Human Louse-Transmitted Infectious Diseases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Burmese Amber Taxa
Burmese (Myanmar) amber taxa, on-line supplement v.2021.1 Andrew J. Ross 21/06/2021 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] Dr Andrew Ross | National Museums Scotland (nms.ac.uk) This taxonomic list is a supplement to Ross (2021) and follows the same format. It includes taxa described or recorded from the beginning of January 2021 up to the end of May 2021, plus 3 species that were named in 2020 which were missed. Please note that only higher taxa that include new taxa or changed/corrected records are listed below. The list is until the end of May, however some papers published in June are listed in the ‘in press’ section at the end, but taxa from these are not yet included in the checklist. As per the previous on-line checklists, in the bibliography page numbers have been added (in blue) to those papers that were published on-line previously without page numbers. New additions or changes to the previously published list and supplements are marked in blue, corrections are marked in red. In Ross (2021) new species of spider from Wunderlich & Müller (2020) were listed as being authored by both authors because there was no indication next to the new name to indicate otherwise, however in the introduction it was indicated that the author of the new taxa was Wunderlich only. Where there have been subsequent taxonomic changes to any of these species the authorship has been corrected below. -
CD Alert Monthly Newsletter of National Centre for Disease Control, Directorate General of Health Services, Government of India
CD Alert Monthly Newsletter of National Centre for Disease Control, Directorate General of Health Services, Government of India May - July 2009 Vol. 13 : No. 1 SCRUB TYPHUS & OTHER RICKETTSIOSES it lacks lipopolysaccharide and peptidoglycan RICKETTSIAL DISEASES and does not have an outer slime layer. It is These are the diseases caused by rickettsiae endowed with a major surface protein (56kDa) which are small, gram negative bacilli adapted and some minor surface protein (110, 80, 46, to obligate intracellular parasitism, and 43, 39, 35, 25 and 25kDa). There are transmitted by arthropod vectors. These considerable differences in virulence and organisms are primarily parasites of arthropods antigen composition among individual strains such as lice, fleas, ticks and mites, in which of O.tsutsugamushi. O.tsutsugamushi has they are found in the alimentary canal. In many serotypes (Karp, Gillian, Kato and vertebrates, including humans, they infect the Kawazaki). vascular endothelium and reticuloendothelial GLOBAL SCENARIO cells. Commonly known rickettsial disease is Scrub Typhus. Geographic distribution of the disease occurs within an area of about 13 million km2 including- The family Rickettsiaeceae currently comprises Afghanistan and Pakistan to the west; Russia of three genera – Rickettsia, Orientia and to the north; Korea and Japan to the northeast; Ehrlichia which appear to have descended Indonesia, Papua New Guinea, and northern from a common ancestor. Former members Australia to the south; and some smaller of the family, Coxiella burnetii, which causes islands in the western Pacific. It was Q fever and Rochalimaea quintana causing first observed in Japan where it was found to trench fever have been excluded because the be transmitted by mites. -
WO 2013/042140 A4 28 March 2013 (28.03.2013) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/042140 A4 28 March 2013 (28.03.2013) P O P C T (51) International Patent Classification: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, A61K 31/197 (2006.01) A61K 45/06 (2006.01) RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, A61K 31/60 (2006.01) A61P 31/00 (2006.01) TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, A61K 33/22 (2006.01) ZM, ZW. (21) International Application Number: (84) Designated States (unless otherwise indicated, for every PCT/IN20 12/000634 kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (22) International Filing Date UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 24 September 2012 (24.09.2012) TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (25) Filing Language: English EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (26) Publication Language: English TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (30) Priority Data: ML, MR, NE, SN, TD, TG). 2792/DEL/201 1 23 September 201 1 (23.09.201 1) IN Declarations under Rule 4.17 : (72) Inventor; and — of inventorship (Rule 4.17(iv)) (71) Applicant : CHAUDHARY, Manu [IN/IN]; 51-52, In dustrial Area Phase- 1, Panchkula 1341 13 (IN). -
Typhus Fever, Organism Inapparently
Rickettsia Importance Rickettsia prowazekii is a prokaryotic organism that is primarily maintained in prowazekii human populations, and spreads between people via human body lice. Infected people develop an acute, mild to severe illness that is sometimes complicated by neurological Infections signs, shock, gangrene of the fingers and toes, and other serious signs. Approximately 10-30% of untreated clinical cases are fatal, with even higher mortality rates in Epidemic typhus, debilitated populations and the elderly. People who recover can continue to harbor the Typhus fever, organism inapparently. It may re-emerge years later and cause a similar, though Louse–borne typhus fever, generally milder, illness called Brill-Zinsser disease. At one time, R. prowazekii Typhus exanthematicus, regularly caused extensive outbreaks, killing thousands or even millions of people. This gave rise to the most common name for the disease, epidemic typhus. Epidemic typhus Classical typhus fever, no longer occurs in developed countries, except as a sporadic illness in people who Sylvatic typhus, have acquired it while traveling, or who have carried the organism for years without European typhus, clinical signs. In North America, R. prowazekii is also maintained in southern flying Brill–Zinsser disease, Jail fever squirrels (Glaucomys volans), resulting in sporadic zoonotic cases. However, serious outbreaks still occur in some resource-poor countries, especially where people are in close contact under conditions of poor hygiene. Epidemics have the potential to emerge anywhere social conditions disintegrate and human body lice spread unchecked. Last Updated: February 2017 Etiology Rickettsia prowazekii is a pleomorphic, obligate intracellular, Gram negative coccobacillus in the family Rickettsiaceae and order Rickettsiales of the α- Proteobacteria. -
Insecta: Psocodea: 'Psocoptera'
Molecular systematics of the suborder Trogiomorpha (Insecta: Title Psocodea: 'Psocoptera') Author(s) Yoshizawa, Kazunori; Lienhard, Charles; Johnson, Kevin P. Citation Zoological Journal of the Linnean Society, 146(2): 287-299 Issue Date 2006-02 DOI Doc URL http://hdl.handle.net/2115/43134 The definitive version is available at www.blackwell- Right synergy.com Type article (author version) Additional Information File Information 2006zjls-1.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2006? 2006 146? •••• zoj_207.fm Original Article MOLECULAR SYSTEMATICS OF THE SUBORDER TROGIOMORPHA K. YOSHIZAWA ET AL. Zoological Journal of the Linnean Society, 2006, 146, ••–••. With 3 figures Molecular systematics of the suborder Trogiomorpha (Insecta: Psocodea: ‘Psocoptera’) KAZUNORI YOSHIZAWA1*, CHARLES LIENHARD2 and KEVIN P. JOHNSON3 1Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan 2Natural History Museum, c.p. 6434, CH-1211, Geneva 6, Switzerland 3Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820, USA Received March 2005; accepted for publication July 2005 Phylogenetic relationships among extant families in the suborder Trogiomorpha (Insecta: Psocodea: ‘Psocoptera’) 1 were inferred from partial sequences of the nuclear 18S rRNA and Histone 3 and mitochondrial 16S rRNA genes. Analyses of these data produced trees that largely supported the traditional classification; however, monophyly of the infraorder Psocathropetae (= Psyllipsocidae + Prionoglarididae) was not recovered. Instead, the family Psyllipso- cidae was recovered as the sister taxon to the infraorder Atropetae (= Lepidopsocidae + Trogiidae + Psoquillidae), and the Prionoglarididae was recovered as sister to all other families in the suborder. -
Leptospirosis and Coinfection: Should We Be Concerned?
International Journal of Environmental Research and Public Health Review Leptospirosis and Coinfection: Should We Be Concerned? Asmalia Md-Lasim 1,2, Farah Shafawati Mohd-Taib 1,* , Mardani Abdul-Halim 3 , Ahmad Mohiddin Mohd-Ngesom 4 , Sheila Nathan 1 and Shukor Md-Nor 1 1 Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia; [email protected] (A.M.-L.); [email protected] (S.N.); [email protected] (S.M.-N.) 2 Herbal Medicine Research Centre (HMRC), Institute for Medical Research (IMR), National Institue of Health (NIH), Ministry of Health, Shah Alam 40170, Selangor, Malaysia 3 Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; [email protected] 4 Center for Toxicology and Health Risk, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Federal Territory of Kuala Lumpur, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +60-12-3807701 Abstract: Pathogenic Leptospira is the causative agent of leptospirosis, an emerging zoonotic disease affecting animals and humans worldwide. The risk of host infection following interaction with environmental sources depends on the ability of Leptospira to persist, survive, and infect the new host to continue the transmission chain. Leptospira may coexist with other pathogens, thus providing a suitable condition for the development of other pathogens, resulting in multi-pathogen infection in humans. Therefore, it is important to better understand the dynamics of transmission by these pathogens. We conducted Boolean searches of several databases, including Google Scholar, PubMed, Citation: Md-Lasim, A.; Mohd-Taib, SciELO, and ScienceDirect, to identify relevant published data on Leptospira and coinfection with F.S.; Abdul-Halim, M.; Mohd-Ngesom, other pathogenic bacteria. -
Louse Rodent Repellents ISSUE
Pest Control Newsletter Issue No.36 Oct 2014 Published by the Rodent Repellents Pest Control Advisory Section Issue No.36 Oct 2014 INSIDE THIS Louse Rodent Repellents ISSUE Louse Importance Head lice Louse (plural: lice) is the common name for members Head lice (Pediculus humanus capitis) infest humans and of over 3,000 species of wingless insects of the order their infestations have been reported from all over the Phthiraptera. They are obligate ectoparasites, which world. Normally, head lice infest a new host only by close occur on all orders of birds and most orders of mammals. contact between individuals. Head-to-head contact is Most lice are scavengers, feeding on skin and other debris by far the most common route of head lice transmission. found on the host’s body, but some species feed on Head lice are not known to be vectors of diseases. sebaceous secretions and blood. Certain bloodsucking lice are significant vectors of disease agents. Body lice Body lice (Pediculus humanus humanus) infestations are Biology found occasionally on homeless persons who do not Lice are tiny (2 – 4 mm long), elongated, soft-bodied, have access to a change of clean clothes or facilities for light-colored, wingless insects that are dorsoventrally bathing. Body lice are indistinguishable in appearance flattened, with an angular ovoid head and a nine- from the head lice, but they are adapted to lay eggs in segmented abdomen (Figure 1). Lice are being born clothing, rather than at hairs. Body lice are known to as miniature versions of the adult, known as nymphs. -
Managing Pests Around the Home
Agricultural Extension Service The University of Tennessee PB1303 ManagingManaging PestsPests AroundAround thethe HomeHome 1 Contents What are household pests? 3 Where are these pests found? 3 What attracts them to your home? 3 What can I do to prevent pest problems in my home? 3 When should I contact a professional pest control company? 3 When should you ask for professional help? 3 Managing Pests and Reducing the Risk of Pesticide Exposure: 4 1. Inspecting and Monitoring 4 2. Identification 4 3. Modifying the Environment 4 Removing Access to Food 4 Water and Moisture 4 Drainage 4 Crawl Space Ventilation 5 Attic Ventilation 5 Exclusion 5 Landscaping Practices 6 Lighting 7 4. Household Pest Control Measures to Supplement Prevention Measures 7 Vacuuming 7 Traps 7 Pesticides 7 Selecting the Best Formulation for a Site 8 Ultrasonic Pest Control Devices 8 Reference to other related UT publications: Additional information is available from your Extension agent when indicated by SP or PB numbered series. 2 special importance on controlling pests by limiting their access to food, water and shelter. Control devices such as ManagingManaging vacuums and traps are emphasized. Pesticides are used in a manner to reduce exposure to you, your property and the environment. Always read the entire pesticide label for directions on mixing, applying, safety precautions, storing PestsPests and disposing of the product before using it. If you are unsure about how to control a household pest after reading this publication, ask your county Extension agent for additional assistance. AroundAround Some pests, such as termites, require the use of special equipment and knowledge to apply large volumes of insecticides to all possible entry points into the struc- thethe HomeHome ture. -
Folk Taxonomy, Nomenclature, Medicinal and Other Uses, Folklore, and Nature Conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3
Ulicsni et al. Journal of Ethnobiology and Ethnomedicine (2016) 12:47 DOI 10.1186/s13002-016-0118-7 RESEARCH Open Access Folk knowledge of invertebrates in Central Europe - folk taxonomy, nomenclature, medicinal and other uses, folklore, and nature conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3 Abstract Background: There is scarce information about European folk knowledge of wild invertebrate fauna. We have documented such folk knowledge in three regions, in Romania, Slovakia and Croatia. We provide a list of folk taxa, and discuss folk biological classification and nomenclature, salient features, uses, related proverbs and sayings, and conservation. Methods: We collected data among Hungarian-speaking people practising small-scale, traditional agriculture. We studied “all” invertebrate species (species groups) potentially occurring in the vicinity of the settlements. We used photos, held semi-structured interviews, and conducted picture sorting. Results: We documented 208 invertebrate folk taxa. Many species were known which have, to our knowledge, no economic significance. 36 % of the species were known to at least half of the informants. Knowledge reliability was high, although informants were sometimes prone to exaggeration. 93 % of folk taxa had their own individual names, and 90 % of the taxa were embedded in the folk taxonomy. Twenty four species were of direct use to humans (4 medicinal, 5 consumed, 11 as bait, 2 as playthings). Completely new was the discovery that the honey stomachs of black-coloured carpenter bees (Xylocopa violacea, X. valga)were consumed. 30 taxa were associated with a proverb or used for weather forecasting, or predicting harvests. Conscious ideas about conserving invertebrates only occurred with a few taxa, but informants would generally refrain from harming firebugs (Pyrrhocoris apterus), field crickets (Gryllus campestris) and most butterflies. -
What Do We Know About Q Fever in Mexico?
ARTÍCULO ORIGINAL What do we know about Q fever in Mexico? Javier Araujo-Meléndez,* José Sifuentes-Osornio,* J. Miriam Bobadilla-del-Valle,* Antonio Aguilar-Cruz,** Orestes Torres-Ángeles,** José L. Ramírez-González,*** Alfredo Ponce-de-León,* Guillermo M. Ruiz-Palacios,* M. Lourdes Guerrero-Almeida* * Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. ** Jurisdicción Sanitaria No. 4, Huichapan, Hidalgo. *** Hospital General, Huichapan, Hidalgo. ABSTRACT ¿Qué sabemos acerca de la fiebre Q en México? In Mexico, Q fever is considered a rare disease among hu- RESUMEN mans and animals. From March to May of 2008, three pa- tients were referred, from the state of Hidalgo to a En México la fiebre Q se considera una enfermedad rara en- tertiary-care center in Mexico City, with an acute febrile ill- tre los humanos y los animales. Sin embargo, entre marzo y ness that was diagnosed as Q fever. We decided to undertake a mayo 2008 tres pacientes del estado de Hidalgo fueron refe- cross sectional pilot study to identify cases of acute disease in ridos a un hospital de tercer nivel en la Ciudad de México this particular region and to determine the seroprevalence of por una enfermedad febril aguda y fueron diagnosticados Coxiella burnetii among healthy individuals with known risk con fiebre Q. Se decidió llevar a cabo un estudio piloto para factors for infection with this bacteria. Q fever was defined identificar casos de enfermedad aguda en esa región y deter- according to the Centers for Disease Control and Prevention minar la prevalencia serológica de Coxiella burnetii en indi- criteria. -
Drought and Epidemic Typhus, Central Mexico, 1655–1918 Jordan N
HISTORICAL REVIEW Drought and Epidemic Typhus, Central Mexico, 1655–1918 Jordan N. Burns, Rudofo Acuna-Soto, and David W. Stahle Epidemic typhus is an infectious disease caused by the Mexican revolution. Mexico’s rich historical record the bacterium Rickettsia prowazekii and transmitted by of epidemic disease is documented in archives of demo- body lice (Pediculus humanus corporis). This disease oc- graphic data that include census records, health records, curs where conditions are crowded and unsanitary. This dis- death certificates, and accounts of physicians. Mexico ease accompanied war, famine, and poverty for centuries. City and the high, densely populated valleys of central Historical and proxy climate data indicate that drought was Mexico were particularly susceptible to smallpox, chol- a major factor in the development of typhus epidemics in Mexico during 1655–1918. Evidence was found for 22 large era, and typhus epidemics because of crowding and poor typhus epidemics in central Mexico, and tree-ring chronolo- sanitation (4). Numerous epidemics, some identified as gies were used to reconstruct moisture levels over central typhus, occurred during the colonial and early modern Mexico for the past 500 years. Below-average tree growth, eras. We have compiled a record of 22 typhus epidemics reconstructed drought, and low crop yields occurred during in Mexico during 1655–1918. We compared the timing 19 of these 22 typhus epidemics. Historical documents de- of these typhus epidemics with tree-ring reconstructions scribe how drought created large numbers of environmental of growing-season moisture conditions to assess the re- refugees that fled the famine-stricken countryside for food lationship between climate and typhus during this period. -
Overview of Fever of Unknown Origin in Adult and Paediatric Patients L
Overview of fever of unknown origin in adult and paediatric patients L. Attard1, M. Tadolini1, D.U. De Rose2, M. Cattalini2 1Infectious Diseases Unit, Department ABSTRACT been proposed, including removing the of Medical and Surgical Sciences, Alma Fever of unknown origin (FUO) can requirement for in-hospital evaluation Mater Studiorum University of Bologna; be caused by a wide group of dis- due to an increased sophistication of 2Paediatric Clinic, University of Brescia eases, and can include both benign outpatient evaluation. Expansion of the and ASST Spedali Civili di Brescia, Italy. and serious conditions. Since the first definition has also been suggested to Luciano Attard, MD definition of FUO in the early 1960s, include sub-categories of FUO. In par- Marina Tadolini, MD Domenico Umberto De Rose, MD several updates to the definition, di- ticular, in 1991 Durak and Street re-de- Marco Cattalini, MD agnostic and therapeutic approaches fined FUO into four categories: classic Please address correspondence to: have been proposed. This review out- FUO; nosocomial FUO; neutropenic Marina Tadolini, MD, lines a case report of an elderly Ital- FUO; and human immunodeficiency Via Massarenti 11, ian male patient with high fever and virus (HIV)-associated FUO, and pro- 40138 Bologna, Italy. migrating arthralgia who underwent posed three outpatient visits and re- E-mail: [email protected] many procedures and treatments before lated investigations as an alternative to Received on November 27, 2017, accepted a final diagnosis of Adult-onset Still’s “1 week of hospitalisation” (5). on December, 7, 2017. disease was achieved. This case report In 1997, Arnow and Flaherty updated Clin Exp Rheumatol 2018; 36 (Suppl.