Advanced Interfaces for Vehicle Teleoperation: Collaborative Control, Sensor Fusion Displays, and Remote Driving Tools
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AI, Robots, and Swarms: Issues, Questions, and Recommended Studies
AI, Robots, and Swarms Issues, Questions, and Recommended Studies Andrew Ilachinski January 2017 Approved for Public Release; Distribution Unlimited. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution Approved for Public Release; Distribution Unlimited. Specific authority: N00014-11-D-0323. Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123. Photography Credits: http://www.darpa.mil/DDM_Gallery/Small_Gremlins_Web.jpg; http://4810-presscdn-0-38.pagely.netdna-cdn.com/wp-content/uploads/2015/01/ Robotics.jpg; http://i.kinja-img.com/gawker-edia/image/upload/18kxb5jw3e01ujpg.jpg Approved by: January 2017 Dr. David A. Broyles Special Activities and Innovation Operations Evaluation Group Copyright © 2017 CNA Abstract The military is on the cusp of a major technological revolution, in which warfare is conducted by unmanned and increasingly autonomous weapon systems. However, unlike the last “sea change,” during the Cold War, when advanced technologies were developed primarily by the Department of Defense (DoD), the key technology enablers today are being developed mostly in the commercial world. This study looks at the state-of-the-art of AI, machine-learning, and robot technologies, and their potential future military implications for autonomous (and semi-autonomous) weapon systems. While no one can predict how AI will evolve or predict its impact on the development of military autonomous systems, it is possible to anticipate many of the conceptual, technical, and operational challenges that DoD will face as it increasingly turns to AI-based technologies. -
Human to Robot Whole-Body Motion Transfer
Human to Robot Whole-Body Motion Transfer Miguel Arduengo1, Ana Arduengo1, Adria` Colome´1, Joan Lobo-Prat1 and Carme Torras1 Abstract— Transferring human motion to a mobile robotic manipulator and ensuring safe physical human-robot interac- tion are crucial steps towards automating complex manipu- lation tasks in human-shared environments. In this work, we present a novel human to robot whole-body motion transfer framework. We propose a general solution to the correspon- dence problem, namely a mapping between the observed human posture and the robot one. For achieving real-time imitation and effective redundancy resolution, we use the whole-body control paradigm, proposing a specific task hierarchy, and present a differential drive control algorithm for the wheeled robot base. To ensure safe physical human-robot interaction, we propose a novel variable admittance controller that stably adapts the dynamics of the end-effector to switch between stiff and compliant behaviors. We validate our approach through several real-world experiments with the TIAGo robot. Results show effective real-time imitation and dynamic behavior adaptation. Fig. 1. Transferring human motion to robots while ensuring safe human- This constitutes an easy way for a non-expert to transfer a robot physical interaction can be a powerful and intuitive tool for teaching assistive tasks such as helping people with reduced mobility to get dressed. manipulation skill to an assistive robot. The classical approach for human motion transfer is I. INTRODUCTION kinesthetic teaching. The teacher holds the robot along the Service robots may assist people at home in the future. trajectories to be followed to accomplish a specific task, However, robotic systems still face several challenges in while the robot does gravity compensation [6]. -
Review of Advanced Medical Telerobots
applied sciences Review Review of Advanced Medical Telerobots Sarmad Mehrdad 1,†, Fei Liu 2,† , Minh Tu Pham 3 , Arnaud Lelevé 3,* and S. Farokh Atashzar 1,4,5 1 Department of Electrical and Computer Engineering, New York University (NYU), Brooklyn, NY 11201, USA; [email protected] (S.M.); [email protected] (S.F.A.) 2 Advanced Robotics and Controls Lab, University of San Diego, San Diego, CA 92110, USA; [email protected] 3 Ampère, INSA Lyon, CNRS (UMR5005), F69621 Villeurbanne, France; [email protected] 4 Department of Mechanical and Aerospace Engineering, New York University (NYU), Brooklyn, NY 11201, USA 5 NYU WIRELESS, Brooklyn, NY 11201, USA * Correspondence: [email protected]; Tel.: +33-0472-436035 † Mehrdad and Liu contributed equally to this work and share the first authorship. Abstract: The advent of telerobotic systems has revolutionized various aspects of the industry and human life. This technology is designed to augment human sensorimotor capabilities to extend them beyond natural competence. Classic examples are space and underwater applications when distance and access are the two major physical barriers to be combated with this technology. In modern examples, telerobotic systems have been used in several clinical applications, including teleoperated surgery and telerehabilitation. In this regard, there has been a significant amount of research and development due to the major benefits in terms of medical outcomes. Recently telerobotic systems are combined with advanced artificial intelligence modules to better share the agency with the operator and open new doors of medical automation. In this review paper, we have provided a comprehensive analysis of the literature considering various topologies of telerobotic systems in the medical domain while shedding light on different levels of autonomy for this technology, starting from direct control, going up to command-tracking autonomous telerobots. -
Autonomous Mobile Robots Annual Report 1985
The Mobile Robot Laboratory Sonar Mapping, Imaging and Navigation Visual Navigation Road Following i Motion Control The Robots Motivation Publications Autonomous Mobile Robots Annual Report 1985 Mobile Robot Laboratory CM U-KI-TK-86-4 Mobile Robot Laboratory The Robotics Institute Carncgie Mcllon University Pittsburgh, Pcnnsylvania 15213 February 1985 Copyright @ 1986 Carnegie-Mellon University This rcscarch was sponsored by The Office of Naval Research, under Contract Number NO00 14-81-K-0503. 1 Table of Contents The Mobile Robot Laboratory ‘I’owards Autonomous Vchiclcs - Moravcc ct 31. 1 Sonar Mapping, Imaging and Navigation High Resolution Maps from Wide Angle Sonar - Moravec, et al. 19 A Sonar-Based Mapping and Navigation System - Elfes 25 Three-Dirncnsional Imaging with Cheap Sonar - Moravec 31 Visual Navigation Experiments and Thoughts on Visual Navigation - Thorpe et al. 35 Path Relaxation: Path Planning for a Mobile Robot - Thorpe 39 Uncertainty Handling in 3-D Stereo Navigation - Matthies 43 Road Following First Resu!ts in Robot Road Following - Wallace et al. 65 A Modified Hough Transform for Lines - Wallace 73 Progress in Robot Road Following - Wallace et al. 77 Motion Control Pulse-Width Modulation Control of Brushless DC Motors - Muir et al. 85 Kinematic Modelling of Wheeled Mobile Robots - Muir et al. 93 Dynamic Trajectories for Mobile Robots - Shin 111 The Robots The Neptune Mobile Robot - Podnar 123 The Uranus Mobile Robot, a First Look - Podnar 127 Motivation Robots that Rove - Moravec 131 Bibliography 147 ii Abstract Sincc 13s 1. (lic Mobilc I<obot IAoratory of thc Kohotics Institute 01' Crrrncfiic-Mcllon IInivcnity has conduclcd hsic rcscarcli in aTCiiS crucial fur ;iiitonomoiis robots. -
The Autonomous Underwater Vehicle Initiative – Project Mako
Published at: 2004 IEEE Conference on Robotics, Automation, and Mechatronics (IEEE-RAM), Dec. 2004, Singapore, pp. 446-451 (6) The Autonomous Underwater Vehicle Initiative – Project Mako Thomas Bräunl, Adrian Boeing, Louis Gonzales, Andreas Koestler, Minh Nguyen, Joshua Petitt The University of Western Australia EECE – CIIPS – Mobile Robot Lab Crawley, Perth, Western Australia [email protected] Abstract—We present the design of an autonomous underwater vehicle and a simulation system for AUVs as part II. AUV COMPETITION of the initiative for establishing a new international The AUV Competition will comprise two different competition for autonomous underwater vehicles, both streams with similar tasks physical and simulated. This paper describes the competition outline with sample tasks, as well as the construction of the • Physical AUV competition and AUV and the simulation platform. 1 • Simulated AUV competition Competitors have to solve the same tasks in both Keywords—autonomous underwater vehicles; simulation; streams. While teams in the physical AUV competition competition; robotics have to build their own AUV (see Chapter 3 for a description of a possible entry), the simulated AUV I. INTRODUCTION competition only requires the design of application Mobile robot research has been greatly influenced by software that runs with the SubSim AUV simulation robot competitions for over 25 years [2]. Following the system (see Chapter 4). MicroMouse Contest and numerous other robot The competition tasks anticipated for the first AUV competitions, the last decade has been dominated by robot competition (physical and simulation) to be held around soccer through the FIRA [6] and RoboCup [5] July 2005 in Perth, Western Australia, are described organizations. -
Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion
TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Angewandte Mechanik Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion Entwurf und Realisierung eines Humanoiden Roboters für Schnelles und Autonomes Laufen Dipl.-Ing. Univ. Sebastian Lohmeier Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. Udo Lindemann Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. habil. Heinz Ulbrich 2. Univ.-Prof. Dr.-Ing. Horst Baier Die Dissertation wurde am 2. Juni 2010 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 21. Oktober 2010 angenommen. Colophon The original source for this thesis was edited in GNU Emacs and aucTEX, typeset using pdfLATEX in an automated process using GNU make, and output as PDF. The document was compiled with the LATEX 2" class AMdiss (based on the KOMA-Script class scrreprt). AMdiss is part of the AMclasses bundle that was developed by the author for writing term papers, Diploma theses and dissertations at the Institute of Applied Mechanics, Technische Universität München. Photographs and CAD screenshots were processed and enhanced with THE GIMP. Most vector graphics were drawn with CorelDraw X3, exported as Encapsulated PostScript, and edited with psfrag to obtain high-quality labeling. Some smaller and text-heavy graphics (flowcharts, etc.), as well as diagrams were created using PSTricks. The plot raw data were preprocessed with Matlab. In order to use the PostScript- based LATEX packages with pdfLATEX, a toolchain based on pst-pdf and Ghostscript was used. -
Smart Sensors and Small Robots
IEEE Instrumentation and Measurement Technology Conference Budapest, Hungary, May 21-23, 2001. Smart Sensors and Small Robots Mel Siegel Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213-2605, USA Phone: +1 412 268 88025, Fax: +1 412 268 5569 Email: [email protected], URL: http://www.cs.cmu.edu/~mws Abstract – Robots are machines that sense, think, act and (more Thinking: Cognition is a prerequisite for adaptability, with- recently) communicate. Sensing, thinking, and communicating out which no real machine could operate for any significant have all been greatly miniaturized as a consequence of continuous progress in integrated circuit design and manufacturing technol- time in any real environment. No predetermined plan could ogy. More recent progress in MEMS (micro electro mechanical realistically anticipate every feature of the environment - and systems) now holds out promise for comparable miniaturization of if it could, the mission might be utilitarian, but it would the heretofore-retarded third member of the sense-think-act- hardly be interesting, as what would be its purpose if there communicate quartet. More speculatively, initial experiments toward microbiological approaches to robotics suggest possibilities were no new knowledge to be gained? Anyway, even a toy for even further miniaturization, perhaps eventually extending mission in a completely known environment would soon fail down to the molecular level. Alongside smart sensing for robots, in open-loop operation, as accumulated mechanical and sen- with miniaturization of the electromechanical components, i.e., the sor errors would inevitably lead to disastrous discrepancies machinery of robotic manipulation and mobility, we quite natu- rally acquire the capability of smart sensing by robots. -
Combining Search and Action for Mobile Robots
Combining Search and Action for Mobile Robots Geoffrey Hollinger, Dave Ferguson, Siddhartha Srinivasa, and Sanjiv Singh Abstract— We explore the interconnection between search and action in the context of mobile robotics. The task of searching for an object and then performing some action with that object is important in many applications. Of particular interest to us is the idea of a robot assistant capable of performing worthwhile tasks around the home and office (e.g., fetching coffee, washing dirty dishes, etc.). We prove that some tasks allow for search and action to be completely decoupled and solved separately, while other tasks require the problems to be analyzed together. We complement our theoretical results with the design of a combined search/action approximation algorithm that draws on prior work in search. We show the effectiveness of our algorithm by comparing it to state-of-the- art solvers, and we give empirical evidence showing that search and action can be decoupled for some useful tasks. Finally, Fig. 1. Mobile manipulator: Segway RMP200 base with Barrett WAM arm we demonstrate our algorithm on an autonomous mobile robot and hand. The robot uses a wrist camera to recognize objects and a SICK laser rangefinder to localize itself in the environment performing object search and delivery in an office environment. I. INTRODUCTION objects (or targets) of interest. A concrete example is a robot Think back to the last time you lost your car keys. While that refreshes coffee in an office. This robot must find coffee looking for them, a few considerations likely crossed your mugs, wash them, refill them, and return them to office mind. -
Educational Outdoor Mobile Robot for Trash Pickup
Educational Outdoor Mobile Robot for Trash Pickup Kiran Pattanashetty, Kamal P. Balaji, and Shunmugham R Pandian, Senior Member, IEEE Department of Electrical and Electronics Engineering Indian Institute of Information Technology, Design and Manufacturing-Kancheepuram Chennai 600127, Tamil Nadu, India [email protected] Abstract— Machines in general and robots in particular, programs to motivate and retain students [3]. The playful appeal greatly to children and youth. With the widespread learning potential of robotics (and the related field of availability of low-cost open source hardware and free open mechatronics) means that college students could be involved source software, robotics has become central to the promotion of in service learning through introducing school children to STEM education in schools, and active learning at design, machines, robots, electronics, computers, college/university level. With robots, children in developed countries gain from technological immersion, or exposure to the programming, environmental literacy, and so on, e.g., [4], [5]. latest technologies and gadgets. Yet, developing countries like A comprehensive review of studies on introducing robotics in India still lag in the use of robots at school and even college level. K-12 STEM education is presented by Karim, et al [6]. It In this paper, an innovative and low-cost educational outdoor concludes that robots play a positive role in educational mobile robot is developed for deployment by school children learning, and promote creative thinking and problem solving during volunteer trash pickup. The wheeled mobile robot is skills. It also identifies the need for standardized evaluation constructed with inexpensive commercial off-the-shelf techniques on the effectiveness of robotics-based learning, and components, including single board computer and miscellaneous for tailored pedagogical modules and teacher training. -
Model Characteristics and Properties of Nanorobots in the Bloodstream Michael Makoto Zimmer
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2005 Model Characteristics and Properties of Nanorobots in the Bloodstream Michael Makoto Zimmer Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY FAMU-FSU COLLEGE OF ENGINEERING MODEL CHARACTERISTICS AND PROPERTIES OF NANOROBOTS IN THE BLOODSTREAM By MICHAEL MAKOTO ZIMMER A Thesis submitted to the Department of Industrial and Manufacturing Engineering in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Spring Semester 2005 The members of the Committee approve the Thesis of Michael M. Zimmer defended on April 4, 2005. ___________________________ Yaw A. Owusu Professor Directing Thesis ___________________________ Rodney G. Roberts Outside Committee Member ___________________________ Reginald Parker Committee Member ___________________________ Chun Zhang Committee Member Approved: _______________________ Hsu-Pin (Ben) Wang, Chairperson Department of Industrial and Manufacturing Engineering _______________________ Chin-Jen Chen, Dean FAMU-FSU College of Engineering The Office of Graduate Studies has verified and approved the above named committee members. ii For the advancement of technology where engineers make the future possible. iii ACKNOWLEDGEMENTS I want to give thanks and appreciation to Dr. Yaw A. Owusu who first gave me the chance and motivation to pursue my master’s degree. I also want to give my thanks to my undergraduate team who helped in obtaining information for my thesis and helped in setting up my experiments. Many thanks go to Dr. Hans Chapman for his technical assistance. I want to acknowledge the whole Undergraduate Research Center for Cutting Edge Technology (URCCET) for their support and continuous input in my studies. -
Huxley: a Flexible Robot Control Architecture for Autonomous Underwater Vehicles
Huxley: A Flexible Robot Control Architecture for Autonomous Underwater Vehicles Dr. Dani Goldberg Bluefin Robotics Corporation 553 South Street Quincy, MA 02169 USA [email protected] Abstract—This paper presents “Huxley,” a production robot Huxley had to be robust and reliable on many different control architecture that was developed by Bluefin Robotics for platforms; flexibility meant that it had to be easily extensible to its fleet of autonomous underwater vehicles (AUVs). Huxley was accommodate new hardware and new system capabilities; designed with flexibility foremost in mind, allowing it to be easily flexibility meant that it had to be maintainable such that adapted and reliably deployed on a wide range of platforms. The improvements or modifications in one area would not cascade architecture follows a layered paradigm, providing a clean and across the system; and flexibility meant that it had to be logical abstraction for the major control functions. It also testable to ensure the integrity of Huxley across all deployed provides an interface for interaction with the layers, enabling systems. With these goals in mind, Bluefin developed Huxley expansion of the core capabilities of the architecture. This over the course of several years. Huxley began shipping in interface provides users the flexibility to develop smart payloads early 2005 and has since proven itself to be the flexible control capable of utilizing available data, modifying the behavior of the AUV and even exploring new frontiers of autonomy. system that was intended. The Huxley control architecture has two core layers: a Keywords—control architectures, layered architectures, reactive layer and an executive layer (Fig. -
Multisensory Real-Time Space Telerobotics
MULTISENSORY REAL-TIME SPACE TELEROBOTICS. DEVELOPMENT AND ANALYSIS OF REAL-TIME TELEROBOTICS SYSTEMS FOR SPACE EXPLORATION 1 3 Marta Ferraz , Edmundo Ferreira2, Thomas Krueger 1European Space Agency, Human-Robot Interaction Lab, Netherlands, E-mail: [email protected] 2European Space Agency, Human-Robot Interaction Lab, Netherlands, E-mail: [email protected] 3European Space Agency, Human-Robot Interaction Lab, Netherlands, E-mail: [email protected] space environments. The rationale in support of this ABSTRACT later argument is the difficulties in achieving human We introduce a research project whose goal is the exploration - due to current technical limitations on development and analysis of real-time telerobotic spacecraft and EVA technology (i.e., spacesuits) [31]. control setups for space exploration in stationary orbit Another key goal of space telerobotics has been and from deep-space habitats. We suggest a new preparing direct human space exploration - approach to real-time space telerobotics - Multisensory terraforming planetary bodies in order to support Real-time Space Telerobotics - in order to improve human expedition and, ultimately, Earth-like life [34]. perceptual functions in operators and surpass sensorimotor perturbations caused by altered gravity Lately, there has been a strong investment on the conditions. We submit that telerobotic operations, in preparation of Crew Surface Telerobotics (CST) such conditions, can be improved by offering enhanced missions for space exploration - the crew remotely sources of sensory information to the operator: operates surface robots from a spacecraft or deep-space combined visual, auditory, chemical and habitats [10]. These missions include Moon, Mars and somatosensory stimuli. We will characterize and Near-Earth Asteroid exploration [4, 16, 34].