Isotopic Composition of Some Metals in the Sun

Total Page:16

File Type:pdf, Size:1020Kb

Isotopic Composition of Some Metals in the Sun SNSTITUTE OF THEORETICAL ASTROPHYSICS BLINDERN - OSLO REPORT .No. 35 ISOTOPIC COMPOSITION OF SOME METALS IN THE SUN by ØIVIND HAUGE y UNIVERSITETSFORLAqET • OSLO 1972 Universitetsfc lagets trykningssentral, Oslo INSTITUTE OF THEORETICAL ASTROPHYSICS BLINDERN - OSLO REPORT No. 35 ISOTOPIC COMPOSITION OF SOME METALS IN THE SUN by ØIVIND HAUGE UNIVERSITETSFORLAGET • OSLO 1972 Universitetsforlagets tryknlngssentral, Oslo CONTENTS Abstract 1 1. Introduction 2 2. Fine structure in spectral lines from atoms 5 1. Isotope shift 5 2. Hyperfine structure 6 3. Applications to atomic lines in photospheric spectrum .... 8 1. Elements with one odd isotope , 9 2. Elements with two odd isotopes 9 3. Elements with one odd and several even isotopes 11 k. Elements with several odd and even isotopes 11 h. Studies of elements in the Sun with two odd isotopes 1. Isotopes of rubidium 12 A. Observations lk B. Calculations 16 C. The Rb I line at 78OO Å 1. The continuum level 16 2. Line profiles and turbulent velocities 18 3. The asymmetry of the Si I line 19 h. Isotope investigations 21 P. The Rb I line at 79^7 A 28 E. The isotope ratio of rubidium 31 F. The abundance of rubidium 3k 2. Isotopes of antimony 35 A. Spectroscopic data 35 B. The Sb I lines at 3267 and 3722 A 37 3* Isotopes of europium 1*0 A. Observations and methods of analysis ^1 B. Spectroscopic data 1*1 C. Spectral line investigations 1. Investigations of four Eu II lines **3 2. The Eu II lines at Ul29 and U205 k ^6 D. The isotope ratio of europium 50 E. The abundance of europium 51 5. Study of an element in the Sun with one odd and several even isotopes 1. The upper limit of the solar Sr 87 content 53 A. Observations 5^ B. Spectroscopic data 56 C. Isotope investigations 58 D. The abundance of strontium » 60 6. The isotope ratio of copper in the Sun studied from Cu I and CuH lines 1. Studies of molecular lines from other elements 62 2, The isotope ratio of copper , 63 7- Summary and final comments 67 Acknowledgements * 70 References ,., ,, 71 - 1 - Abstract Information on the isotopic composition of chemical elements in the Sun may be obtained by analysis of phctospheric and sunspot spectra. It is shown that besides investigations performed on molecular lines, information on isotope abundances of some heavier elements may also be derived from atomic line studies. A discussion of the elements Kb, Sr, Sb and Eu are described. Studies of the solar isotopic composition of Cu from analysis of Cu I lines in photospheric spectra and CuH lines in sunspot spectra are described. The results obtained are: Cu65/Cu65 = (70+T)/(30+T) Rb85/Rbo7 = (73+1*)/(27+1») Eul5l/Eul53 - {52+6)/(kQ+6) Sr87/Sr <_ 0.25 No conclusions could be drawn about isotopes of Sb in the Sun. Although the results may indicate a solar over-abundance of Eu 151 as compared with terrestrial composition, the investigations provide no proof of non-terrestrial isotope ratios in the Sun of any of the elements listed. The abundances of Kb. Sr and Eu were determined and the results agree closely with previously determined values. 1. INTRODUCTION Increased knowledge of isotope abundances is of vital importance for a "better understanding of the processes that led to the formatien of the chemical elements and to the formation of celestial bodies. Conclusions about the evolution of different celestial bodies and their internal relation might easier be dravn when the isotopic composition cf their constituting elements is knovn. Accordingly large efforts have been made in order to increase our knowledge of isotopic compositions in different celestial bodies. During the last few decades our know­ ledge of the composition of bodies belonging to the Solar System has increased enormously. The composition of the terrestrial crust, meteorites and surface layers on the Moon are nov well known. Data on the isotopic composition of elements in the Sun are important for theories of the creation and the evolution of this» our nearest star in space. But the methods one can use to determine isotope abundances in the Sun are not as direct and sensitive as these that can be applied when analysing stone samples. The solar results must therefore he given with considerably larger error limits. Some information on isotopes in the Sun may be obtained from direct study of the composition of the solar wind and of solar cosmic rays. But the results obtained -from such investigations do not always reflect the average composition in the Sun's photosphere. Orbits of ionized particles are perturbed by electromagnetic fields and in cosmic rays, secondary emmission is mixed up with the primary rays. Moreover, in the solar wind and cosmic rays the concentration of many elements is too small to permit investigations. - 3 - Information on solar isotopic composition is obtained from spectral line studies. The wavelength of lines from molecules and atoms is isotope dependent. In order to interprete the observed spectra, the physical conditions in the line forming region together with various atomic or molecular data must be known. The isotope displacements are often very smell and disappear in line broadening due to high temperature and velocity fields in the region of line formation. In sunspot spectra also magnetic fields act on the profile. In molecular bands spectral lines from different isotopic compounds are often well resolved. But only few elements exist in molecules in the photosphere. Investigations often have to be undertaken on spectra from sunspots where the lower temperature leads to an increase in the number of molecules. It is often necessary to know the direction and strength of magnetic fields when sunspot spectra are examined. The setting of the continuum level may he difficult as spectral lines from spots are very numerous and overlap. Ho undisturbed spectral region may be found. In isotope studies of very light elements atomic line spectra are most frequently used. The isotope shifts in spectral lines from light elements are large enough to affect line profiles. The reason for this is to be found in the mass dependence of the Rydcerg constant. Considering heavier elements, this effect is negligible. But the isotope shifts also depend on other properties of the nuclei, and isotope shifts and hyperfine structure may lead to information on the isotopic composition of heavier elements. These two effects are usually undetectable, but in some cases minor influences on solar line profiles occur. Recent developements in observational technique and new methods to calculate line profiles, however, make it possible to determine the composition of some - It - heavier elements from observations of atomic line profiles. Vhen recording the photospheric spectrum using extremely long observing time, the noi Be in an averaged spectrum is brought down to a very lov limit. And when spectra are taken with an integrating lens in front of the slit, an average of the emission from an extended area is recorded. Local variations in physical conditions in the photosphere do not affect the result. The number of elements for which information on isotopes in the Sun may be obtained from molecular line studies must be limited, as only few elements exist in molecular compounds. Also atomic line investigations may give information only on a very small number of elements, but it is fortunate that amongst these there are some e3ements which are not expected to exist in molecular compounds. Solar isotope ratios are always given with large error limits as compared with results obtained from stone sample analysis. Nevertheless, it should be pointed out that the derived isotope ratios may be given with considerably smaller errors than the derived abundance ratios between different elements. Isotopes from the same elements have many physical constants in common and errors in their values or in the model atmosphere do not substantially affect the final result. In the following the solar isotopic composition of some heavier elements is discussed. A short bibliography referring to results obtained by different authors on other elements was given by Hauge and Engvold (1970). - 5 - 2. FIHE STRUCTURE IN SPECTRAL LINES FROM ATOMS When spectral lines are examined vith spectrographs of very- high resolution, it is frequently found that the line is split into several components lying close together. As an example the fine structure of a Tb II line is demonstrated in Figure 2-1. The photospheric spectrum at this wavelength has earlier heen studied by Engvold and Hauge (1970). The fine structure of the Yb II line can be considered as the result of two effects- Even isotopes appear as single lines. One odd isotope haB several, components shoving the hyper fine structure. And, as seen from Figure 2-ls two odd isotopes may have different hyperfine structure. The spectroscopic behaviour of even and odd isotopes is fundamentally different and of vital importance for the discussion given in Chapter 3- a,p> -ni Q,b/.,d - 173 Fig. 2-1. Fine structure of the Yb II line at 36*9^ A as determined by Krebs and Nelkovski (1955). 2.1. Isotope shift Golovin and Striganov (196*8) have given, an extended survey of experimental results, theoretical interpretations and a comprehensive bibliography of isotope effects in Bpectra from heavy elements. Only a fev characteristic behaviours of the isotope shift are referred in the following. - 6 - 1. The energy of certain levels is more isotope sensitive than other. The consequences are that different spectral lioes from an element show quite different isotope shifts. The heavier isotope may he situated on the red side or on the blue. 2. As seen in Figure 2-1, the wavelength interval between Yb 170 and Yb 172 is larger than the interval between Yb 17^ and Yb 176.
Recommended publications
  • Those Two Isotopes Are Chemical Identical and Can Only Be Separated by Using Their Relatively Small Difference in Mass
    Exercise2. Why is it extremely difficult to separate the two isotopes of copper, 63Cu and 65Cu? Those two isotopes are chemical identical and can only be separated by using their relatively small difference in mass. Exercise 3. If a nuclear reaction adds an extra neutron to the nucleus of 57Fe (a stable isotope of iron), it produces 58Fe (another stable isotope of iron). Will this change in the nucleus affect the number and arrangement of the electrons in the atom that’s built around this nucleus? Why or why not? No: the number of electrons = number of protons (= atomic number) and this hasn’t changed. Because the number of electrons doesn’t change and the charge in the nucleus doesn’t change, the arrangement of electron orbitals (standing waves) also doesn’t change. Exercise 4: If a nuclear reaction adds an extra proton to the nucleus of 58Fe (a stable isotope of iron), it produces 59Co (a stable isotope of cobalt). Will this change in the nucleus affect the number and arrangement of the electrons in the atom that’s built around this nucleus? Why or why not? Yes: since the nuclear charge has increased, an additional electron is needed to form a neutral atom. Because of both the change in number of electrons and the stronger Coulomb attraction from the nucleus, the arrangement of electron orbitals will change. Exercise 7. When a large nucleus is split in half during an experiment at a nuclear physics lab, the result is usually two medium-size nuclei with too many neutrons to be stable.
    [Show full text]
  • Cross Calibration for Using Neutron Activation Analysis with Copper Samples to Measure D-T Fusion Yields
    Cross Calibration for using Neutron Activation Analysis with Copper Samples to measure D-T Fusion Yields Chad A. McCoy May 5, 2011 The University of New Mexico Department of Physics and Astronomy Undergraduate Honors Thesis Advisor: Gary W. Cooper (UNM ChNE) Daniel Finley Abstract We used a dense plasma focus with maximum neutron yield greater than 1012 neutrons per pulse as a D-T neutron source to irradiate samples of copper, praseodymium, silver, and lead, to cross- calibrate the coincidence system for using neutron activation analysis to measure total neutron yields. In doing so, we counted the lead samples using an attached plastic scintillator, due to the short half-life and single gamma decay. The copper samples were counted using two 6” NaI coincidence systems and a 3” NaI coincidence system to determine the total neutron yield. For the copper samples, we used a calibration method which we refer to as the “F factor” to calibrate the system as a whole and used this factor to determine the total neutron yield. We concluded that the most accurate measurement of the D-T fusion neutron yield using copper activation detectors is by using 3 inch diameter copper samples in a 6” NaI coincidence system. This measurement gave the most accurate results relative to the lead probe and reference samples for all the copper samples tested. Furthermore, we found that the total neutron yield as measured with the 3 inch diameter copper samples in the 6” diameter NaI systems is approximately 89 ± 10 % the total neutron yield as measured using the lead, praseodymium and silver detectors.
    [Show full text]
  • Radioactive Isotopes of Copper 578 (1936)
    1110 NATURE jUNE 26, 1937 axis, no water is being frozen or melted with change 10h.l,5.8• Madsen has directed attention to the in temperature. When the curve is vertical with confusion over these periods and gives the half-life respect to the temperature axis, pure water is being period of the copper obtained from zinc as 17h!. frozen or melted. When the curve is inclined to the Leo Szilard, of the Clarendon Laboratory, Oxford, temperature axis, ice is being separated from or informed us that the decay curve of the copper melted into a solution, as in the concentration or bombarded by fast neutrons from radon-beryllium dilution of a sugar solution. This latter effect may contained a period of a few hours which was absent also be brought about by capillary forces or by col­ when slow neutrons were used, or if the radioactive loidal substances the avidity of which for water copper was obtained from zinc by fast neutron varies with their concentration. bombardment. It was arranged with him that Fig. 3 shows the results obtained upon freezing further investigations and chemical separation should fresh green peas using time as a variable instead of be made in this laboratory. temperature. 19 gm. of green peas at room tempera­ We irradiated 2 gm. mols of pure cupric oxide with ture were placed in the condenser and immersed in a fast neutrons from a 200 me. radium-beryllium thermostat held at -16° C. At the time of immersion source. After irradiation, we dissolved the oxide, and at intervals thereafter capacitance measurements added 500 mgm.
    [Show full text]
  • Impact-Ionization Mass Spectrometry of Cosmic Dust
    IMPACT-IONIZATION MASS SPECTROMETRY OF COSMIC DUST Thesis by Daniel E. Austin Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2003 (Defended November 5, 2002) ii © 2003 Daniel E. Austin All Rights Reserved iii Acknowledgements First of all, I thank Dave Dearden, Professor of Chemistry at Brigham Young University, and a former Caltech graduate student, for encouraging me to pursue graduate work at Caltech. The experiences I gained working with him, both as a research assistant and as a teaching assistant, proved invaluable during my stay here. Numerous people at Caltech have contributed in some way to my research efforts. Foremost among these is my advisor, Jack Beauchamp, who successfully balances providing advice and supervision with the hands-off approach that is essential to developing creativity, resourcefulness, and drive in students. I also thank all the other Beauchamp group members who have helped me in so many ways: Dmitri Kossakovski, Sang-Won Lee, Jim Smith, Heather Cox, Ron Grimm, Ryan Julian, and Rob Hodyss. I joined Jack’s group in part because of the very high caliber of students at that time. It seems I am leaving a group equally outstanding. There could be no finer collection of colleagues than this. Minta Akin, an undergraduate Caltech student, has helped tremendously with the ice accelerator, and I thank her for all her work. Mike Roy, Guy Duremberg, and Ray Garcia, the chemistry department machinists, have been both helpful and patient with me as I’ve built numerous instrument parts.
    [Show full text]
  • Copper Isotope Fractionation During Surface Adsorption And
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2010-01-01 Copper Isotope Fractionation During Surface Adsorption And Intracellular Incorporation By Bacteria Jesica Urbina Navarrete University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Biogeochemistry Commons, Geochemistry Commons, and the Microbiology Commons Recommended Citation Navarrete, Jesica Urbina, "Copper Isotope Fractionation During Surface Adsorption And Intracellular Incorporation By Bacteria" (2010). Open Access Theses & Dissertations. 2553. https://digitalcommons.utep.edu/open_etd/2553 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. COPPER ISOTOPE FRACTIONATION DURING SURFACE ADSORPTION AND INTRACELLULAR INCORPORATION BY BACTERIA JESICA URBINA NAVARRETE Environmental Science Program APPROVED: David Borrok, Ph.D., Chair Jasper G. Konter, Ph.D. Joanne T. Ellzey, Ph.D. Patricia D. Witherspoon, Ph.D. Dean of the Graduate School Copyright by Jesica Urbina Navarrete 2010 COPPER ISOTOPE FRACTIONATION DURING SURFACE ADSORPTION AND INTRACELLULAR INCORPORATION BY BACTERIA by JESICA URBINA NAVARRETE, B.S. THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Environmental Science THE UNIVERSITY OF TEXAS AT EL PASO August 2010 Acknowledgements This publication was made possible through funding by the National Science Foundation (NSF) grant 0745345, the Center for Earth and Environmental Isotope Research (NSF MRI grant 0820986) and by grant number 2G12RR008124-16A1 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH).
    [Show full text]
  • Natural Variations of Copper and Sulfur Stable Isotopes in Blood of Hepatocellular Carcinoma Patients
    Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients Vincent Baltera,1, Andre Nogueira da Costab, Victor Paky Bondanesea, Klervia Jaouenc, Aline Lambouxa, Suleeporn Sangrajrangd, Nicolas Vincenta, François Fourela, Philippe Télouka, Michelle Gigoue, Christophe Lécuyera,f, Petcharin Srivatanakuld, Christian Bréchote,g, Francis Albarèdea, and Pierre Hainauth,i aUMR 5276, Laboratoire de Géologie de Lyon, École Normale Supérieure de Lyon, CNRS, Université de Lyon 1, BP 7000 Lyon, France; bMechanistic Toxicology & Molecular Pathology Department of Non-Clinical Development, UCB BioPharma, SPRL Chemin du Foriest 1, B-1420 Braine L’Alleud, Belgium; cDepartment of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; dNational Cancer Institute, Bangkok 10400, Thailand; eUnité 785, Pathogénèse et Traitement de l’Hépatite Fulminante et du Cancer du Foie, INSERM, Université Paris-Sud, 94800 Villejuif, France; fInstitut Universitaire de France, 75005 Paris, France; gInstitut Pasteur, 75015 Paris, France; hUnité 823, Ontogenèse et Oncogenèse Moléculaire, Institut Albert Bonniot, INSERM, Université Joseph Fourier, 38706 Grenoble, France; and iStrathclyde Institute of Global Public Health, International Prevention Research Institute, 69006 Lyon, France Edited by Thure E. Cerling, University of Utah, Salt Lake City, UT, and approved December 22, 2014 (received for review August 7, 2014) The widespread hypoxic conditions of the tumor microenviron- and sulfide (5). Regardless of the element, differences in co- ment can impair the metabolism of bioessential elements such as ordination and redox states are generally associated with isotopic copper and sulfur, notably by changing their redox state and, as effects known as isotopic fractionation. In animal models, the a consequence, their ability to bind specific molecules.
    [Show full text]
  • Endf-201 Enof/B-Vi Summary Documentation
    BNL-NCS—1754Z DE92 010079 ENDF-201 ENOF/B-VI SUMMARY DOCUMENTATION Compiled and Edited by P.F. Rose Brookhaven National Laboratory October 1991 NATIONAL NUCLEAR DATA CENTER BROOKHAVEN NATIONAL LABORATORY ASSOCIATED UNIVERSITIES, INC. UPTON, LONG ISLAND, NEW YORK 11973 ft UNDER CONTRACT NO. DE-AC02-76CH00016 WITH THE UNITED STATES DEPARTMENT OF ENERGY »'•'—••-.-*>„.,, DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor or subcontractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency, contractor or subcontractor thereof. Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 NTIS price codes:
    [Show full text]
  • ILPAC Unit S2: Atomic Structure
    UNIT INDEPENDENT LEARNING PROJECT FOR ADVANCED CHEMISTRY Periodic Table of the Elements o 2 I He II ill] III IV V VI VIII 4.0 3 4 5 6 7 8 9 10 Li Be B C N 0 F Ne 6.9 9.0 10.8 12.0 14.0 16.0 19.0 20.2 11 12 13 14 15 16 17 18 Na Mg Al Si P S CI Ar 23.0 24.3 27.0 28.1 31.0 32.1 35.5 39.9 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3! 36 K Ca Sc Ti V Cr Mn Fe Co Ni eu Zn Ga Ge As Se BrlKr 39.1 40.1 45.0 47.9 50.9 52.0 54.9 55.9 58.9 58.7 63.5 65.4 69.7 72.6 74.9 79.0 79 83.8 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 S4 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 85.5 87.6 88.9 91.2 92.9 95.9 99.0 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.91 ' 3 ' . 3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La 4 Hf Ta W Re Os If Pt Au Hg Tl Pb Bi Po AtlRn 132.9 137.3 138.9 178.5 181.0 183.9 186.2 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 210.0 210.01222.0 87 88 89 Fr Ra Ac~ 223.0 226.0 227.0 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 "--- Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lw 232.0 231.0 238.1 (237) 239.1 (243) (241) (247) (251 ) (254) (253) (256) ( 254) (257) A value in brackets denotes the mass number of the most stable isotope.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • Study of the Coherent Effects in Rubidium Atomic Vapor Under Bi-Chromatic Laser Radiation Rafayel Mirzoyan
    Study of the coherent effects in rubidium atomic vapor under bi-chromatic laser radiation Rafayel Mirzoyan To cite this version: Rafayel Mirzoyan. Study of the coherent effects in rubidium atomic vapor under bi-chromatic laser radiation. Other [cond-mat.other]. Université de Bourgogne, 2013. English. NNT : 2013DIJOS015. tel-00934648 HAL Id: tel-00934648 https://tel.archives-ouvertes.fr/tel-00934648 Submitted on 22 Jan 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE´ DE BOURGOGNE Laboratoire Interdisciplinaire Carnot de Bourgogne UMR CNRS 6303 NATIONAL ACADEMY OF SCIENCES OF ARMENIA Institute for Physical Research STUDY OF THE COHERENT EFFECTS IN RUBIDIUM ATOMIC VAPOR UNDER BI-CHROMATIC LASER RADIATION by Rafayel Mirzoyan A Thesis in Physics Submitted for the Degree of Doctor of Philosophy Date of defense June 04 2013 Jury Stefka CARTALEVA Professor Referee Institute of Electronics, BAS, Sofia Arsen HAKHOUMIAN Professor, Director of the Institute IRPHE Examiner Institute of Electronics, BAS, Sofia Claude LEROY Professor Supervisor ICB, Universit´ede Bourgogne, Dijon Aram PAPOYAN Professor, Director of the institute IPR Co-Supervisor IPR, NAS of ARMENIA, Ashtarak Yevgenya PASHAYAN-LEROY Dr. of Physics Co-Supervisor ICB, Universit´ede Bourgogne, Dijon Hayk SARGSYAN Professor Examiner Russian-Armenian State University, Yerevan David SARKISYAN Professor Supervisor IPR, NAS of ARMENIA, Ashtarak Arlene WILSON-GORDON Professor Referee Bar-Ilan University, Ramat Gan LABORATOIRE INTERDISCIPLINAIRE CARNOT DE BOURGOGNE-UMR CNRS 6303 UNIVERSITE DE BOURGOGNE, 9 AVENUE A.
    [Show full text]
  • Chem.3040 - Forensic Science Ii Demise of the Ice Man
    NAME_____________________________ CHEM.3040 - FORENSIC SCIENCE II DEMISE OF THE ICE MAN I. Introduction The body of a prehistoric human (the Ice Man) was discovered in the Tyrolean Alps. Forensic evidence suggested that he had suffered a violent death. It was also apparent that he was far from his home, perhaps on a hunting trip. The body was well-preserved and therefore amenable to a variety of forensic investigations. In this exercise we will investigate how isotopic data were used to determine where the ice man lived. Before you start the exercise you should review the pdf file – Demise of the Ice Man – which is found on the course web site. II. Ar-Ar Mica Ages IIa. Introduction During examination of the remains of Ice Man, a sample of the Ice Man’s intestinal content was screened for cereal fragments. The intestinal sample also contained 12 100- to 400 µm white micas (muscovite) that are believed to have been ingested as a result of the grinding of cereal or from drinking water. Soil is formed by the weathering of rock material. This weathering can be of two types: (1) physical during which the original rock material is broken into smaller fragments and (2) chemical in which various mineral undergo partial or complete breakdown. Some minerals, such as quartz and mica, are resistant to chemical weathering while other minerals, such as olivine or pyroxene, are easily weathered. The mica found in the intestines of the Ice Man are residual from the weathering of the country rock (the rock that underlies a particular region).
    [Show full text]
  • Nature Communications 6, 7803
    ARTICLE Received 16 Feb 2015 | Accepted 11 Jun 2015 | Published 22 Jul 2015 DOI: 10.1038/ncomms8803 OPEN Interaction-induced decay of a heteronuclear two-atom system Peng Xu1,2, Jiaheng Yang1,2,3, Min Liu1,2, Xiaodong He1,2, Yong Zeng1,2,3, Kunpeng Wang1,2,3, Jin Wang1,2, D.J. Papoular4, G.V. Shlyapnikov1,5,6,7 & Mingsheng Zhan1,2 Two-atom systems in small traps are of fundamental interest for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of 87Rb and 85Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. This experi- mental method allows us to single out a particular relaxation process thus provides an extremely clean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates. 1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, and Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China. 2 Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China. 3 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China.
    [Show full text]