Exploring Software Inefficiency With

Total Page:16

File Type:pdf, Size:1020Kb

Exploring Software Inefficiency With ZeroSpy: Exploring Software Inefficiency with Redundant Zeros Xin You∗, Hailong Yang∗y, Zhongzhi Luan∗, Depei Qian∗ and Xu Liuz Beihang University, China∗, North Carolina State University, USAz State Key Laboratory of Mathematical Engineering and Advanced Computing, Wuxi, Chinay fyouxin2015,hailong.yang,07680,[email protected]∗, [email protected] Abstract—Redundant zeros cause inefficiencies in which the 1 for(int i=0;i<1000;++i) { 2 A[i] = 0; B[i] = i; zero values are loaded and computed repeatedly, resulting in 3 } 4 ... unnecessary memory traffic and identity computation that waste 5 for(int i=0;i<1000;++i) memory bandwidth and CPU resources. Optimizing compilers 6 I C[i] = A[i]-B[i]; is difficult in eliminating these zero-related inefficiencies due to Listing 1. An example code working on redundant zeros, where all variables are 32-bit integers. limitations in static analysis. Hardware approaches, in contrast, optimize inefficiencies without code modification, but are not enough to fulfill the computation, which yields better cache widely adopted in commodity processors. In this paper, we 1 propose ZeroSpy - a fine-grained profiler to identify redundant usage and vectorization potentials . zeros caused by both inappropriate use of data structures and Actually, a larger number of real-world applications (e.g., useless computation. ZeroSpy also provides intuitive optimization deep neural network and high-efficiency video coding) have guidance by revealing the locations where the redundant zeros already been reported to contain a significant amount of happen in source lines and calling contexts. The experimental redundant zeros and achieved significant speedup from the results demonstrate ZeroSpy is capable of identifying redundant zeros in programs that have been highly optimized for years. corresponding optimization. For instance, in the area of deep Based on the optimization guidance revealed by ZeroSpy, we can neural network, researchers have proposed both hardware [11] achieve significant speedups after eliminating redundant zeros. and software [7] approaches to automatically detect the spar- Index Terms—Redundant Zero, Software Inefficiency, Perfor- sity of the network in order to apply specific optimizations for mance Profiling and Optimization achieving better performance. For high-efficiency video coding applications, better detection of all-zero blocks can improve I. INTRODUCTION the performance by skipping computations on these blocks [6]. Nowadays, production software in both industry and Modern optimizing compilers usually employ a set of redun- academia is becoming increasingly complex as they consist of dancy elimination techniques, such as value numbering [12], a large number of library dependencies as well as sophisticated common subexpression elimination [13], and constant propa- control and data flows. Such complexities can easily lead gation [14]. However, they suffer from the limitation of myopic to unexpected inefficiency, which prevents the software from optimization scopes and imprecise static analysis on pointers achieving optimal performance. Often, software inefficiency and aliases. Link-time optimization [15], [16] can enlarge the involves redundant operations, such as repeatedly loading the visibility of compiler optimization, but the performance im- same values from memory [1], writing values never used [2], provement after optimization remains constrained. Combining overwriting values in the same location with intermediate val- these static optimizing techniques, profile-guided optimization ues never referenced [3], and repeatedly computing the same (PGO) [17] was proposed to optimize the generated code value [4], [5]. In addition, a large number of applications [6], with profiled performance data. However, these techniques [7] take sparse data as the inputs, which can result in a do not identify redundant zeros involved in the memory and significant waste of resources if dense data structures are used. computation operations for further code optimization. One of the fundamental reasons for the above inefficiencies Performance analysis tools such as Perf [18], HPC- is that there are instructions and data structures frequently Toolkit [19], VTune [20], gprof [21], CrayPat [22] and OPro- dealing with zeros. file [23] can monitor program execution to report performance Listing 1 shows a simple example. The code first initializes metrics including CPU cycles, cache misses, and arithmetic two integer arrays of A and B (line 1-3) and then computes intensity to guide optimization. Other fine-grained profiling array C by subtracting array A and B (line 5-6). The redundant tools such as RedSpy [4] and LoadSpy [1] can identify zeros appear in the computation where memory operations redundant memory stores and loads. Although these tools can frequently read zeros from the array A. Such memory loads report program hotspots and resource under-utilization, they can be avoided by compressing A with a sparse data structure. do not identify inefficiencies involved with redundant zeros Furthermore, values of array B range from 0 to 1000, so a few and provide corresponding optimization guidance. significant bytes of array B’s values are always 0, which are redundant zeros as well, leading to a fraction of memory loads 1Unlike existing work [8]–[10] that reduces floating-point precisions, we wasted. Instead of using a 32-bit integer, a 16-bit integer is do not suffer from any accuracy loss by only removing unnecessary zeros. SC20, November 9-19, 2020, Is Everywhere We Are 978-1-7281-9998-6/20/$31.00 ©2020 IEEE Hardware approaches have also been proposed to detect II. RELATED WORK and optimize redundant zeros. Dusser et al. [24], [25] re- ported frequent zero values existing in cache and memory A. Hardware Solutions to Remove Redundancies and proposed Zero-Content Augmented cache (ZCA cache) as well as Decoupled Zero-Compressed memory (DZC memory) There are many research approaches to profile and optimize for redundancy elimination. Redundant zeros are exploited data sparsity from the hardware aspect. Dusser et al. [24], [25] in eDRAM [26] to save energy by avoiding refreshing zero reported the data sparsity in cache and memory that there are chunks. A zero-aware cache algorithm (Zero-Chunk) [27] was zero values loaded from and written to memory frequently and proposed to deal with redundant zeros. However, the major these zero values wasted memory bandwidth. Correspondingly, drawback of these hardware approaches is that they require they proposed Zero-Content Augmented cache (ZCA cache) special hardware extensions and are not directly applicable to and Decoupled Zero-Compressed memory (DZC memory). In commodity servers running real-world applications. their approach, each level of cache consists of a conventional cache augmented with zero-content cache, which utilizes an Given the existing software and hardware approaches, it is address tag and a validate tag for null data. They also attached still difficult to identify the inefficiencies caused by redundant a zero detection unit both in the path of load and write to zeros that are buried deep due to layers of software abstrac- detect zero values as well as gave control signals to maintain tions. Thus, we propose ZeroSpy, a practical tool to profile the zero-content cache. A similar idea is applied to compress redundant zeros stored in memory and reused for computation. physical memory in their proposed DZC memory. ZeroSpy works with fully optimized binary executables and provides useful metrics (e.g., redmap, redundancy fraction) to Manohar and Kapoor [26] developed a new refreshing guide performance optimization. ZeroSpy reports redundant strategy of eDRAM by detecting the zero chunks and skipping zeros with their calling contexts and associated source lines the corresponding refreshment, which results in notable energy as well as the data access patterns. For optimization, ZeroSpy saving. Gao et al. [27] proposed an efficient cache algorithm presents the top candidate instructions and data structures with named Zero-Chunk, which detects fingerprints with all-zero redundant zeros, and derives a metric redmap to represent the remainders and aggregates them into corresponding containers data access pattern. With the detailed profiles provided by to improve the cache hit ratio as well as save the memory ZeroSpy, developers can obtain useful insights to guide the space. Miguel et al. [28], [29] proposed a new cache design optimization of the code regions and data structures involving to store multiple similar blocks with a single data array entry frequent redundant zeros for better performance. in order to reduce the data redundancy. Rollback-Free Value Prediction (RFVP) [30] exploited approximate computation by In summary, this paper makes the following contributions: predicting the requested values for certain safe-to-approximate • We observe the fact that operating redundant zeros per- load operations missed in the cache. vasively exists in modern software packages, which usu- In some specific domains such as machine learning, Peng ally indicates performance inefficiencies. Furthermore, we et al. [7] proposed to exploit tensor sparsity in the deep categorize the provenance of redundant zeros to motivate neural network at runtime. They profiled several mini-batches different code optimization guidances produced by ZeroSpy. during training to identify the sparsity of certain neurons in • We develop ZeroSpy, a practical tool with reasonable pro- the network and divided them into sparse neurons to
Recommended publications
  • Go Forth with TTL !
    Go Forth with TTL ! The Gigatron TTL Color Computer Forth for a Very Unusual Processor Ken Boak SV Fig. Forth Day 2019 . In September of 1975, MOS Technology launched the 6502 at the Wescon75 Computer Conference in San Francisco. Chuck Peddle and his team had created a very lean, stripped down, small die cpu. Costing just $25, the 6502 was a fraction of the cost of its nearest competitor. At that time the Intel 8080 was $360 and the Motorola 6800 was $175 . The 6502 was clearly a disruptive usurper. 25 year old, HP Engineer, Steve Wozniak, realised that this new microprocessor would be a game-changer and went on to incorporate it into the small computer he was developing. That machine went on to become the Apple I. In 1975 7400 TTL was the “Bread and Butter” of logic design: 7400 series TTL integrated circuits were developed in the early 1960’s. Initially quite expensive so mainly used in Military and Aerospace applications. By the early 1970’s TTL had become a versatile family of standardised, low cost,. easy to use logic. Typically about $1 per device. 7400 series logic was widely used in the design of minicomputers, including the PDP-11, the Data General Nova 1200 and later models of PDP-8. TTL was a viable, faster and cheaper processing solution than the emerging 8-bit microprocessors such as MOS 6502, Intel 8080 and the Motorola 6800. Essential Reading 16-bit TTL CPU board from Data General Nova 1200 The Gigatron TTL Computer – What is it? Started as a Hackaday.io project in Spring 2017 by Marcel van Kervinck of The Hague, Netherlands.
    [Show full text]
  • 6502 Introduction
    6502 Introduction Philipp Koehn 18 September 2019 Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1 some history Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1971 2 • First microprocessor on an integrated circuit: Intel 4004 • 4-bit central processing unit, 12 bit address space (4KB) Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1975 3 • MOS Technology 6502 • Dominant CPU in home computers for a decade (Atari, Apple II, Nintendo Entertainment System, Commodore PET) Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1977 4 • Atari 2600 • Video game console: Pong, Pac Man, ... connected to TV Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1980 5 • Commodore VIC20 • 1 MHz, 5KB RAM, BASIC, 3.5KB RAM, 176x184 3 bit color video Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1982 6 • Commodore C64 • 64KB RAM, 320x200 4 bit color video Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 Commodore C64 7 • BASIC programming language, but serious programs written in assembly • No fancy stuff like multi-process, user accounts, virtual memory, etc. • Machine itself had no mass storage - had to buy tape drive, then floppy disk drive, machine was obsolete once hard drives came around Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 BASIC Demo 8 • Commands get executed (just like Python interpreter)
    [Show full text]
  • Download a Sample
    Preface Like many American kids in 1979, I woke up to find that Santa had left a brand new Atari VCS1 under the tree (thanks, Mom and Dad, for paying Santa’s invoice!). This was a pretty big deal for a six- year-old who could tell you the location and manufacturer of every standup arcade cabinet within a five mile radius. Having an “arcade in your home” wasn’t just a thing you saw on Silver Spoons, it was now a real thing. The sights and sounds that jumped o↵ of our little Panasonic color TV probably deserve a gigantic run-on sentence worthy of Dylan Thomas, as my brother and I bounced tiny pixellated missiles o↵ of walls in Combat, combed through the perplexing game modes of Space Invaders, battled angry duck-like dragons in Adventure, and became Superman as we put flickering bad guys in a flickering jail. These cartridges were opaque obelisks packaged in boxes with fantastically unattainable illustrations, available at K-Mart for $30 or so. You could tell these species of video games weren’t related to arcade games, though they had a unique look-and-feel of their own. We also had an Apple ][ by this time, so I tried to fit all of these creatures into a digital taxonomy. Atari games had colors and fast motion, but not as much as arcade games, and they never were as complex as Apple ][ games. What made them tick? Why were Activision games so much more detailed? Would the missile still blow up your spaceship if you turned the TV o↵? (Turns out the answer is yes.) 1 It wasn’t sold as “Atari 2600” until 1982.
    [Show full text]
  • The Ultimate C64 Overview Michael Steil, 25Th Chaos Communication Congress 2008
    The Ultimate C64 Overview Michael Steil, http://www.pagetable.com/ 25th Chaos Communication Congress 2008 Retrocomputing is cool as never before. People play Look and Feel C64 games in emulators and listen to SID music, but few people know much about the C64 architecture A C64 only needs to be connected to power and a TV and its limitations, and what programming was like set (or monitor) to be fully functional. When turned back then. This paper attempts to give a comprehen- on, it shows a blue-on-blue theme with a startup mes- sive overview of the Commodore 64, including its in- sage and drops into a BASIC interpreter derived from ternals and quirks, making the point that classic Microsoft BASIC. In order to load and save BASIC computer systems aren't all that hard to understand - programs or use third party software, the C64 re- and that programmers today should be more aware of quires mass storage - either a “datasette” cassette the art that programming once used to be. tape drive or a disk drive like the 5.25" Commodore 1541. Commodore History Unless the user really wanted to interact with the BA- SIC interpreter, he would typically only use the BA- Commodore Business Machines was founded in 1962 SIC instructions LOAD, LIST and RUN in order to by Jack Tramiel. The company specialized on elec- access mass storage. LOAD"$",8 followed by LIST tronic calculators, and in 1976, Commodore bought shows the directory of the disk in the drive, and the chip manufacturer MOS Technology and decided LOAD"filename",8 followed by RUN would load and to have Chuck Peddle from MOS evolve their KIM-1 start a program.
    [Show full text]
  • W65C02S Microprocessor DATA SHEET
    The Western Design Center, Inc. February 2004 W65C02S Data Sheet W65C02S Microprocessor DATA SHEET WDC ã The Western Design Center, Inc., 2003. All rights reserved The Western Design Center, Inc. February 2004 W65C02S Data Sheet WDC reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Information contained herein is provided gratuitously and without liability, to any user. Reasonable efforts have been made to verify the accuracy of the information but no guarantee whatsoever is given as to the accuracy or as to its applicability to particular uses. In every instance, it must be the responsibility of the user to determine the suitability of the products for each application. WDC products are not authorized for use as critical components in life support devices or systems. Nothing contained herein shall be construed as a recommendation to use any product in violation of existing patents or other rights of third parties. The sale of any WDC product is subject to all WDC Terms and Conditions of Sales and Sales Policies, copies of which are available upon request. Copyright Ó1981-2004 by The Western Design Center, Inc. All rights reserved, including the right of reproduction, in whole, or in part, in any form. The Western Design Center, Inc. W65C02S Data Sheet 2 The Western Design Center, Inc. W65C02S Data Sheet TABLE OF CONTENTS 1 INTRODUCTION................................................................................................................................................................................5
    [Show full text]
  • W65C02S 8–Bit Microprocessor
    October 19, 2010 W65C02S 8–bit Microprocessor WDC reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Information contained herein is provided gratuitously and without liability, to any user. Reasonable efforts have been made to verify the accuracy of the information but no guarantee whatsoever is given as to the accuracy or as to its applicability to particular uses. In every instance, it must be the responsibility of the user to determine the suitability of the products for each application. WDC products are not authorized for use as critical components in life support devices or systems. Nothing contained herein shall be construed as a recommendation to use any product in violation of existing patents or other rights of third parties. The sale of any WDC product is subject to all WDC Terms and Conditions of Sales and Sales Policies, copies of which are available upon request. Copyright ©1981-2010 by The Western Design Center, Inc. All rights reserved, including the right of reproduction, in whole, or in part, in any form. TABLE OF CONTENTS 1 INTRODUCTION ....................................................................................................... 5 1.1 FEATURES OF THE W65C02S ........................................................................................................... 5 2 FUNCTIONAL DESCRIPTION .................................................................................. 6 2.1 INSTRUCTION REGISTER (IR) AND DECODE .......................................................................................
    [Show full text]
  • Programming the 65816
    Programming the 65816 Including the 6502, 65C02 and 65802 Distributed and published under COPYRIGHT LICENSE AND PUBLISHING AGREEMENT with Authors David Eyes and Ron Lichty EFFECTIVE APRIL 28, 1992 Copyright © 2007 by The Western Design Center, Inc. 2166 E. Brown Rd. Mesa, AZ 85213 480-962-4545 (p) 480-835-6442 (f) www.westerndesigncenter.com The Western Design Center Table of Contents 1) Chapter One .......................................................................................................... 12 Basic Assembly Language Programming Concepts..................................................................................12 Binary Numbers.................................................................................................................................................... 12 Grouping Bits into Bytes....................................................................................................................................... 13 Hexadecimal Representation of Binary................................................................................................................ 14 The ACSII Character Set ..................................................................................................................................... 15 Boolean Logic........................................................................................................................................................ 16 Logical And.......................................................................................................................................................
    [Show full text]
  • Memory Management in Linux Is a Complex System ○ Supports a Variety of Systems from MMU-Less Microcontrollers to Supercomputers
    Linux Memory Management Ahmed Ali-Eldin This lecture ● Kernel memory allocations ● User-space memory management ● Caching in memory Numbers every programmer should know... Yearly updated data: https://colin-scott.github.io/personal_website/research/interactive_latency.html Kernel memory allocation ● Kernel processes require memory allocation ○ kernel cannot easily deal with memory allocation errors ○ kernel often cannot sleep ● The kernel memory allocation mechanisms differ from user-space allocation ● The kernel treats physical pages as the basic unit of memory management ● x-86 processors include a hardware Memory Management Unit (MMU) ● Memory management in Linux is a complex system ○ supports a variety of systems from MMU-less microcontrollers to supercomputers. Pages in Linux ● Old days: Pages with default size 4 KB ● Now: Huge pages + 4KB pages (since kernel 2.6.3) ● Rationale ○ on a machine with 8KB pages and 32GB of memory, physical memory is divided into 4,194,304 distinct pages ○ 64-bit Linux allows up to 128 TB of virtual address space for individual processes, and can address approximately 64 TB of physical memory ○ While assigning memory to a process is relatively cheap, memory management is not! ■ Every memory access requires a page walk ■ Typically take 10 to 100 cpu cycles ■ A TLB can hold typically only 1024 entries (out of the 4 Million distinct pages above) and has to be flushed every context switch Large Memory Applications ● Applications touching greater than 10 GB such as a large in-memory database with 17 GiB with 1000 connections ○ Uses approximately 4.4 million pages ○ With a page table size of 16 GiB ● Idea: Having larger page sizes enables a significant reduction in memory walks for such an application Huge Pages ● on x86, it is possible to map 2M and even 1G pages using entries in the second and the third level page tables.
    [Show full text]
  • 6500 Microprocessors
    C o m m o d o r e Semiconductor G roup C f q division of Commodore Business Machines, Inc. 950 Rjrrenhouse Rood. Nomsrown PA 19403 • 215/666-7950 • TWX 510-660-4160 NMOS 6500 MICROPROCESSORS 6500 MICROPROCESSORS THE 6500 MICROPROCESSOR FAMILY CONCEPT — The 6500 Series Microprocessors represent the first totally software compatible microprocessor family. This family of products includes a range of software compatible microprocessors which provide a selection of addressable memory range, interrupt input options and on-chip clock oscillators and drivers. All of the microprocessors in the 6500 group are software compatible within the group and are bus compatible with the M6800 product offering. The family includes six microprocessors with on-board clock oscillators and drivers and four microprocessors driven by external clocks. The on-chip clock versions are aimed at high performance, low cost applications where single phase inputs, crystal or RC inputs provide the time base. The external clock versions are geared for the multi processor system applications where maximum timing control is mandator/. All versions of the microprocessors are available in 1 MHz, 2 MHz (“A" suffix on product numbers), 3 MHz ("B” suffix on product numbers), and 4 MHz (“C” suffix on product numbers) maximum operating frequencies. FEATURES OF THE 6500 FAMILY . Single +5 volt supply • 8 BIT Bi-directional Data Bus . N channel, silicon gate, depletion load • Addressable memory range of up to 65K technology bytes • Eight bit parallel processing • “Ready” input (for single cycle execution) • 56 Instructions • Direct memory access capability . Decimal and binary arithmetic • Bus compatible with M6800 . Thirteen addressing modes • Choice of external or on-board clocks « True indexing capability • 1 MHz, 2 MHz, 3 MHz and 4 MHz operation .
    [Show full text]
  • Virtual Memory 2
    virtual memory 2 1 last time message passing as alternative to threads run multiple processes without sharing memory explicit send/recv calls to move data single-level page tables program addresses = virtual addresses machine addresses = physical addresses divide up memory (virtual + physical) into pages page size = power of two page table: map from virtual to physical pages multi-level page tables (wide) tree to store page table split up virtual page number into parts, use each part at each level first-level points to location of second-level last-level points to actual program data omit parts of second level that are entirely invalid 2 first-level page table entries page table base register (CR3) second-level page table entries x86-32 page table entries 3 first-level page table entries second-level page table entries x86-32 page table entries page table base register (CR3) 3 page table base register (CR3) second-level page table entries x86-32 page table entries first-level page table entries 3 first-level page table entries page table base register (CR3) x86-32 page table entries second-level page table entries 3 x86-32 page table entry v addresses phys. physical page number zeros page byte addr flags trick: page table entry with lower bits zeroed = physical byte address of corresponding page page # is address of page (212 byte units) makes constructing page table entries simpler: physicalAddress | flagsBits 4 x86-32 pagetables: page table entries xv6 header: mmu.h // Page table/directory entry flags. #define PTE_P 0x001 // Present
    [Show full text]
  • W65C134S 8-Bit Microcomputer
    June 23, 2014 W65C134S 8-bit Microcomputer WDC reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Information contained herein is provided gratuitously and without liability, to any user. Reasonable efforts have been made to verify the accuracy of the information but no guarantee whatsoever is given as to the accuracy or as to its applicability to particular uses. In every instance, it must be the responsibility of the user to determine the suitability of the products for each application. WDC products are not authorized for use as critical components in life support devices or systems. Nothing contained herein shall be construed as a recommendation to use any product in violation of existing patents or other rights of third parties. The sale of any WDC product is subject to all WDC Terms and Conditions of Sales and Sales Policies, copies of which are available upon request. Copyright (C) 1981-2014 by The Western Design Center, Inc. All rights reserved, including the right of reproduction in whole or in part in any form. INTRODUCTION The WDC W65C134S microcomputer is a complete fully static 8-bit computer fabricated on a single chip using a low power CMOS process. The W65C134S complements an established and growing line of W65C products and has a wide range of microcomputer applications. The W65C134S has been developed for Hi-Rel applications, and where minimum power is required. The W65C134S consists of a W65C02S (Static) Central Processing Unit (CPU), 4096 bytes of Read Only Memory (ROM), 192 bytes of Random Access Memory (RAM), two 16 bit timers, a low power Serial Interface Bus (SIB) configured as a token passing Local Area Network, Universal Asynchronous Receiver and Transmitter (UART) with baud rate timer, one 16-bit "Monitor Watch-Dog Timer" with "restart" interrupt, twenty-two priority encoded interrupts, ICE Interface, Real-Time clock features, Bus Control Register (BCR) for external memory bus control, interface circuitry for peripheral devices, and many low power features.
    [Show full text]
  • Linux Boot Process
    Linux Boot Process Nassim Eddequiouaq LSE Summer Week 2015 Why does boot matter ? No boot… No boot ! OS uses evolving hardware features Faster and more secure please What does Linux need ? Hardware initialization Bootloader loading the kernel Initialize arch-dependent and basic features Setup interrupts, memory management, SMP… Boot logic Before the operating system Backward compatibility OS boot process is specific Setup and hooking features … Linux Boot Protocol Boot steps The bootloader Kernel setup Long mode Decompression and jump to kernel code Bootloaders Responsible for loading and transferring control to the kernel ➢ UEFI ➢ Legacy ➢ LILO ➢ GRUB2 ➢ SYSLINUX GRUB2 boot sequence x86 Architecture 4 Modes : ➢ Real mode ➢ Protected mode ➢ V8086 mode ➢ Long mode Linux Boot Protocol Build-time parameters : ➢ setup code size Bootloading-time parameters : ➢ command-line parameters and size ➢ initrd max address Linux image format The bzImage Linux boot protocol for bzImage 4 entry points : 1. Real mode (16-bit) 2. Protected mode (32-bit) 3. Long mode (64-bit) 4. Final kernel entry (vmlinux decompressed) The bootloader Implement the Linux Boot Protocol Get and load kernel modules Fill the kernel setup header at the right address Jump to the kernel entry point Kernel setup header Kernel memory map Protocol Requirements ➢ Kernel usually loaded at 1MB (any position if relocatable, fixed if not) ➢ cs (and loaded GDT) must be __BOOT_CS ➢ ds, es and ss must be __BOOT_DS ➢ esi has the struct boot_params address ➢ ebp, edi and ebx must be 0 ➢ Interrupt
    [Show full text]