Eagle's Complete Trees and Shrubs of New Zealand
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees. -
NEWSLETTER NUMBER 84 JUNE 2006 New Zealand Botanical Society
NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 84 JUNE 2006 New Zealand Botanical Society President: Anthony Wright Secretary/Treasurer: Ewen Cameron Committee: Bruce Clarkson, Colin Webb, Carol West Address: c/- Canterbury Museum Rolleston Avenue CHRISTCHURCH 8001 Subscriptions The 2006 ordinary and institutional subscriptions are $25 (reduced to $18 if paid by the due date on the subscription invoice). The 2006 student subscription, available to full-time students, is $9 (reduced to $7 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $2.50 each from Number 1 (August 1985) to Number 46 (December 1996), $3.00 each from Number 47 (March 1997) to Number 50 (December 1997), and $3.75 each from Number 51 (March 1998) onwards. Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28th February each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next years subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the September 2006 issue is 25 August 2006 Please post contributions to: Joy Talbot 17 Ford Road Christchurch 8002 Send email contributions to [email protected] or [email protected]. Files are preferably in MS Word (Word XP or earlier) or saved as RTF or ASCII. -
The New Zealand Rain Forest: a Comparison with Tropical Rain Forest! J
The New Zealand Rain Forest: A Comparison with Tropical Rain Forest! J. W. DAWSON2 and B. V. SNEDDON2 ABSTRACT: The structure of and growth forms and habits exhibited by the New Zealand rain forest are described and compared with those of lowland tropical rain forest. Theories relating to the frequent regeneration failure of the forest dominants are outlined. The floristic affinities of the forest type are discussed and it is suggested that two main elements can be recognized-lowland tropical and montane tropical. It is concluded that the New Zealand rain forest is comparable to lowland tropical rain forest in structure and in range of special growth forms and habits. It chiefly differs in its lower stature, fewer species, and smaller leaves. The floristic similarity between the present forest and forest floras of the Tertiary in New Zealand suggest that the former may be a floristically reduced derivative of the latter. PART 1 OF THIS PAPER describes the structure The approximate number of species of seed and growth forms of the New Zealand rain plants in these forests is 240. From north to forest as exemplified by a forest in the far north. south there is an overall decrease in number of In Part 2, theories relating to the regeneration species. At about 38°S a number of species, of the dominant trees in the New Zealand rain mostly trees and shrubs, drop out or become forest generally are reviewed briefly, and their restricted to coastal sites, but it is not until about relevance to the situation in the study forest is 42°S, in the South Island, that many of the con considered. -
2002 New Zealand Botanical Society
NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 67 MARCH 2002 New Zealand Botanical Society President: Anthony Wright Secretary/Treasurer: Doug Rogan Committee: Bruce Clarkson, Colin Webb, Carol West Address: c/- Canterbury Museum Rolleston Avenue CHRISTCHURCH 8001 Subscriptions The 2002 ordinary and institutional subscriptions are $18 (reduced to $15 if paid by the due date on the subscription invoice). The 2002 student subscription, available to full-time students, is $9 (reduced to $7 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $2.50 each from Number 1 (August 1985) to Number 46 (December 1996), $3.00 each from Number 47 (March 1997) to Number 50 (December 1997), and $3.75 each from Number 51 (March 1998) onwards. Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28th February each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next years subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the June 2002 issue (68) is 25 May 2002. Please post contributions to: Joy Talbot 23 Salmond Street Christchurch 8002 Send email contributions to [email protected] Files can be in WordPerfect (version 8 or earlier), MS Word (Word 97 or earlier) or saved as RTF or ASCII. -
Ascarina Lucida Var. Lanceolata
Ascarina lucida var. lanceolata COMMON NAME Kermadec Islands Hutu SYNONYMS Ascarina lanceolata Hook.f. FAMILY Chloranthaceae AUTHORITY Ascarina lucida var. lanceolata (Hook.f.) Allan FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No Hutu. Photographer: Bec Stanley ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE ASCLVL CHROMOSOME NUMBER 2n = 26 CURRENT CONSERVATION STATUS Hutu. Photographer: Bec Stanley 2012 | At Risk – Naturally Uncommon | Qualifiers: IE, OL PREVIOUS CONSERVATION STATUSES 2009 | At Risk – Naturally Uncommon | Qualifiers: IE, OL 2004 | Not Threatened BRIEF DESCRIPTION Small bushy tree of upland Kermadec Islands. Leaves narrow and tapering to a narrow tip and with coarse black- tipped teeth on margins. Flowers in clusters of spikes. Fruit small, white. DISTRIBUTION Endemic. Kermadec Islands, Raoul Island only. HABITAT One of the characteristic trees of the wet forests of Raoul Island which are mostly found above 245m. However, in the ravines this tree may extend down to almost sea level. In the wet forest it is mostly a subcanopy tree which co- associates with Coprosma acutifolia, Pseudopanax kermadecensis, Melicytus aff. ramiflorus and on occasion Boehmeria australis subsp. dealbata. Occasionally, such as on the ridge lines and crater rim it may form part of the forest canopy. FEATURES Glabrous gynodioecious tree up to 15 m tall. Trunk up to 500 mm diameter. Bark greyish-white. Branchlets slender, striate, initially pale green maturing dark green to emerald green. Interpetiolar stipules conspicuous, comprising 3 1.2-2.6 mm long pale pink to red, filaments; these connate near base, behind which are 3-6 smaller hyaline filaments. Petioles up to 15-20 mm long, lamina subcoriacous, somewhat fleshy, 50-100 × 10-30 mm, green, emerald green to dark green above, paler beneath, serrations weakly pigmented, pink to pale maroon often fading into pale pink spotting, narrowly lanceolate, lanceolate, lanceolate- oblong to narrowly elliptic, acuminate to acute. -
Programa Fondecyt Informe Final Etapa 2015 Comisión Nacional De Investigacion Científica Y Tecnológica Version Oficial Nº 2
PROGRAMA FONDECYT INFORME FINAL ETAPA 2015 COMISIÓN NACIONAL DE INVESTIGACION CIENTÍFICA Y TECNOLÓGICA VERSION OFICIAL Nº 2 FECHA: 24/12/2015 Nº PROYECTO : 3130417 DURACIÓN : 3 años AÑO ETAPA : 2015 TÍTULO PROYECTO : EVOLUTIONARY AND DEVELOPMENTAL HISTORY OF THE DIVERSITY OF FLORAL CHARACTERS WITHIN OXALIDALES DISCIPLINA PRINCIPAL : BOTANICA GRUPO DE ESTUDIO : BIOLOGIA 1 INVESTIGADOR(A) RESPONSABLE : KESTER JOHN BULL HEREÑU DIRECCIÓN : COMUNA : CIUDAD : REGIÓN : METROPOLITANA FONDO NACIONAL DE DESARROLLO CIENTIFICO Y TECNOLOGICO (FONDECYT) Moneda 1375, Santiago de Chile - casilla 297-V, Santiago 21 Telefono: 2435 4350 FAX 2365 4435 Email: [email protected] INFORME FINAL PROYECTO FONDECYT POSTDOCTORADO OBJETIVOS Cumplimiento de los Objetivos planteados en la etapa final, o pendientes de cumplir. Recuerde que en esta sección debe referirse a objetivos desarrollados, NO listar actividades desarrolladas. Nº OBJETIVOS CUMPLIMIENTO FUNDAMENTO 1 1. Creating a database of morphological TOTAL La base de datos ya se encuentra en el sistema characters of perianth and androecium in the 52 PROTEUS y cuenta con el 733 registros genera of the Oxalidales from data gained from correspondientes a información acerca de 24 literature revision and direct observation of living variables morfológicas para 56 taxa de los collection and herbaria. Traits to be considered Oxalidales representando las siete familias y 51 are: presence or absence of calix and corolla, géneros del orden. aestivation pattern of calix and corolla, number of stamina, number of androecial cycles, relative position of stamina cycles (alternate-opposite), direction of stamen initiation, kind of stamina proliferation (primary or secondary). 2 2. Reconstructing the character state evolution of TOTAL Se ha hecho el estudio de reconstrucción de the abovementioned attributes using the available estados de carácter en base a parsimonia con phylogenetic data. -
The Species of Alseuosmia (Alseuosmiaceae)
New Zealand Journal of Botany, 1978, Vol. 16: 271-7. 271 The species of Alseuosmia (Alseuosmiaceae) RHYS O. GARDNER Department of Botany, University of Auckland, Private Bag, Auckland, New Zealand (Received 15 September 1977) ABSTRACT A new species Alseuosmia turneri R. 0. Gardner (Alseuosmiaceae Airy Shaw) from the Volcanic Plateau, North Island, New Zealand is described and illustrated. A. linariifolia A. Cunn. is reduced to a variety of A. banksii A. Cunn. and A. quercifolia A. Cunn. is given hybrid status (=^4. banksii A. Cunn. x A. macrophylla A. Cunn.). A key to the four Alseuosmia species, synonymy, and a generalised distribution map are given. A. pusilla Col. is illustrated for the first time. INTRODUCTION judged to be frequent between only one pair of Allan Cunningham (1839) described eight species and the "excessive variability" lies mostly species of a new flowering plant genus Alseuosmia there. from material collected in the Bay of Islands region by Banks and Solander in 1769, by himself in 1826 and 1838, and by his brother Richard in 1833-4. The A NEW SPECIES OF ALSEUOSMIA species, all shrubs of the lowland forest, were sup- A. CUNN. posed to differ from one another chiefly in the shape and toothing of their leaves. An undescribed species of Alseuosmia from the Hooker (1852-5, 1864), with the benefit of Waimarino region of the Volcanic Plateau has been additional Colenso and Sinclair material, reduced known for some time (Cockayne 1928, p. 179; A. P. Cunningham's species to four, but stated that these Druce in Atkinson 1971). The following description four species were "excessively variable". -
Edition 2 from Forest to Fjaeldmark the Vegetation Communities Highland Treeless Vegetation
Edition 2 From Forest to Fjaeldmark The Vegetation Communities Highland treeless vegetation Richea scoparia Edition 2 From Forest to Fjaeldmark 1 Highland treeless vegetation Community (Code) Page Alpine coniferous heathland (HCH) 4 Cushion moorland (HCM) 6 Eastern alpine heathland (HHE) 8 Eastern alpine sedgeland (HSE) 10 Eastern alpine vegetation (undifferentiated) (HUE) 12 Western alpine heathland (HHW) 13 Western alpine sedgeland/herbland (HSW) 15 General description Rainforest and related scrub, Dry eucalypt forest and woodland, Scrub, heathland and coastal complexes. Highland treeless vegetation communities occur Likewise, some non-forest communities with wide within the alpine zone where the growth of trees is environmental amplitudes, such as wetlands, may be impeded by climatic factors. The altitude above found in alpine areas. which trees cannot survive varies between approximately 700 m in the south-west to over The boundaries between alpine vegetation communities are usually well defined, but 1 400 m in the north-east highlands; its exact location depends on a number of factors. In many communities may occur in a tight mosaic. In these parts of Tasmania the boundary is not well defined. situations, mapping community boundaries at Sometimes tree lines are inverted due to exposure 1:25 000 may not be feasible. This is particularly the or frost hollows. problem in the eastern highlands; the class Eastern alpine vegetation (undifferentiated) (HUE) is used in There are seven specific highland heathland, those areas where remote sensing does not provide sedgeland and moorland mapping communities, sufficient resolution. including one undifferentiated class. Other highland treeless vegetation such as grasslands, herbfields, A minor revision in 2017 added information on the grassy sedgelands and wetlands are described in occurrence of peatland pool complexes, and other sections. -
Pollination Ecology and Evolution of Epacrids
Pollination Ecology and Evolution of Epacrids by Karen A. Johnson BSc (Hons) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania February 2012 ii Declaration of originality This thesis contains no material which has been accepted for the award of any other degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Karen A. Johnson Statement of authority of access This thesis may be made available for copying. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Karen A. Johnson iii iv Abstract Relationships between plants and their pollinators are thought to have played a major role in the morphological diversification of angiosperms. The epacrids (subfamily Styphelioideae) comprise more than 550 species of woody plants ranging from small prostrate shrubs to temperate rainforest emergents. Their range extends from SE Asia through Oceania to Tierra del Fuego with their highest diversity in Australia. The overall aim of the thesis is to determine the relationships between epacrid floral features and potential pollinators, and assess the evolutionary status of any pollination syndromes. The main hypotheses were that flower characteristics relate to pollinators in predictable ways; and that there is convergent evolution in the development of pollination syndromes. -
Nzbotsoc No 107 March 2012
NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 107 March 2012 New Zealand Botanical Society President: Anthony Wright Secretary/Treasurer: Ewen Cameron Committee: Bruce Clarkson, Colin Webb, Carol West Address: c/- Canterbury Museum Rolleston Avenue CHRISTCHURCH 8013 Subscriptions The 2012 ordinary and institutional subscriptions are $25 (reduced to $18 if paid by the due date on the subscription invoice). The 2012 student subscription, available to full-time students, is $12 (reduced to $9 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $7.00 each. Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28 February each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next years subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the June 2012 issue is 25 May 2012. Please post contributions to: Lara Shepherd Museum of New Zealand Te Papa Tongarewa P.O. Box 467 Wellington Send email contributions to [email protected]. Files are preferably in MS Word, as an open text document (Open Office document with suffix “.odt”) or saved as RTF or ASCII. Macintosh files can also be accepted. Graphics can be sent as TIF JPG, or BMP files; please do not embed images into documents. -
Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear. -
Ackama Rosifolia
Ackama rosifolia COMMON NAME Makamaka SYNONYMS Caldcluvia rosifolia (A.Cunn.) Hoogland FAMILY Cunoniaceae AUTHORITY Ackama rosifolia A.Cunn. FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE ACKROS Fruit. In cultivation. Nov 2006. Photographer: Peter de Lange CHROMOSOME NUMBER 2n=32 CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened BRIEF DESCRIPTION Small Northland tree. Leaves consisting of 4 to 10 or more opposite pairs of toothed leaflets and a terminal leaflet which have small hairy pits at the junction of the main leaflet veins. Flowers in dense sprays of cream coloured flowers developing into pinkish or red fruits. DISTRIBUTION Endemic. North Island only from near Kaitaia south to just north of Wellsford. Often rather local in its occurrences, particularly south of Whangarei. Fruit. In cultivation. Nov 2006. Photographer: SIMILAR TAXA Peter de Lange Very similar to juvenile foliage of Weinmannia silvicola but can be distinguished by the domatia on the underside of the leaves. These domatia are known as tuft pocket domatia and occur at the junction of the mid-rib and the side vein where there is a pocket of hairs. Makamaka also has huge prominent stipules that are large, green and heavily veined. FLOWER COLOURS Cream, White LIFE CYCLE Hairy carpels dispersed by wind (Thorsen et al., 2009). PROPAGATION TECHNIQUE Can be grown from semi-hardwood cuttings and fresh seed. A fast growing, and rather attractive small tree. However, very drought intolerant, and needs a damp soil and sunny aspect to thrive.