6502 on the Cyclone II FPGA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Go Forth with TTL !
Go Forth with TTL ! The Gigatron TTL Color Computer Forth for a Very Unusual Processor Ken Boak SV Fig. Forth Day 2019 . In September of 1975, MOS Technology launched the 6502 at the Wescon75 Computer Conference in San Francisco. Chuck Peddle and his team had created a very lean, stripped down, small die cpu. Costing just $25, the 6502 was a fraction of the cost of its nearest competitor. At that time the Intel 8080 was $360 and the Motorola 6800 was $175 . The 6502 was clearly a disruptive usurper. 25 year old, HP Engineer, Steve Wozniak, realised that this new microprocessor would be a game-changer and went on to incorporate it into the small computer he was developing. That machine went on to become the Apple I. In 1975 7400 TTL was the “Bread and Butter” of logic design: 7400 series TTL integrated circuits were developed in the early 1960’s. Initially quite expensive so mainly used in Military and Aerospace applications. By the early 1970’s TTL had become a versatile family of standardised, low cost,. easy to use logic. Typically about $1 per device. 7400 series logic was widely used in the design of minicomputers, including the PDP-11, the Data General Nova 1200 and later models of PDP-8. TTL was a viable, faster and cheaper processing solution than the emerging 8-bit microprocessors such as MOS 6502, Intel 8080 and the Motorola 6800. Essential Reading 16-bit TTL CPU board from Data General Nova 1200 The Gigatron TTL Computer – What is it? Started as a Hackaday.io project in Spring 2017 by Marcel van Kervinck of The Hague, Netherlands. -
Exploring Software Inefficiency With
ZeroSpy: Exploring Software Inefficiency with Redundant Zeros Xin You∗, Hailong Yang∗y, Zhongzhi Luan∗, Depei Qian∗ and Xu Liuz Beihang University, China∗, North Carolina State University, USAz State Key Laboratory of Mathematical Engineering and Advanced Computing, Wuxi, Chinay fyouxin2015,hailong.yang,07680,[email protected]∗, [email protected] Abstract—Redundant zeros cause inefficiencies in which the 1 for(int i=0;i<1000;++i) { 2 A[i] = 0; B[i] = i; zero values are loaded and computed repeatedly, resulting in 3 } 4 ... unnecessary memory traffic and identity computation that waste 5 for(int i=0;i<1000;++i) memory bandwidth and CPU resources. Optimizing compilers 6 I C[i] = A[i]-B[i]; is difficult in eliminating these zero-related inefficiencies due to Listing 1. An example code working on redundant zeros, where all variables are 32-bit integers. limitations in static analysis. Hardware approaches, in contrast, optimize inefficiencies without code modification, but are not enough to fulfill the computation, which yields better cache widely adopted in commodity processors. In this paper, we 1 propose ZeroSpy - a fine-grained profiler to identify redundant usage and vectorization potentials . zeros caused by both inappropriate use of data structures and Actually, a larger number of real-world applications (e.g., useless computation. ZeroSpy also provides intuitive optimization deep neural network and high-efficiency video coding) have guidance by revealing the locations where the redundant zeros already been reported to contain a significant amount of happen in source lines and calling contexts. The experimental redundant zeros and achieved significant speedup from the results demonstrate ZeroSpy is capable of identifying redundant zeros in programs that have been highly optimized for years. -
NMOS 6510 Unintended Opcodes No More Secrets (V0.95 - 24/12/20)
NMOS 6510 Unintended Opcodes no more secrets (v0.95 - 24/12/20) (w) 2013-2020 groepaz/solution, all rights reversed Contents Preface...................................................................................................................................................I Scope of this Document....................................................................................................................I Intended Audience............................................................................................................................I License..............................................................................................................................................I What you get...................................................................................................................................II Naming Conventions.....................................................................................................................III Address-Mode Abbreviations...................................................................................................III Mnemonics................................................................................................................................III Processor Flags.........................................................................................................................IV Opcode Matrix......................................................................................................................................1 Unintended -
6502 Introduction
6502 Introduction Philipp Koehn 18 September 2019 Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1 some history Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1971 2 • First microprocessor on an integrated circuit: Intel 4004 • 4-bit central processing unit, 12 bit address space (4KB) Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1975 3 • MOS Technology 6502 • Dominant CPU in home computers for a decade (Atari, Apple II, Nintendo Entertainment System, Commodore PET) Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1977 4 • Atari 2600 • Video game console: Pong, Pac Man, ... connected to TV Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1980 5 • Commodore VIC20 • 1 MHz, 5KB RAM, BASIC, 3.5KB RAM, 176x184 3 bit color video Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1982 6 • Commodore C64 • 64KB RAM, 320x200 4 bit color video Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 Commodore C64 7 • BASIC programming language, but serious programs written in assembly • No fancy stuff like multi-process, user accounts, virtual memory, etc. • Machine itself had no mass storage - had to buy tape drive, then floppy disk drive, machine was obsolete once hard drives came around Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 BASIC Demo 8 • Commands get executed (just like Python interpreter) -
Download a Sample
Preface Like many American kids in 1979, I woke up to find that Santa had left a brand new Atari VCS1 under the tree (thanks, Mom and Dad, for paying Santa’s invoice!). This was a pretty big deal for a six- year-old who could tell you the location and manufacturer of every standup arcade cabinet within a five mile radius. Having an “arcade in your home” wasn’t just a thing you saw on Silver Spoons, it was now a real thing. The sights and sounds that jumped o↵ of our little Panasonic color TV probably deserve a gigantic run-on sentence worthy of Dylan Thomas, as my brother and I bounced tiny pixellated missiles o↵ of walls in Combat, combed through the perplexing game modes of Space Invaders, battled angry duck-like dragons in Adventure, and became Superman as we put flickering bad guys in a flickering jail. These cartridges were opaque obelisks packaged in boxes with fantastically unattainable illustrations, available at K-Mart for $30 or so. You could tell these species of video games weren’t related to arcade games, though they had a unique look-and-feel of their own. We also had an Apple ][ by this time, so I tried to fit all of these creatures into a digital taxonomy. Atari games had colors and fast motion, but not as much as arcade games, and they never were as complex as Apple ][ games. What made them tick? Why were Activision games so much more detailed? Would the missile still blow up your spaceship if you turned the TV o↵? (Turns out the answer is yes.) 1 It wasn’t sold as “Atari 2600” until 1982. -
Malware Detection Advances in Information Security
Malware Detection Advances in Information Security Sushil Jajodia Consulting Editor Center for Secure Information Systems George Mason University Fairfax, VA 22030-4444 email: ja jodia @ smu.edu The goals of the Springer International Series on ADVANCES IN INFORMATION SECURITY are, one, to establish the state of the art of, and set the course for future research in information security and, two, to serve as a central reference source for advanced and timely topics in information security research and development. The scope of this series includes all aspects of computer and network security and related areas such as fault tolerance and software assurance. ADVANCES IN INFORMATION SECURITY aims to publish thorough and cohesive overviews of specific topics in information security, as well as works that are larger in scope or that contain more detailed background information than can be accommodated in shorter survey articles. The series also serves as a forum for topics that may not have reached a level of maturity to warrant a comprehensive textbook treatment. Researchers, as well as developers, are encouraged to contact Professor Sushil Jajodia with ideas for books under this series. Additional titles in the series: ELECTRONIC POSTAGE SYSTEMS: Technology, Security, Economics by Gerrit Bleumer; ISBN: 978-0-387-29313-2 MULTIVARIATE PUBLIC KEY CRYPTOSYSTEMS by Jintai Ding, Jason E. Gower and Dieter Schmidt; ISBN-13: 978-0-378-32229-2 UNDERSTANDING INTRUSION DETECTION THROUGH VISUALIZATION by Stefan Axelsson; ISBN-10: 0-387-27634-3 QUALITY OF PROTECTION: Security Measurements and Metrics by Dieter Gollmann, Fabio Massacci and Artsiom Yautsiukhin; ISBN-10; 0-387-29016-8 COMPUTER VIRUSES AND MALWARE by John Aycock; ISBN-10: 0-387-30236-0 HOP INTEGRITY IN THE INTERNET by Chin-Tser Huang and Mohamed G. -
The Ultimate C64 Overview Michael Steil, 25Th Chaos Communication Congress 2008
The Ultimate C64 Overview Michael Steil, http://www.pagetable.com/ 25th Chaos Communication Congress 2008 Retrocomputing is cool as never before. People play Look and Feel C64 games in emulators and listen to SID music, but few people know much about the C64 architecture A C64 only needs to be connected to power and a TV and its limitations, and what programming was like set (or monitor) to be fully functional. When turned back then. This paper attempts to give a comprehen- on, it shows a blue-on-blue theme with a startup mes- sive overview of the Commodore 64, including its in- sage and drops into a BASIC interpreter derived from ternals and quirks, making the point that classic Microsoft BASIC. In order to load and save BASIC computer systems aren't all that hard to understand - programs or use third party software, the C64 re- and that programmers today should be more aware of quires mass storage - either a “datasette” cassette the art that programming once used to be. tape drive or a disk drive like the 5.25" Commodore 1541. Commodore History Unless the user really wanted to interact with the BA- SIC interpreter, he would typically only use the BA- Commodore Business Machines was founded in 1962 SIC instructions LOAD, LIST and RUN in order to by Jack Tramiel. The company specialized on elec- access mass storage. LOAD"$",8 followed by LIST tronic calculators, and in 1976, Commodore bought shows the directory of the disk in the drive, and the chip manufacturer MOS Technology and decided LOAD"filename",8 followed by RUN would load and to have Chuck Peddle from MOS evolve their KIM-1 start a program. -
W65C02S Microprocessor DATA SHEET
The Western Design Center, Inc. February 2004 W65C02S Data Sheet W65C02S Microprocessor DATA SHEET WDC ã The Western Design Center, Inc., 2003. All rights reserved The Western Design Center, Inc. February 2004 W65C02S Data Sheet WDC reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Information contained herein is provided gratuitously and without liability, to any user. Reasonable efforts have been made to verify the accuracy of the information but no guarantee whatsoever is given as to the accuracy or as to its applicability to particular uses. In every instance, it must be the responsibility of the user to determine the suitability of the products for each application. WDC products are not authorized for use as critical components in life support devices or systems. Nothing contained herein shall be construed as a recommendation to use any product in violation of existing patents or other rights of third parties. The sale of any WDC product is subject to all WDC Terms and Conditions of Sales and Sales Policies, copies of which are available upon request. Copyright Ó1981-2004 by The Western Design Center, Inc. All rights reserved, including the right of reproduction, in whole, or in part, in any form. The Western Design Center, Inc. W65C02S Data Sheet 2 The Western Design Center, Inc. W65C02S Data Sheet TABLE OF CONTENTS 1 INTRODUCTION................................................................................................................................................................................5 -
W65C02S 8–Bit Microprocessor
October 19, 2010 W65C02S 8–bit Microprocessor WDC reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Information contained herein is provided gratuitously and without liability, to any user. Reasonable efforts have been made to verify the accuracy of the information but no guarantee whatsoever is given as to the accuracy or as to its applicability to particular uses. In every instance, it must be the responsibility of the user to determine the suitability of the products for each application. WDC products are not authorized for use as critical components in life support devices or systems. Nothing contained herein shall be construed as a recommendation to use any product in violation of existing patents or other rights of third parties. The sale of any WDC product is subject to all WDC Terms and Conditions of Sales and Sales Policies, copies of which are available upon request. Copyright ©1981-2010 by The Western Design Center, Inc. All rights reserved, including the right of reproduction, in whole, or in part, in any form. TABLE OF CONTENTS 1 INTRODUCTION ....................................................................................................... 5 1.1 FEATURES OF THE W65C02S ........................................................................................................... 5 2 FUNCTIONAL DESCRIPTION .................................................................................. 6 2.1 INSTRUCTION REGISTER (IR) AND DECODE ....................................................................................... -
Programming the 65816
Programming the 65816 Including the 6502, 65C02 and 65802 Distributed and published under COPYRIGHT LICENSE AND PUBLISHING AGREEMENT with Authors David Eyes and Ron Lichty EFFECTIVE APRIL 28, 1992 Copyright © 2007 by The Western Design Center, Inc. 2166 E. Brown Rd. Mesa, AZ 85213 480-962-4545 (p) 480-835-6442 (f) www.westerndesigncenter.com The Western Design Center Table of Contents 1) Chapter One .......................................................................................................... 12 Basic Assembly Language Programming Concepts..................................................................................12 Binary Numbers.................................................................................................................................................... 12 Grouping Bits into Bytes....................................................................................................................................... 13 Hexadecimal Representation of Binary................................................................................................................ 14 The ACSII Character Set ..................................................................................................................................... 15 Boolean Logic........................................................................................................................................................ 16 Logical And....................................................................................................................................................... -
The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10”, Editors Andrew Waterman and Krste Asanovi´C,RISC-V Foundation, May 2017
The RISC-V Instruction Set Manual Volume II: Privileged Architecture Privileged Architecture Version 1.10 Document Version 1.10 Warning! This draft specification may change before being accepted as standard by the RISC-V Foundation. While the editors intend future changes to this specification to be forward compatible, it remains possible that implementations made to this draft specification will not conform to the future standard. Editors: Andrew Waterman1, Krste Asanovi´c1;2 1SiFive Inc., 2CS Division, EECS Department, University of California, Berkeley [email protected], [email protected] May 7, 2017 Contributors to all versions of the spec in alphabetical order (please contact editors to suggest corrections): Krste Asanovi´c,Rimas Aviˇzienis,Jacob Bachmeyer, Allen J. Baum, Paolo Bonzini, Ruslan Bukin, Christopher Celio, David Chisnall, Anthony Coulter, Palmer Dabbelt, Monte Dal- rymple, Dennis Ferguson, Mike Frysinger, John Hauser, David Horner, Olof Johansson, Yunsup Lee, Andrew Lutomirski, Jonathan Neusch¨afer,Rishiyur Nikhil, Stefan O'Rear, Albert Ou, John Ousterhout, David Patterson, Colin Schmidt, Wesley Terpstra, Matt Thomas, Tommy Thorn, Ray VanDeWalker, Megan Wachs, Andrew Waterman, and Reinoud Zandijk. This document is released under a Creative Commons Attribution 4.0 International License. This document is a derivative of the RISC-V privileged specification version 1.9.1 released under following license: c 2010{2017 Andrew Waterman, Yunsup Lee, Rimas Aviˇzienis,David Patterson, Krste Asanovi´c.Creative Commons Attribution 4.0 International License. Please cite as: \The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10", Editors Andrew Waterman and Krste Asanovi´c,RISC-V Foundation, May 2017. Preface This is version 1.10 of the RISC-V privileged architecture proposal. -
Memory Management in Linux Is a Complex System ○ Supports a Variety of Systems from MMU-Less Microcontrollers to Supercomputers
Linux Memory Management Ahmed Ali-Eldin This lecture ● Kernel memory allocations ● User-space memory management ● Caching in memory Numbers every programmer should know... Yearly updated data: https://colin-scott.github.io/personal_website/research/interactive_latency.html Kernel memory allocation ● Kernel processes require memory allocation ○ kernel cannot easily deal with memory allocation errors ○ kernel often cannot sleep ● The kernel memory allocation mechanisms differ from user-space allocation ● The kernel treats physical pages as the basic unit of memory management ● x-86 processors include a hardware Memory Management Unit (MMU) ● Memory management in Linux is a complex system ○ supports a variety of systems from MMU-less microcontrollers to supercomputers. Pages in Linux ● Old days: Pages with default size 4 KB ● Now: Huge pages + 4KB pages (since kernel 2.6.3) ● Rationale ○ on a machine with 8KB pages and 32GB of memory, physical memory is divided into 4,194,304 distinct pages ○ 64-bit Linux allows up to 128 TB of virtual address space for individual processes, and can address approximately 64 TB of physical memory ○ While assigning memory to a process is relatively cheap, memory management is not! ■ Every memory access requires a page walk ■ Typically take 10 to 100 cpu cycles ■ A TLB can hold typically only 1024 entries (out of the 4 Million distinct pages above) and has to be flushed every context switch Large Memory Applications ● Applications touching greater than 10 GB such as a large in-memory database with 17 GiB with 1000 connections ○ Uses approximately 4.4 million pages ○ With a page table size of 16 GiB ● Idea: Having larger page sizes enables a significant reduction in memory walks for such an application Huge Pages ● on x86, it is possible to map 2M and even 1G pages using entries in the second and the third level page tables.