group Biomolecular Screening Branch National Toxicology Program National Institute of Environmental Health Sciences EMGS 50th Annual Meeting September 23, 2019 Disclaimer The findings and conclusions in this presentation are those of the presenter and do not necessarily reflect the views, policies, or conclusions of NTP or any other U.S. Federal agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. NTP studies of glyphosate Toxicity Report No. 16: 13-week study with glyphosate in feed (1992) • Nominated by California Regional Water Quality Control Board North Coast Region (1981) – Glyphosate being found in water runoff in areas of use • NTP selected glyphosate for toxicity evaluation because of: – Expanding use – Potential for human exposure – The lack of published reports concerning comprehensive toxicity or carcinogenicity evaluations NTP studies of glyphosate Toxicity Report No. 16: 13-week study with glyphosate in feed (1992) Top dose for rats ∼3,400 mg/kg/day (males & females) Top dose for mice ∼10,800 and ~12,000 mg/kg/day (males & females, respectively) • No gross lesions at necropsy (rats or mice) • Micronucleus assay was negative in male and female mice (also 13-week exposure via feed) • Bacterial mutagenicity tests were negative • ADME studies indicated low absorption
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Predation on Reproducing Wolf Spiders: Access to Information Has Differential Effects on Male and Female Survival
    Animal Behaviour 128 (2017) 165e173 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Predation on reproducing wolf spiders: access to information has differential effects on male and female survival * Ann L. Rypstra a, , Chad D. Hoefler b, 1, Matthew H. Persons c, 2 a Department of Biology, Miami University, Hamilton, OH, U.S.A. b Department of Biology, Arcadia University, Glenside, PA, U.S.A. c Department of Biology, Susquehanna University, Selinsgrove, PA, U.S.A. article info Predation has widespread influences on animal behaviour, and reproductive activities can be particularly Article history: dangerous. Males and females differ in their reactions to sensory stimuli from predators and potential Received 13 September 2016 mates, which affects the risk experienced by each sex. Thus, the information available can cause dif- Initial acceptance 8 November 2016 ferential survival and have profound implications for mating opportunities and population structure. The Final acceptance 24 March 2017 wolf spider, Pardosa milvina, detects and responds in a risk-sensitive manner to chemotactile information from a larger predator, the wolf spider Tigrosa helluo. Male P. milvina use similar chemotactile cues to find MS. number: A16-00806R2 females whereas female P. milvina focus on the visual, and perhaps vibratory, aspects of the male display. Our aim was to document the risk posed by T. helluo predators on P. milvina during reproduction and to Keywords: determine whether augmenting chemotactile information would affect that outcome. In the laboratory, chemical cue we explored the effects of adding predator and/or female cues on the predatory success of T.
    [Show full text]
  • Can Spiders Effectively Control Pest Populations?
    ISSN 1070–1524 Spider Predation in Agroecosystems: Can Spiders Effectively Control Pest Populations? Darlene Maloney Francis A. Drummond and Randy Alford Technical Bulletin 190 August 2003 MAINE AGRICULTURAL AND FOREST EXPERIMENT STATION The University of Maine Spider Predation in Agroecosystems: Can Spiders Effectively Control Pest Populations? Darlene Maloney Graduate Student Francis A. Drummond Professor and Randy Alford Professor Department of Biological Sciences The University of Maine Orono ME 04469 The Maine Agricultural and Forest Experiment Station provides equal program opportunities without regard to race, age, sex or preference, creed, national origin, or disability. CONTENTS SPIDERS AS PREDATORS IN AGRICULTURAL ECOSYSTEMS ......................................................................... 5 REDUCTION OF INSECT PEST DENSITIES BY SPIDERS ................................................................................... 6 Top-Down Effects .................................................................... 8 Wasteful Killing ...................................................................... 12 Spider Assemblages............................................................... 13 Prey Specialization ................................................................ 14 Role of the Generalist Spider ............................................... 16 Functional Response ............................................................. 17 Numerical Response ............................................................. 20 EFFECTS
    [Show full text]
  • Thickening Glyphosate Formulations
    (19) TZZ _T (11) EP 2 959 777 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 30.12.2015 Bulletin 2015/53 A01N 57/20 (2006.01) A01N 25/30 (2006.01) A01P 13/00 (2006.01) (21) Application number: 15175726.7 (22) Date of filing: 17.08.2009 (84) Designated Contracting States: (71) Applicant: Akzo Nobel N.V. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 6824 BM Arnhem (NL) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR (72) Inventor: ZHU, Shawn Stormville, NY New York 12582 (US) (30) Priority: 19.08.2008 US 90010 P 09.09.2008 EP 08163910 (74) Representative: Akzo Nobel IP Department Velperweg 76 (62) Document number(s) of the earlier application(s) in 6824 BM Arnhem (NL) accordance with Art. 76 EPC: 11191518.7 / 2 425 716 Remarks: 09781884.3 / 2 315 524 This application was filed on 07-07-2015 as a divisional application to the application mentioned under INID code 62. (54) THICKENING GLYPHOSATE FORMULATIONS (57) The present invention generally relates to a glyphosate formulation with enhanced viscosity, said formulation containing a thickening composition comprising at least one nitrogen- containing surfactant. EP 2 959 777 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 959 777 A1 Description FIELD OF THE INVENTION 5 [0001] The present invention relates to a glyphosate formulations thickened by nitrogen containing surfactants. BACKGROUND OF THE INVENTION [0002] Glyphosate is the most widely used herbicide in the world.
    [Show full text]
  • Common Kansas Spiders
    A Pocket Guide to Common Kansas Spiders By Hank Guarisco Photos by Hank Guarisco Funded by Westar Energy Green Team, American Arachnological Society and the Chickadee Checkoff Published by the Friends of the Great Plains Nature Center i Table of Contents Introduction • 2 Arachnophobia • 3 Spider Anatomy • 4 House Spiders • 5 Hunting Spiders • 5 Venomous Spiders • 6-7 Spider Webs • 8-9 Other Arachnids • 9-12 Species accounts • 13 Texas Brown Tarantula • 14 Brown Recluse • 15 Northern Black Widow • 16 Southern & Western Black Widows • 17-18 Woodlouse Spider • 19 Truncated Cellar Spider • 20 Elongated Cellar Spider • 21 Common Cellar Spider • 22 Checkered Cobweb Weaver • 23 Quasi-social Cobweb Spider • 24 Carolina Wolf Spider • 25 Striped Wolf Spider • 26 Dotted Wolf Spider • 27 Western Lance Spider • 28 Common Nurseryweb Spider • 29 Tufted Nurseryweb Spider • 30 Giant Fishing Spider • 31 Six-spotted Fishing Spider • 32 Garden Ghost Spider Cover Photo: Cherokee Star-bellied Orbweaver ii Eastern Funnelweb Spider • 33 Eastern and Western Parson Spiders • 34 Garden Ghost Spider • 35 Bark Crab Spider • 36 Prairie Crab Spider • 37 Texas Crab Spider • 38 Black-banded Crab Spider • 39 Ridge-faced Flower Spider • 40 Striped Lynx Spider • 41 Black-banded Common and Convict Zebra Spiders • 42 Crab Spider Dimorphic Jumping Spider • 43 Bold Jumping Spider • 44 Apache Jumping Spider • 45 Prairie Jumping Spider • 46 Emerald Jumping Spider • 47 Bark Jumping Spider • 48 Puritan Pirate Spider • 49 Eastern and Four-lined Pirate Spiders • 50 Orchard Spider • 51 Castleback Orbweaver • 52 Triangulate Orbweaver • 53 Common & Cherokee Star-bellied Orbweavers • 54 Black & Yellow Garden Spider • 55 Banded Garden Spider • 56 Marbled Orbweaver • 57 Eastern Arboreal Orbweaver • 58 Western Arboreal Orbweaver • 59 Furrow Orbweaver • 60 Eastern Labyrinth Orbweaver • 61 Giant Long-jawed Orbweaver • 62 Silver Long-jawed Orbweaver • 63 Bowl and Doily Spider • 64 Filmy Dome Spider • 66 References • 67 Pocket Guides • 68-69 1 Introduction This is a guide to the most common spiders found in Kansas.
    [Show full text]