Interspecific Hybridization, Ploidy Manipulation, And

Total Page:16

File Type:pdf, Size:1020Kb

Interspecific Hybridization, Ploidy Manipulation, And INTERSPECIFIC HYBRIDIZATION, PLOIDY MANIPULATION, AND CYTOLOGICAL AND GENETIC ANALYSES AS TOOLS FOR BREEDING AND IMPROVEMENT OF CALLICARPA L., CRYPTOMERIA D. DON, HIBISCUS L., AND TECOMA JUSS. by RYAN NELSON CONTRERAS (Under the Direction of John M. Ruter) ABSTRACT Research was conducted as part of breeding programs to improve Callicarpa, Cryptomeria, Hibiscus, and Tecoma including field evaluation, polyploidization, genetic and cytogenetic studies, and interspecific hybridization. These techniques were successfully integrated into existing improvement programs. Polyploidy was induced in Hibiscus acetosella ‘Panama Red’ PP20121 to develop a more compact plant. Plant height and fertility was reduced, leaves were smaller, internodes were shorter, and canopy volume were reduced in the induced octoploid. Japanese cedar chromosomes were doubled by spraying seedlings with oryzalin. Eighty-three percent of selected seedlings were tetraploids, 9.3% were cytochimeras, and 7.6% were diploids. Performance of Japanese cedar cultivars was evaluated by measuring chlorophyll and carotenoids and assigning color ratings. There were differences in chlorophyll, ratio of chlorophyll a:b, carotenoids, and color rating (greeness). There were no consistent trends for differences between winter and summer or between traits. Crosses were performed to investigate the genetics of fruit color, leaf variegation, self-compatibility, and apomixis in American beautyberry. Crosses between purple and white fruit showed white fruit is recessive and is controlled by a single recessive gene called white fruit (wf). Progeny developed sexually and all genotypes were self-compatible. We propose that purple, pink, and white fruit are allelic with proposed symbols Wf > wf p > wf. Maternal effects appear to be involved in leaf variegation; however, germination was too low to draw conclusions. Callicarpa americana seeds were treated with sulfuric acid to increase germination. The control, 15 min, and 30 min treatments germinated at 8.9%, 57.8%, and 48.9%, respectively, indicating that scarification benefits germination. Genome sizes of Callicarpa were calculated using flow cytometry and ranged from 1.34 to 3.11 pg. Chromosome counts revealed most were diploid (2n = 2x = 34) but two were tetraploid. Interspecific hybridization in Tecoma was conducted. Fertile hybrids between T. garrocha and T. stans (F1) were backcrossed to parents and self-pollinated. Tecoma garrocha, T. stans, and T. guarume ‘Tangelo’ were self-fertile. Complex hybrids were developed: F1 x T. capensis; F1 x T. guarume ‘Tangelo’. Leaf morphology of F1 was intermediate. GISH successfully identified hybridity. Four copies of rDNA were observed in F1s using FISH. INDEX WORDS: Induced polyploidy, cytogenetics, genome size, inheritance, ornamental plant breeding, in situ hybridization INTERSPECIFIC HYBRIDIZATION, PLOIDY MANIPULATION, AND CYTOLOGICAL AND GENETIC ANALYSES AS TOOLS FOR BREEDING AND IMPROVEMENT OF CALLICARPA L., CRYPTOMERIA D. DON, HIBISCUS L., AND TECOMA JUSS. by RYAN NELSON CONTRERAS B.S. North Carolina State University, 2002 M.S. North Carolina State University, 2006 A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS, GEORGIA 2009 © 2009 Ryan Nelson Contreras All Rights Reserved INTERSPECIFIC HYBRIDIZATION, PLOIDY MANIPULATION, AND CYTOLOGICAL AND GENETIC ANALYSES AS TOOLS FOR BREEDING AND IMPROVEMENT OF CALLICARPA L., CRYPTOMERIA D. DON, HIBISCUS L., AND TECOMA JUSS. by RYAN NELSON CONTRERAS Major Professor: John M. Ruter Committee: David A. Knauft Peggy Ozias-Akins Wayne W. Hanna Ronald B. Pegg Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia December 2009 iv DEDICATION To Carol English Contreras and Ronald Ramon Contreras v ACKNOWLEDGEMENTS I would like to thank everyone who has made this possible and helped me get to this point in my life; however, this thing is already too long. Therefore, I will say a “royal thanks” to all of the people that have provided support in my life. I would like to mention a few people specifically, though. First, my mother, Carol, who is the biggest reason for any successes I have in life. My father, Ron, who has always encouraged excellence. My brother, Christian, who is still smarter than I am no matter what letters follow my name. Margaret, Buddy, Kay, Rae, Dwain, and the rest of the Becton family (my family); I can’t imagine not having you guys in my life. Bobby, Deborah, Scott, Anna, and the rest of the Christophers; simply an extended family with a different last name. Oh, and Bobby, I’m going to beat you in the next triathlon! To all of my amazing friends and colleagues that are too numerous to list, thanks for providing the example and a high standard to strive for. Finally, I would like to thank my committee. Doc, it has been a fun and productive ride. I have really enjoyed working with you and the outings that we’ve had together. I look forward to hosting you on plant explorations in Oregon! Drs. Hanna, Knauft, Ozias-Akins, and Pegg; it has been an honor and a privilege having each of you serve on my committee. Dr. Hanna, I would specifically like to say thank you for the conversations we have had and pushing me to become the very best cytogeneticist I can be. The words, “Are you sure?” now enter my mind every time I look at one of my photomicrographs. Finally, to the dozens of people that I am omitting from mentioning specifically, please understand that your support and assistance is greatly appreciated and will not be forgotten. vi TABLE OF CONTENTS Page ACKNOWLEDGEMENTS .................................................................................................v LIST OF TABLES ............................................................................................................. ix LIST OF FIGURES ........................................................................................................... xi INTRODUCTION AND LITERATURE REVIEW ...........................................................1 Literature Cited .........................................................................................13 CHAPTER 1 An Oryzalin-Induced Autoallooctoploid of Hibiscus acetosella Welw. ex Hiern. ‘Panama Red’ (Malvaceae) .....................................................................................20 Introduction ...............................................................................................24 Materials and Methods ..............................................................................25 Results .......................................................................................................30 Discussion .................................................................................................32 Literature Cited .........................................................................................38 2 Oryzalin-Induced Tetraploidy in Cryptomeria japonica (Thunb. ex L.f.) D. Don (Cupressaceae) ...........................................................................................................50 Introduction ...............................................................................................54 Materials and Methods ..............................................................................56 Results and Discussion .............................................................................59 Literature Cited .........................................................................................62 vii 3 Pigment analysis and evaluation of Japanese cedar cultivars [Cryptomeria japonica (L.f.) D. Don (Cupressaceae)] in south Georgia .................................................70 Introduction ...............................................................................................73 Materials and Methods ..............................................................................76 Results .......................................................................................................78 Discussion .................................................................................................80 Literature Cited .........................................................................................88 4 Genetic studies investigating the inheritance of fruit color and leaf variegation in Callicarpa americana L. (Lamiaceae) ......................................................108 Introduction .............................................................................................111 Materials and Methods ............................................................................112 Results .....................................................................................................113 Discussion ...............................................................................................115 Literature Cited .......................................................................................119 5 Sulfuric acid scarification of Callicarpa americana (Lamiaceae) seeds improves germination .............................................................................................124 Introduction .............................................................................................127 Materials and Methods ............................................................................128 Results and Discussion ...........................................................................129
Recommended publications
  • Redalyc.Géneros De Lamiaceae De México, Diversidad Y Endemismo
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Martínez-Gordillo, Martha; Fragoso-Martínez, Itzi; García-Peña, María del Rosario; Montiel, Oscar Géneros de Lamiaceae de México, diversidad y endemismo Revista Mexicana de Biodiversidad, vol. 84, núm. 1, marzo, 2013, pp. 30-86 Universidad Nacional Autónoma de México Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=42526150034 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista Mexicana de Biodiversidad 84: 30-86, 2013 DOI: 10.7550/rmb.30158 Géneros de Lamiaceae de México, diversidad y endemismo Genera of Lamiaceae from Mexico, diversity and endemism Martha Martínez-Gordillo1, Itzi Fragoso-Martínez1, María del Rosario García-Peña2 y Oscar Montiel1 1Herbario de la Facultad de Ciencias, Facultad de Ciencias, Universidad Nacional Autónoma de México. partado postal 70-399, 04510 México, D.F., México. 2Herbario Nacional de México, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 70-367, 04510 México, D.F., México. [email protected] Resumen. La familia Lamiaceae es muy diversa en México y se distribuye con preferencia en las zonas templadas, aunque es posible encontrar géneros como Hyptis y Asterohyptis, que habitan en zonas secas y calientes; es una de las familias más diversas en el país, de la cual no se tenían datos actualizados sobre su diversidad y endemismo.
    [Show full text]
  • MSRP Appendix E
    Appendix E. Exotic Plant Species Reported from the South Florida Ecosystem. Community types are indicated where known Species High Pine Scrub Scrubby high pine Beach dune/ Coastal strand Maritime hammock Mesic temperate hammock Tropical hardwood Pine rocklands Scrubby flatwoods Mesic pine flatwoods Hydric pine flatwoods Dry prairie Cutthroat grass Wet prairie Freshwater marsh Seepage swamp Flowing water swamp Pond swamp Mangrove Salt marsh Abelmoschus esculentus Abrus precatorius X X X X X X X X X X X X Abutilon hirtum Abutilon theophrasti Acacia auriculiformis X X X X X X X X X Acacia retinoides Acacia sphaerocephala Acalypha alopecuroidea Acalypha amentacea ssp. wilkesiana Acanthospermum australe Acanthospermum hispidum Achyranthes aspera var. X aspera Achyranthes aspera var. pubescens Acmella pilosa Page E-1 Species High Pine Scrub Scrubby high pine Beach dune/ Coastal strand Maritime hammock Mesic temperate hammock Tropical hardwood Pine rocklands Scrubby flatwoods Mesic pine flatwoods Hydric pine flatwoods Dry prairie Cutthroat grass Wet prairie Freshwater marsh Seepage swamp Flowing water swamp Pond swamp Mangrove Salt marsh Acrocomia aculeata X Adenanthera pavonina X X Adiantum anceps X Adiantum caudatum Adiantum trapeziforme X Agave americana Agave angustifolia cv. X marginata Agave desmettiana Agave sisalana X X X X X X Agdestis clematidea X Ageratum conyzoides Ageratum houstonianum Aglaonema commutatum var. maculatum Ailanthus altissima Albizia julibrissin Albizia lebbeck X X X X X X X Albizia lebbeckoides Albizia procera Page
    [Show full text]
  • Study of Fruit, Seed and Embryo in Tecoma Stans (Linn.) H.B. & K. Nov
    Int. J. of Life Sciences, 2014, Special Issue A2 | October 2014 ISSN: 2320-7817 |eISSN: 2320-964X RESEARCH ARTICLE Study of Fruit, Seed and Embryo In Tecoma Stans (Linn.) H.B. & K. Nov. Gen Labhane NM1 and Dongarwar NM2 1Department of Botany, Bhavan’s College, Andheri-W, Mumbai-58 2Department of Botany, RTM Nagpur University campus, Nagpur-33 Email- [email protected] Manuscript details: ABSTRACT Date of publication 18.10.2014 Tecoma stans (Linn.)H.B. & K. Nov. Gen is a species of flowering perennial shrub belonging to family Tecomaceae, and is native to South America. Tecoma stans is Available online on medicinally important since different plant parts have nephrotoxic, antifungal and http://www.ijlsci.in antibacterial properties. The flowers arise in condensed raceme with bright yellow colour flowers. Each ovary contains many ovules. The fruit are elongated and ISSN: 2320-964X (Online) compressed with about 11-20 cm, with two sections each containing about 10-20 seed ISSN: 2320-7817 (Print) in each locule. Seeds are non endospermic, with seed coat showing papery appearance. The structure of embryo is very distinct. In most of the angiosperms, the two cotyledons are mostly folded, and thus prevent the exposure of the growing tips to Editor: Dr. Arvind Chavhan outer environmental conditions. However in Tecoma stans it is found that the two cotyledons are unfolded, which leads to exposure of the plumule and the radical. The shape of the embryo seems to be very characteristic, adapting itself to be dispersed at longer distances. The embryo also seems to have evolved in order to orient itself Cite this article as: according to the shape of the seed for longer distance dispersal.
    [Show full text]
  • Plant Breading
    SNA Research Conference Vol. 52 2007 Plant Breeding and Evaluation Tom Ranney Section Editor and Moderator Plant Breeding and Evaluation Section 326 SNA Research Conference Vol. 52 2007 New Callicarpa Species with Breeding Potential Ryan N. Contreras and John M. Ruter University of Georgia, Dept. of Horticulture, Tifton, GA 31793 [email protected] Index Words: beautyberry, species evaluation, ornamental plant breeding Significance to Industry: There is a great deal of available Callicarpa L. germplasm that has yet to be utilized by the nursery industry in the U.S. Taxa currently being evaluated are likely to have potential as breeding material or direct commercial marketability. With new breeding material and selections for introduction the number of beautyberry cultivars for use in southeastern gardens has the potential to expand greatly. Nature of Work: Callicarpa L. is a genus of ~150 species of shrubs and trees distributed throughout the world including warm-temperate and tropical America, SE Asia, Malaysia, Pacific Islands, and Australia (5) with the greatest concentration of species found in SE Asia, specifically the Philippine Islands (1). Of the New World species the highest concentration occurs in Cuba, with ~20 native species (1). There are currently four species commonly found in cultivation in the U.S.: C. americana L., C. bodinieri Lév., C. dichotoma (Lour.)K.Koch, and C. japonica Thunb. with a limited number of varieties or cultivars of each to choose from (3). Beautyberries, desired primarily for their handsome berries produced in fall, have been selected for white-fruiting varieties, finer textured varieties, increased berry production, and variegated foliage.
    [Show full text]
  • Biosphere—Butterfly Handout 14908 Tilden Road—Winter Garden FL 34787 (407) 656‐8277
    Biosphere—Butterfly Handout 14908 Tilden Road—Winter Garden FL 34787 (407) 656‐8277 www.BiosphereNursery.com Many of our native plant species are in decline because of a decline in insect pollinators, resulting in low seed production. Many crops also produce lower yields due to low pollinator populations. Man has declared war on insects with massive spray programs, killing the good with the bad and removing an important link in most food chains. You can help by planning a Bioscape that attracts and increases populations of butterflies and other pollinators. Let us help you plan a landscape that enhances habitats for all native wildlife. I. Recommended Nectar Food Plants Agastache (Agastache spp.) Jamaican Capertree (Capparis cynophallophora) (N) African Blue Basil (Ocimum spp.) Jatropha (Jatropha integerrima) Asters (Symphotrichum spp.) (N) Lantanas (Lantana spp.) Beardtongue (Penstemon multiflorus) (N) Lion’s Mane (Leonotis spp.) Beebalms (Monarda spp.) Mandarin Hat (Holmskioldia sanguinea) Black-eyed Susan (Rudbeckia hirta)(N) Mexican Flame Vine (Senecio confusus) Blanketflower (Gaillardia aristata) Mexican Sunflower (Tithonia rotundifolia) Blazing Stars (Liatris spp.) (N) Mexican Tarragon (Tagetes lucida) Blue Curls (Trichostema dichotomum) (N) Milkweeds (Asclepias spp.) Blue Potato Bush (Solanum rantonettii) Mona Lavender (Plectranthus ‘Mona Lavender’) Bulbine (Bulbine frutescens) Oak Leaf Hydrangea (Hydrangea quercifolia) (N) Buttonbush (Cephalanthus occidentalis) Paintbrush (Carphephorus paniculatus) (N) Butterfly Bush (Buddleja
    [Show full text]
  • Towards Resolving Lamiales Relationships
    Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales.
    [Show full text]
  • The Canadian Botanical Association Bulletin Bulletin De L'association
    The Canadian Botanical Association Bulletin Bulletin de l’Association Botanique du Canada Volume 53 Number 2 - September/septembre 2020 Highlights President’s Message President’s Message The last six months have shaken the Pg. 1 foundations of our global society. The emergence of the inevitable global pan- New Graduates & Projects demic sent most people home for up to Pg. 4 three months at the end of winter. As Q&A with Dr. Tanisha Williams spring was getting underway in most Pg. 6 of Canada, another collective sickness was highlighted with the re-emergence 2020 Conference Coverage of the Black Lives Matter (BLM) move- Pg. 8 ment following a brutal police killing 2020 CBA-ABC Awards in Minnesota. Along with the Wet’su- Pg. 10 wet’en solidarity protests, never-ending reports of police brutality aimed at In- Profile of Scarlet Ammannia digenous peoples, and the emerging research on how the global pandem- Pg. 16 ic was negatively affecting the lives of women and racialized people in Consaul Award Report particular, these movements forced many of us sitting at home to think Pg. 19 about privilege and how it shapes our lives. Book Review: But what does this have to do with Canadian Botany? First, I suggest that Darwin’s Most Wonderful Plants we use this moment of national reflection to start the transformation of Pg. 22 our thinking, our teaching, our research. To reach a more just and hope- fully more environmentally conscious society, I feel that it is imperative Section Reports Pg. 24 that the association gives voice to the greatest possible variety of per- spectives and worldviews in order to collectively think about plants, their Herbarium Digitisation in Canada symbionts and habitats in a more holistic fashion.
    [Show full text]
  • Plants and Gall Hosts of the Tirimbina Biological Reserve
    DOI 10.15517/RBT.V67I2SUPL.37233 Artículo Plants and gall hosts of the Tirimbina Biological Reserve, Sarapiqui, Costa Rica: Combining field sampling with herbarium records Plantas y hospederos de agallas de la Reserva Biológica Tirimbina, Sarapiquí, Costa Rica: combinando muestras del campo con registros del herbario Juan Manuel Ley-López1 José González2 Paul E. Hanson3* 1 Departamento Académico, Reserva Biológica Tirimbina. Sarapiquí, Heredia, Costa Rica; [email protected] 2 Independent consultant, Costa Rica; [email protected] 3 Escuela de Biología, Universidad de Costa Rica; San Pedro, 11501-2060 San José, Costa Rica; [email protected] * Correspondence Received 03-X-2018 Corrected 10-I-2018 Accepted 24-I-2019 Abstract There has been an increasing number of inventories of gall-inducing arthropods in the Neotropics. Nonetheless, very few inventories have been carried out in areas where the flora is well documented, and records of galls from herbaria and sites outside the study area have seldom been utilized. In this study we provide a checklist of the native vascular plants of a 345 ha forest reserve in the Caribbean lowlands of Costa Rica and document which of these plants were found to harbor galls. The gall surveys were carried out between November 2013 and December 2016. We also cross-checked our plant list with the previous gall records from elsewhere in the country and searched for galls on herbarium specimens of dicots reported from the reserve. In total, we recorded 143 families and 1174 plant species, of which 401 were hosts of galls. Plant hosts of galls were found in the following non-mutually exclusive categories: 209 in our field sampling, 257 from previous records, and 158 in herbarium specimens.
    [Show full text]
  • Preliminary Checklist of the Plants of Botswana
    PRELIMINARY CHECKLIST OF THE PLANTS OF BOTSWANA PRELIMINARY CHECKLIST OF THE PLANTS OF BOTSWANA by Moff at P. Setshogo Southern African Botanical Diversity Network Report No. 37 n 2005 Recommended citation format SETSHOGO, M.P. 2005. Preliminary checklist of the plants of Botswana. Southern African Botanical Diversity Network Report No. 37. SABONET, Pretoria and Gaborone. Produced by University of Botswana Herbarium Private Bag UB00704 Gaborone Botswana Tel. (267) 355 2602 Fax: (267) 318 5097 Published by Southern African Botanical Diversity Network (SABONET) c/o South African National Biodiversity Institute, Private Bag X101, 0001, Pretoria, South Africa and University of Botswana Herbarium, Private Bag UB00704, Gaborone. Printed in 2005 in the Republic of South Africa by Capture Press, Pretoria, (27) 12 349-1802. ISBN 1-919976-18-3 © 2005 SABONET. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the permission of the copyright holder. Editor-in-chief: Marthina Mössmer Subeditors: Lidia Gibson, Hanlie van Heerden & Cecilia de Vos Belgraver Text design and layout: Nicola Ellis (27) 82 878 9589 Cover design: Antoinette Burkhardt, Pretoria, South Africa (27) 82 909 0109 Photographs: M.P. Setshogo SABONET website: www.sabonet.org This report is a joint product of the University of Botswana Herbarium and the Southern African Botanical Diversity Network (SABONET) and was made possible through support provided by the Global Environment Facility (GEF)/ United Nations Development Programme (UNDP) and the United States Agency for International Development (USAID)/World Conservation Union-Regional Office for southern Africa (IUCN ROSA) (Plot no.
    [Show full text]
  • Seed Desiccation Tolerance and Dormancy of Three Endangered New Zealand Species: Carmichaelia Williamsii, Clianthus Puniceus and Hibiscus Diversifolius
    13 Seed desiccation tolerance and dormancy of three endangered New Zealand species: Carmichaelia williamsii, Clianthus puniceus and Hibiscus diversifolius M.J. PARK1,3, C.R. MCGILL1, W.M. WILLIAMS2 and B.R. MACKAY1 1Institute of Natural Resources, College of Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand 2Margot Forde Forage Germplasm Centre, AgResearch Grasslands, Private Bag 11-008, Palmerston North, New Zealand 3Korea Seed & Variety Service, Anyang-Si Gyeonggi-do, Republic of Korea [email protected] Abstract conventional conditions, the loss of At least one third of New Zealand’s dormancy of C. puniceus at very low indigenous plant species are threatened with moisture contents is of concern. More work extinction and strategies for conserving is needed to confirm the long-term storage endangered flora are urgently required. One behaviour of these species. strategy is to use ex situ seed storage as a Keywords: ex situ conservation, seed complement to in situ conservation. storage behaviour, New Zealand flora Successful ex situ storage of seed requires knowledge of the seed storage behaviour, Introduction optimal storage conditions and germination New Zealand possesses a unique and requirements of the species being stored. diverse flora of 2,300-2,470 taxa, with most For many threatened species, however, this species (80%) being endemic (Dopson et al. information is either incomplete or 1999). Currently 34% of these taxa are unavailable. In this study, preliminary classified as threatened or naturally experiments were conducted with three uncommon, with 11 presumed to be extinct threatened species, Carmichaelia williamsii, (Warmington et al.
    [Show full text]
  • ${S{Sc$I$.&Ryry R$Tuare T} Genpra $TULY GRALH
    ASSOCIATION OF SOCIETIES FOR GROWING AUSTRALIAN PLANTS ${s{sc$i$.&ryry R$tuArE_t} GENpRA $TULY GRALH FEBRUARY 2007 NEWSLETTER NO 10 :ISSN: 1488-1488 Hibiscus Hibiscus meraukensis at heterophvllus Pink form Buderim * 191212007 from Glen Geddes - January 2007 Hibiscus diversifolius Hibiscus d iversifolius Lake-side, Cooroy Purple form - at Sunshine Coast Buderim - 19/2/20(17 n Hibiscus heterophyllps From Kenilworth, Sunshine Coast- gnl/46 Hibiscus divaricatus 57 km north of Biloela, Qld. Image 3/12/03. See also Ieaf scans & comment Welcome to Newsletter No. 10 Whilst most of our country has endured below average railfall, here on the Sunshine Coast things are not too bad. We get frequent coastal showers that unfoftunately don't penetrate inland where the rain is needed in the dam catchment areas. At present Fairhill Nursery is prornoting a very attractive form of Hitriscus diversifolius under the name of 'Colour Magico This maroon/purple Hibiscus may change colour in cooler weather and apparently will even grow submersed in water. Indeed it is a most interesting plant with an obscure history. At the top of the image above on the right side is the yellow H. heterophyllus from Keniiworth in the Sunshine Coast hinterland. The yellow population adjoins another one which is the usual white and between the two a cream bloomed piant was iocated and included in the above image. Perhaps we could organize a field trip to this locality in November next year. The hinterland Hibiscus bloom later that their counterpafis on or near the coast. Some items intended for this newsletter such as a write-up on the Cotton Tree will be held over for the next issue.
    [Show full text]
  • Floral and Leaf Anatomy of Hibiscus Species
    American Journal of Medical and Biological Research, 2014, Vol. 2, No. 5, 101-117 Available online at http://pubs.sciepub.com/ajmbr/2/5/1 © Science and Education Publishing DOI:10.12691/ajmbr-2-5-1 Floral and Leaf Anatomy of Hibiscus Species * U. A. Essiett , E. S. Iwok Department of Botany and Ecological Studies University of Uyo, P. M. B. 1017, Uyo. Akwa Ibom State-Nigeria *Corresponding author: [email protected] Received September 27, 2014; Revised October 10, 2014; Accepted October 21, 2014 Abstract Comparative anatomical studies of the leaves and flowers of H. arnottianus, H. surattensis, H. acetosella and H. rosa-sinensis are described. The anisocytic stomata was the commonest followed by brachyparacytic, anomocytic, staurocytic stomata and laterocytic stomatas respectively. H. acetosella are distinguished on other species by having laterocytic stomata on both surfaces of leaves and parallel contiguous stomata are found on abaxial surface while in H. rosa-sinensis laterocytic is found only on adaxial surface. There are five different types of abnormal stomata, unopened stomatal pore, two stomata sharing one subsidiary cell, parallel contiguous stomata and aborted guard cell found in all the surfaces of the leaves and flowers. In addition parallel contiguous stomata are found on adaxial surface of H. rosa-sinensis and abaxial surface of H. arnottianus flower. H. rosa-sinensis had five-armed trichome on the abaxial surface that helps in distinguishing it from other species studied. Crystal druses are only present on both adaxial surface of H. arnottianus and H. rosa-sinensis leaf and on the abaxial surface of H. acetosella flower.
    [Show full text]