Estudio De Modelos De Dispersión Y Su Aplicación Al Control Industrial

Total Page:16

File Type:pdf, Size:1020Kb

Estudio De Modelos De Dispersión Y Su Aplicación Al Control Industrial Universidad de Alcalá Escuela Politécnica Superior INGENIERÍA ELECTRÓNICA Trabajo Fin de Carrera ESTUDIO DE MODELOS DE DISPERSIÓN Y SU APLICACIÓN AL CONTROL INDUSTRIAL Autor: Germán Villar Lagos Tutor: D. Luciano Boquete Vázquez Año 2017 UNIVERSIDAD DE ALCALÁ Escuela Politécnica Superior INGENIERÍA ELECTRÓNICA TRABAJO FIN DE CARRERA ESTUDIO DE MODELOS DE DISPERSIÓN Y SU APLICACIÓN AL CONTROL INDUSTRIAL Autor: GERMÁN VILLAR LAGOS Director: D. LUCIANO BOQUETE VÁZQUEZ TRIBUNAL: Presidente: D. ALEJANDRO MARTÍNEZ ARRIBAS Vocal 1º: D. FELIPE ESPINOSA ZAPATA Vocal 2º: D. LUCIANO BOQUETE VÁZQUEZ FECHA:....................................................... 2 3 AGRADECIMIENTOS Quisiera mencionar y agradecer en este punto a algunas personas que considero muy importantes en la realización del presente trabajo. A mi esposa Cristina por su apoyo constante y enorme generosidad, facilitando siempre la disponibilidad del tiempo requerido para elaborar el trabajo y junto con mis hijos Germán y Úrsula por su infinita paciencia. A Luciano Boquete Vázquez, director del proyecto, por sus sabios consejos, indicaciones y correcciones que han sido de claves para llevar el trabajo a buen término. 4 5 ÍNDICE AGRADECIMIENTOS .................................................................................................................. 4 ÍNDICE ............................................................................................................................................ 6 TABLA DE FIGURAS ................................................................................................................... 9 RESUMEN .................................................................................................................................... 14 ABSTRACT................................................................................................................................... 15 PALABRAS CLAVE .................................................................................................................... 16 GLOSARIO DE ACRÓNIMOS Y ABREVIATURAS.............................................................. 17 MEMORIA RESUMIDA ............................................................................................................. 18 INTRODUCCIÓN ........................................................................................................................ 19 1 LA ATMÓSFERA ................................................................................................................... 21 1.1 INTRODUCCIÓN .................................................................................................................. 21 1.2 VISIÓN GENERAL DE LA ATMÓSFERA ................................................................................. 21 1.2.1 La troposfera ............................................................................................................ 23 1.2.1.1 El viento ........................................................................................................................ 23 1.2.1.2 La lluvia ......................................................................................................................... 24 1.2.2 La Estratosfera ......................................................................................................... 26 1.2.3 La Mesosfera ............................................................................................................ 26 1.2.4 La Exosfera .............................................................................................................. 27 1.3 ESTABILIDAD ATMOSFÉRICA ............................................................................................. 27 1.4 DIFUSIÓN DE GASES EN LA ATMÓSFERA E INVERSIÓN TÉRMICA ........................................ 29 1.5 DISPERSIÓN DE CONTAMINANTES EN LA ATMÓSFERA ........................................................ 30 1.6 INSTRUMENTACIÓN METEOROLÓGICA ............................................................................... 32 1.6.1 Dirección y velocidad del viento .............................................................................. 32 1.6.2 Pluviometría ............................................................................................................. 35 1.6.3 Temperatura ............................................................................................................. 36 1.6.4 Radiación solar ........................................................................................................ 36 1.6.5 Presión atmosférica .................................................................................................. 37 1.6.6 Humedad ambiental ................................................................................................. 38 1.6.7 Emisión de partículas ............................................................................................... 38 1.6.8 Emisión de gases ...................................................................................................... 40 1.6.9 Volumen / Caudal de emisión .................................................................................. 40 1.7 DEFINICIONES METEOROLÓGICAS O ATMOSFÉRICAS .......................................................... 41 1.7.1 Relación o razón de Bowen ...................................................................................... 41 1.7.2 El Albedo .................................................................................................................. 41 1.7.3 Longitud de Monin-Obukhov .................................................................................... 42 1.7.4 Gradiente adiabático ................................................................................................ 43 1.7.5 Convección atmosférica ........................................................................................... 44 2 INTRODUCCIÓN A LOS MODELOS DE DISPERSIÓN ................................................. 46 2.1 INTRODUCCIÓN .................................................................................................................. 46 2.2 MODELOS DE CAJA ............................................................................................................ 46 6 2.3 MODELOS GAUSSIANOS ..................................................................................................... 48 2.4 MODELOS LAGRANGIANOS................................................................................................ 49 2.5 MODELOS EULERIANOS ..................................................................................................... 50 2.6 MODELOS DE GAS DENSO .................................................................................................. 51 2.7 CLASIFICACIÓN DE LOS MODELOS DE DISPERSIÓN ATENDIENDO A SU NATURALEZA .......... 52 3 PRINCIPALES MODELOS DE DISPERSIÓN ................................................................... 53 3.1 ADMS ............................................................................................................................... 53 3.2 AERMOD ......................................................................................................................... 54 3.3 ATSTEP............................................................................................................................ 54 3.4 CALPUFF ......................................................................................................................... 57 3.5 CMAQ .............................................................................................................................. 57 3.6 DISPERSION21 ............................................................................................................... 58 3.7 FLACS .............................................................................................................................. 60 3.8 FLEXPART ...................................................................................................................... 61 3.9 HYSPLIT .......................................................................................................................... 61 3.10 HYPACT .......................................................................................................................... 62 3.11 ISC3 .................................................................................................................................. 64 3.12 NAME .............................................................................................................................. 67 3.13 MERCURE ....................................................................................................................... 68 3.14 OSPM ............................................................................................................................... 71 3.15 FLUIDYN-PANACHE ..................................................................................................... 73 3.16 RIMPUFF ......................................................................................................................... 75 3.17 SAFE AIR ......................................................................................................................... 76 3.18 PUFF-PLUME .................................................................................................................. 78 3.19 LILLPELLO ....................................................................................................................
Recommended publications
  • AMOC Variability, a Key Factor in Emission Reduction Scenarios
    UTRECHT UNIVERSITY MSC CLIMATE PHYSICS INSTITUTE FOR MARINE AND ATMOSPHERIC RESEARCH UTRECHT 5 AMOC variability, a key factor in emission reduction scenarios 10 Author: J.M. Valentí Muelas [6515886] Supervisor: Prof. Dr. Ir. H.A. Dijkstra 15 June 2020. Contents 1 Introduction 2 2 Methods 4 2.1 Carbon Cycle Model................................................4 5 2.2 Emission reduction pathways............................................5 2.3 Model........................................................7 2.4 Climate sensitivity & Feedbacks..........................................8 2.5 Model diagnostics.................................................. 10 3 Results 12 10 3.1 Basic variables................................................... 12 3.2 AMOC....................................................... 14 3.3 GMST-AMOC correlation............................................. 19 4 Discussion and Conclusions 21 4.1 GMST response to emission reduction....................................... 21 15 4.2 AMOC Collapse.................................................. 22 4.3 Conclusions..................................................... 24 Appendix A: Tables 28 Appendix B: Complementary figures 29 1 Abstract The climate system response to emission reduction shows time dependencies when evaluated in terms of global mean sur- face temperature (GMST). The Atlantic meridional overturning circulation (AMOC) variability may be forcing a non-linear behaviour on GMST response to emission reduction. In this study, emission reduction is evaluated with
    [Show full text]
  • Referee 1 1 2 Many Thanks for the Constructive Suggestions. Our
    1 Referee 1 2 3 Many thanks for the constructive suggestions. Our responses are in red text 4 below. 5 6 The paper describes PLASIM-GENIE a new intermediate-complexity 7 Atmosphere- Ocean Earth System Model, designed for simulations of millenium+ 8 length. The new model is well suited for studies of long-term climate change, its 9 simulation of present-day climate is acceptable, its formulation is mostly 10 described well, and I recommend publication subject to the following changes 11 being made. 12 13 1. It’s not 100% clear whether or not this model has a carbon cycle, and what 14 aspects of this are turned on or off. The model is described as an AOGCM 15 (suggesting no C-cycle), but section 2.1 and others do allude to the simulation of 16 different carbon pools on land, which is slightly confusing. I presume there is 17 some sort of diagnostic C-cycle which does not affect atmospheric CO2, but does 18 affect vegetation. However GENIE- 1 does contain a fully interactive C-cycle. The 19 abstract, introduction, section 2.1 and other sections have to be clearer about 20 which parts of the C-cycle are on or off. Any flexibility in the C-cycle (ie: being 21 run in a diagnostic mode to simulation terrestrial pools but without affecting the 22 ocean and atmosphere) should be noted, as potential users of this AOGCM would 23 be interested in this. 24 25 As suggested, we have added flexibility to the run the terrestrial carbon cycle in 26 diagnostic mode.
    [Show full text]
  • Part II: Practical Uses of Air Modeling in Litigation And
    Air Modeling as a Tool in Environmental Law and Policy: A Guide for Communities and Environmental Groups Part II: Practical Uses of Air Modeling in Litigation and Regulatory Contexts Clean Air Council 135 South 19th Street Suite 300 Philadelphia, PA 19103 (215) 567-4004 www.cleanair.org September 16, 2016 Authors and Purpose The authors are attorneys at the Clean Air Council at its headquarters in Philadelphia, Pennsylvania. The attorneys working on this White Paper were: Augusta Wilson, Esq., Aaron Jacobs-Smith, Esq., Benjamin Hartung, Esq., Christopher D. Ahlers, Esq., and Joseph Otis Minott, Esq., Executive Director and Chief Counsel. Clean Air Council is a non-profit, 501(c)(3) corporation with headquarters in Philadelphia, Pennsylvania. Acknowledgments The Clean Air Council thanks the Colcom Foundation. This paper would not have been possible without its generous funding and support. The authors would also like to thank Jini Chatterjee, Tessa Roberts and Paul Townsend, students at the University of Pennsylvania Law School’s Environmental Law Project, who conducted invaluable research for this paper, and Sonya Shea, who supervised their work at the Environmental Law Project. Disclaimer This paper is intended as a general introduction to the law and policy of air modeling under the Clean Air Act. Nothing in this paper is intended, nor shall it be construed as creating an attorney-client relationship or providing legal advice. © 2016 Clean Air Council 135 S. 19th Street Suite 300 Philadelphia, Pennsylvania 19103 Table of Contents Introduction .................................................................................................................................1 1. Use of Air Modeling to Support Tort Claims .....................................................................2 a. Challenges to the Use of Particular Modeling Software or to Underlying Assumptions .............................................................................................................2 b.
    [Show full text]
  • Table of Contents
    CALPUFF Modeling System Version 6 User Instructions April 2011 Section 1: Introduction Table of Contents Page 1. OVERVIEW ...................................................................................................................... 1-1 1.1 CALPUFF Version 6 Modeling System............................................................... 1-1 1.2 Historical Background .......................................................................................... 1-2 1.3 Overview of the Modeling System ....................................................................... 1-7 1.4 Major Model Algorithms and Options................................................................. 1-19 1.4.1 CALMET................................................................................................ 1-19 1.4.2 CALPUFF............................................................................................... 1-23 1.5 Summary of Data and Computer Requirements .................................................. 1-28 2. GEOPHYSICAL DATA PROCESSORS.......................................................................... 2-1 2.1 TERREL Terrain Preprocessor............................................................................. 2-3 2.2 Land Use Data Preprocessors (CTGCOMP and CTGPROC) ............................. 2-27 2.2.1 Obtaining the Data.................................................................................. 2-27 2.2.2 CTGCOMP - the CTG land use data compression program .................. 2-29 2.2.3 CTGPROC - the land use preprocessor
    [Show full text]
  • Progetto Modivaset - Relazione Finale – Scenario 0 - - 31/12/2005
    Università degli Studi di Firenze - Dipartimento di Energetica - Sergio Stecco Convenzione tra Regione Toscana e DE per lo sviluppo e l’applicazione di modelli diffusionali nell’ambito dei piani di risanamento della qualità dell’aria, con particolare attenzione all’area metropolitana di Firenze – Prato – Pistoia Progetto MoDiVaSET - Relazione finale – scenario 0 - - 31/12/2005 - Ing. Matteo Carpentieri Prof. Ing. Andrea Corti Ing. Paolo Giambini Dott. Silvia Maltagliati Progetto MoDiVaSET Relazione finale Università degli Studi di Firenze - 31-12-2005 Dipartimento di Energetica - Sergio Stecco 1 Introduzione 1.1 Il progetto MoDiVaSET Lo scopo di questo lavoro consiste nello sviluppare metodologie modellistiche finalizzate a simulare la dispersione in atmosfera di PM10, NOX e SOX nell’area metropolitana di Firenze – Prato – Pistoia. L’obiettivo ultimo del progetto risulta la valutazione di diversi scenari emissivi nell’area di riferimento. 1.2 L’area di studio L’area di studio prescelta è quella riportata qui di seguito in figura 1.1, comprendente la zona che si estende da Incisa a Montecatini in direzione est-ovest e da Barberino del Mugello a Castelfiorentino in direzione nord-sud, per un’estensione totale di 40x49 km2. Figura 1.1: Zona di indagine prescelta Le sorgenti emissive presenti nell’area di studio sono state caratterizzate, per lo scenario base, a partire dai dati presenti nell’Inventario Regionale delle Sorgenti Emissive (IRSE). Tali sorgenti sono state suddivise in tre tipologie: le principali sorgenti puntuali (selezionate in base ai criteri definiti nell’IRSE), le principali sorgenti lineari (le autostrade A1 ed A11), e le altre sorgenti emissive (simulate come sorgenti areali diffuse).
    [Show full text]
  • Fire Management Today
    Volume 66 • No. 3 • Summer 2006 Smoke Issues and Air Quality Also: Our Response to Hurricane Katrina Coming Next… The next issue of Fire Management Today (Fall 2006) will feature a series of articles that describe and probe the challenges and opportunities associ­ ated with both elements of “fire use”—prescribed fire and wildland fire use. The issue’s special coordinator is Tim Sexton, fire use program manager for the USDA Forest Service, Fire and Aviation Management, Washington Office, National Interagency Fire Center, Boise, ID. Fire Management Today is published by the Forest Service of the U.S. Department of Agriculture, Washington, DC. The Secretary of Agriculture has determined that the publication of this periodical is necessary in the transaction of the public business required by law of this Department. Fire Management Today is for sale by the Superintendent of Documents, U.S. Government Printing Office, at: Internet: bookstore.gpo.gov Phone: 202-512-1800 Fax: 202-512-2250 Mail: Stop SSOP, Washington, DC 20402-0001 Fire Management Today is available on the World Wide Web at http://www.fs.fed.us/fire/fmt/index.html. Mike Johanns, Secretary Melissa Frey U.S. Department of Agriculture General Manager Dale Bosworth, Chief Paul Keller Forest Service Managing Editor Tom Harbour, Director Madelyn Dillon Fire and Aviation Management Editor Pete Lahm Issue Coordinator The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and, where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program.
    [Show full text]
  • Air Dispersion Modeling Guidelines
    Air Quality Modeling Guidelines for Arizona Air Quality Permits PREPARED BY: FACILITIES EMISSIONS CONTROL SECTION AIR QUALITY DIVISION ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY November 1, 2019 TABLE OF CONTENTS 1 INTRODUCTION.......................................................................................................... 1 1.1 Overview of Regulatory Modeling ........................................................................... 1 1.2 Purpose of an Air Quality Modeling Analysis .......................................................... 2 1.3 Authority for Modeling ............................................................................................. 3 1.4 Acceptable Models.................................................................................................... 3 1.5 Overview of Modeling Protocols and Checklists ..................................................... 4 1.6 Overview of Modeling Reports ................................................................................ 5 2 LEVELS OF MODELING ANALYSIS SOPHISTICATION .................................. 5 2.1 Screening Models or Screening Techniques ............................................................. 6 2.1.1 Screening Models for Near-Field Assessments ................................................. 6 2.1.2 Screening Techniques for Long-Range Transport Assessments ....................... 7 2.2 Refined Modeling ..................................................................................................... 8 2.2.1 AERMOD .........................................................................................................
    [Show full text]
  • Technical Assistance for Improving Emissions Control the Role Of
    This Project is Co-Financed by the European Union and the Republic of Turkey This Project is c This project is co-financed by the European Union and the Republic of Turkey Technical Assistance for Improving Emissions Control Service Contract No: TR0802.03-02/001 Identification No: EuropeAid/128897/D/SER/TR The Role of Emissions Dispersion Modelling in Cost Benefit Analysis Applied to Urban Air Quality Management: Part 1-the Approach (Version 2: 18 May 2012) This publication has been produced with the assistance of the European Union. The content of this publication is the sole responsibility of the Consortium led by PM Group and can in no way be taken to reflect the views of the European Union. Contracting Authority: Central Finance and Contracting Unit, Turkey Implementing Authority / Beneficiary: Ministry of Environment and Urbanisation Project Title: Improving Emissions Control Service Contract Number: TR0802.03-02/001 Identification Number: EuropeAid/128897/D/SER/TR PM Project Number: 300424 This project is co-financed by the European Union and the Republic of Turkey The Role of Emissions Dispersion Modelling in Cost Benefit Analysis Applied to Urban Air Quality Management: Part 1 – the Approach Version 2: 18 May 2012 PM File Number: 300424-06-RP-200 PM Document Number: 300424-06-205(2) CURRENT ISSUE Issue No.: 2 Date: 18/05/2012 Reason for Issue: Final Version for Client Approval Customer Approval Sign-Off Originator Reviewer Approver (if required) Scott Hamilton, Peter Print Name Russell Frost Jim McNelis Faircloth, Chris Dore Signature Date PREVIOUS ISSUES (Type Names) Issue No. Date Originator Reviewer Approver Customer Reason for Issue 1 14/03/2012 Scott Hamilton, Peter Russell Frost Jim McNelis For client review / comment Faircloth, Chris Dore CFCU / MoEU 300424-06-RP-205 (2) TA for Improving Emissions Control 18 May 2012 CONTENTS GLOSSARY OF ACRONYMS ......................................................................................
    [Show full text]
  • 10.5 Development of a Wrf-Aermod Tool for Use in Regulatory Applications
    10.5 DEVELOPMENT OF A WRF-AERMOD TOOL FOR USE IN REGULATORY APPLICATIONS Toree Myers-Cook*, Jon Mallard, and Qi Mao Tennessee Valley Authority (TVA) ABSTRACT available. For rural sources, the closest representative NWS station may be greater than 50- The Tennessee Valley Authority (TVA) has developed 100 kilometers away. Furthermore, NWS data a WRF-AERMOD tool which transforms the Weather limitations - instrumentation limits, missing data, and Research and Forecasting (WRF) model output into lack of surface parameters required by AERMET - the meteorological input needed by AERMOD have motivated the EPA to explore the use of (AERMAP/AERMET/AERMOD), the EPA- prognostic meteorological models, specifically MM5 recommended model for short-range dispersion (Brode 2008), which can provide a timely and spatially modeling. The tool was used to model 2002 comprehensive meteorological dataset for input to emissions from TVA’s Allen Fossil (ALF) Plant in AERMOD. The EPA has been testing an in-house Memphis, Tennessee. Modeling using NWS data MM5-AERMOD tool for possible use in future was also performed and results were compared. regulatory applications. However, since MM5 is no Analyses of modeling results showed several longer supported by its developers and the WRF differences between the two approaches, with much (Weather Research Forecasting) model is now of the inconsistencies attributed to four main findings. considered the state-of-the-art meteorological model First, the NWS-AERMOD approach tended to stay to replace it, TVA developed a WRF-AERMOD tool more unstable in the summer and stable in the winter that takes WRF three-dimensional meteorological with unrealistically high mechanical boundary layer output (surface and upper air) and transforms it into (MBL) heights.
    [Show full text]
  • Atmospheric Deposition of Pcbs in the Spokane River Watershed
    Atmospheric Deposition of PCBs in the Spokane River Watershed March 2019 Publication No. 19-03-003 Publication Information This report is available on the Department of Ecology’s website at https://fortress.wa.gov/ecy/publications/SummaryPages/1903003.html. Data for this project are available at Ecology’s Environmental Information Management (EIM) website: www.ecology.wa.gov/eim/index.htm, search Study ID BERA0013. The Activity Tracker Code for this study is 16-032. Water Resource Inventory Area (WRIA) and 8-digit Hydrologic Unit Code (HUC) numbers for the study area: WRIAs HUC numbers 56 – Hangman 17010305 57 – Middle Spokane 17010306 Contact Information Publications Coordinator Environmental Assessment Program P.O. Box 47600, Olympia, WA 98504-7600 Phone: (360) 407–6764 Washington State Department of Ecology – www.ecology.wa.gov. Headquarters, Olympia (360) 407-6000 Northwest Regional Office, Bellevue (425) 649-7000 Southwest Regional Office, Olympia (360) 407-6300 Central Regional Office, Union Gap (509) 575-2490 Eastern Regional Office, Spokane (509) 329-3400 Cover photo: Atmospheric deposition samplers on the roof of the Spokane Clean Air Agency Building. Photo by Brandee Era-Miller. Any use of product or firm names in this publication is for descriptive purposes only and does not imply endorsement by the author or the Department of Ecology. Accommodation Requests: To request ADA accommodation, including materials in a format for the visually impaired, call Ecology at 360-407-6764, or visit https://ecology.wa.gov/ accessibility. People with impaired hearing may call Washington Relay Service at 711. People with speech disability may call TTY at 877-833-6341.
    [Show full text]
  • Predicting Air Quality Near Roadway Intersections Through the Applicat
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2004 Predicting Air Quality Near Roadway Intersections Through The Applicat Brian Kim University of Central Florida Part of the Environmental Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Kim, Brian, "Predicting Air Quality Near Roadway Intersections Through The Applicat" (2004). Electronic Theses and Dissertations, 2004-2019. 200. https://stars.library.ucf.edu/etd/200 PREDICTING AIR QUALITY NEAR ROADWAY INTERSECTIONS THROUGH THE APPLICATION OF A GAUSSIAN PUFF MODEL TO MOVING SOURCES by BRIAN Y. KIM B.S. University of California at Irvine, 1990 M.S. California Polytechnic State University at San Luis Obispo, 1996 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Civil and Environmental Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Fall Term 2004 ABSTRACT With substantial health and economic impacts attached to many highway-related projects, it has become imperative that the models used to assess air quality be as accurate as possible. The United States (US) Environmental Protection Agency (EPA) currently promulgates the use of CAL3QHC to model concentrations of carbon monoxide (CO) near roadway intersections.
    [Show full text]
  • MARK R THEOBALD.Pdf
    TESIS DOCTORAL / Ph.D THESIS An Intercomparison of Modelling Approaches for Simulating the Atmospheric Dispersion of Ammonia Emitted by Agricultural Sources Mark R. Theobald Madrid 2012 E.T.S.I. Agrónomos Universidad Politécnica de Madrid Departamento de Química y Análisis Agrícola Escuela Técnica Superior de Ingenieros Agrónomos An Intercomparison of Modelling Approaches for Simulating the Atmospheric Dispersion of Ammonia Emitted by Agricultural Sources Autor: Mark R. Theobald Licenciado en Ciencias Físicas (MPhys hons) Directores: Dr. Antonio Vallejo Garcia Doctor en Ciencias Químicas Dr. Mark A. Sutton Doctor en Ciencias Físicas Madrid 2012 Acknowledgements ACKNOWLEDGEMENTS This work was funded by the European Commission through the NitroEurope Integrated Project (Contract No. 017841 of the EU Sixth Framework Programme for Research and Technological Development). The European Science Foundation also provided additional funding through COST Action 729 for the attendance of conferences and workshops and for the collaboration with the University of Lisbon (COST-STSM-729-5799). Firstly I would like to thank my two supervisors Dr. Mark A. Sutton and Prof. Antonio Vallejo for their support and guidance throughout this work. I am grateful to Mark not only for his willingness to discuss and direct this work no matter where he was in the world or whatever time of day it was, but also for the support and encouragement I received when I was at CEH Edinburgh. I am also grateful to Antonio for guiding me through the labyrinths of University bureaucracy. I would also like to thank the other research groups with whom I have collaborated throughout this work. Thanks to all my colleagues at CEH Edinburgh with a special mention to Bill Bealey for his help developing the SCAIL model and to Sim Tang for providing the ALPHA samplers and technical support.
    [Show full text]