Fueled Nuclear Reactors
Total Page:16
File Type:pdf, Size:1020Kb
LONG-TERM NUCLEAR WASTE FORECASTING FOR LIQUID- FUELED NUCLEAR REACTORS: A COMPREHENSIVE LONG-TERM ANALYSIS OF LIQUID-FUELED NUCLEAR REACTOR FISSION AND TRANSMUTATION PRODUCTS AND ASSOCIATED ENVIRONMENTAL CONCERNS By Greg S. Taylor A Thesis Submitted in partial fulfillment of the requirements for the degree Master of Environmental Studies The Evergreen State College June 2016 i © 2016 by Greg Taylor. All rights reserved. ii This Thesis for the Master of Environmental Studies Degree By Greg Taylor has been approved for The Evergreen State College by ________________________ Kathleen Saul Member of the Faculty ______________________ Date iii Abstract Nuclear energy doesn’t have the best track record when it comes to environmental safety, so when a new technology comes along promising to be the “end all” solution to the worlds energy woes, skepticism is advised. Since the late 1990’s, Liquid Fueled Nuclear Reactors [LFNR] have become a more popular topic within the energy science community. Since the early work at Oak Ridge National Laboratory by Alvin Weinberg to the more recent Liquid Fluoride Thorium Reactor [LFTR] designs, the literature has shown the technical viability of LFNR tech. However little analysis into the long-term waste, and how that waste will affect both the Earth and its collective inhabitants. This thesis provides the framework necessary to understand the differences between Solid Fueled Nuclear Reactors [SFNR] and LFNR, from the perspective of waste output. By understanding what comes out the “back end” of a LFNR facility, policy makers can better evaluate the long-term impacts of the technology. As the primary opposition to nuclear energy is the very dangerous, long-lived fission waste generated by nuclear reactors, and the most touted “fact” about LFNR systems is their drastically reduced production of high-level waste and extremely high energy density, it seems prudent to analyze the expected waste output to verify the claim itself. Through detailed examination, this thesis will show that the available data does appear to support the claims being made about LFNR tech and will provide a foundation for future research. This analysis shows LFNR waste mass is in fact as much as 32x less volume than comparative SFNR waste, the volume of long-lived waste produced by LFNR is a lower overall portion of the final waste mass in general, and LFNR facilities would be safer to operate, in terms of “potential catastrophic failure” chance. Table of Contents Table of Contents ............................................................................................................... iv 1.1) List of Figures .................................................................................................... vii 1.2) List of Tables ..................................................................................................... viii Acknowledgements ............................................................................................................. x 2) Introduction ................................................................................................................. 1 3) History of Liquid Fueled Nuclear Reactors ................................................................ 4 3.1) Pre 2000................................................................................................................ 4 3.2) 2000 - Future ........................................................................................................ 8 4) Reactor Characteristics & Chemistry ........................................................................ 11 4.1) Solid Fueled Reactors Core Chemistry .............................................................. 11 4.2) Liquid Fueled Reactors Core Chemistry ............................................................ 13 5) Model ........................................................................................................................ 17 5.1) Chosen Variables................................................................................................ 18 5.2) Assumptions Made ............................................................................................. 23 5.3) Other Considerations .......................................................................................... 25 5.4) Considerations .................................................................................................... 27 6) Findings..................................................................................................................... 30 6.1) Uranium-233 [233U] Waste Analysis .................................................................. 41 6.1.a) Gaseous ....................................................................................................... 42 iv 6.1.b) Stable Solids................................................................................................ 43 6.1.c) 90 Day Resting Period ................................................................................ 44 6.1.d) 100 Year Resting Period ............................................................................. 45 6.1.e) Lifetime Entombment ................................................................................. 46 6.2) Uranium-235 [235U] Waste Analysis .................................................................. 47 6.2.a) Gaseous ....................................................................................................... 48 6.2.b) Stable Solids................................................................................................ 49 6.2.c) 90 Day Resting Period ................................................................................ 50 6.2.d) 100 Year Resting Period ............................................................................. 51 6.2.e) Lifetime Entombment ................................................................................. 52 6.3) Plutonium-239 [239Pu] Waste Analysis .............................................................. 53 6.3.a) Gaseous ....................................................................................................... 54 6.3.b) Stable Solids................................................................................................ 55 6.3.c) 90 Day Resting Period ................................................................................ 56 6.3.d) 100 Year Resting Period ............................................................................. 57 6.3.e) Lifetime Entombment ................................................................................. 58 6.4) Plutonium-241 [241Pu] Waste Analysis ............................................................ 59 6.4.a) Gaseous ....................................................................................................... 60 6.4.b) Stable Solids................................................................................................ 61 6.4.c) 90 Day Resting Period ................................................................................ 62 v 6.4.d) 100 Year Resting Period ............................................................................. 63 6.4.e) Lifetime Storage.......................................................................................... 64 6.5) Summary of Sections 6.1 – 6.4 .......................................................................... 65 6.6) Expected LFNR waste output ............................................................................ 67 6.6.a) 233U LFNR Waste Output ........................................................................... 71 6.6.b) 235U LFNR Waste Output ........................................................................... 73 6.6.c) 239Pu LFNR Waste Output .......................................................................... 75 6.6.d) 241Pu LFNR Waste Output .......................................................................... 77 6.7) LFNR/SFNR Comparison .................................................................................. 79 7) Discussion ................................................................................................................. 82 8) References ................................................................................................................. 85 9) Appendix ................................................................................................................. 100 9.1) Terminology ..................................................................................................... 100 9.2) Fission Product Data [By Isotope] ................................................................... 107 9.3) Fission Product Yields [By Fissile Isotope] ..................................................... 114 9.3.a) Uranium-233 [233U] .................................................................................. 115 9.3.b) Uranium-235 [235U] .................................................................................. 116 9.3.c) Plutonium-239 [239Pu] ............................................................................... 117 9.3.d) Plutonium-241 [241Pu] ............................................................................... 118 vi 1.1) List of Figures Figure 1 - Solid-Fueled Nuclear Reactor [SFNR] Operational Diagram ......................... 11 Figure 2 - Liquid-Fueled Nuclear Reactor [LFNR] Operational Diagram ....................... 14 Figure 3 - Simplified Fission Waste Breakdown Comparison ........................................