What Have We Learned from the PDP-11?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Case Against the GOT' O William a . Wulf, Carnegie-Mellon Universit Y
A Case Against the GOT' O William A . Wulf, Carnegie-Mellon Universit y ABSTRAC T suggestion to ban the goto appears to have been a part of the computing folklore for several years , It has been proposed, by E . W . Dijkstra and others , to this author's knowledge the suggestion wa s that the goto statement in programming language i s first made in print by Professor E . W . Dijkstra i n a principal culprit in programs which are diffi- a letter to the editor of the _Communications o f cult to understand, modify, and debug . More cor- the ACM in 1968 (1) . rectly, the argument is that it is possible t o In this paper we shall examine the rational e use the goto to synthesize program structures wit h for the elimination of the Soto in programin g these undesirable properties . Not all uses of th e languages, and some of the theoretical and practi- goto are to be considered harmful ; however, it i s cal implications of its (total) elimination . further argued that the "good" uses of the got o fall into one of a small number of specific case s RATIONAL E which may be handled by specific language con- structs . This paper summarizes the arguments i n At one level, the rationale for eliminatin g favor of eliminating the goto statement and som e the poto has already been given in the introduc- of the theoretical and practical implications o f tion . Namely, it is possible to use the goto in a the proposal . manner which obscures the logical structure of a program to a point where it becomes virtually im- KEY WORDS AND PHRASES : programming, programmin g possible to understand (1,3,4), It is not claimed languages, goto-less programming, structured pro- that every use of the goto obscures the logica l grammin g structure of a program ; it is only claimed that i t CR CATEGORIES : 4 .2, 4 .22, 5 .2 4 is possible to use the Soto to fabricate a "rat' s nest" of control flow which has the undesirabl e INTRODUCTION properties mentioned above . -
Pdp11-40.Pdf
processor handbook digital equipment corporation Copyright© 1972, by Digital Equipment Corporation DEC, PDP, UNIBUS are registered trademarks of Digital Equipment Corporation. ii TABLE OF CONTENTS CHAPTER 1 INTRODUCTION 1·1 1.1 GENERAL ............................................. 1·1 1.2 GENERAL CHARACTERISTICS . 1·2 1.2.1 The UNIBUS ..... 1·2 1.2.2 Central Processor 1·3 1.2.3 Memories ........... 1·5 1.2.4 Floating Point ... 1·5 1.2.5 Memory Management .............................. .. 1·5 1.3 PERIPHERALS/OPTIONS ......................................... 1·5 1.3.1 1/0 Devices .......... .................................. 1·6 1.3.2 Storage Devices ...................................... .. 1·6 1.3.3 Bus Options .............................................. 1·6 1.4 SOFTWARE ..... .... ........................................... ............. 1·6 1.4.1 Paper Tape Software .......................................... 1·7 1.4.2 Disk Operating System Software ........................ 1·7 1.4.3 Higher Level Languages ................................... .. 1·7 1.5 NUMBER SYSTEMS ..................................... 1-7 CHAPTER 2 SYSTEM ARCHITECTURE. 2-1 2.1 SYSTEM DEFINITION .............. 2·1 2.2 UNIBUS ......................................... 2-1 2.2.1 Bidirectional Lines ...... 2-1 2.2.2 Master-Slave Relation .. 2-2 2.2.3 Interlocked Communication 2-2 2.3 CENTRAL PROCESSOR .......... 2-2 2.3.1 General Registers ... 2-3 2.3.2 Processor Status Word ....... 2-4 2.3.3 Stack Limit Register 2-5 2.4 EXTENDED INSTRUCTION SET & FLOATING POINT .. 2-5 2.5 CORE MEMORY . .... 2-6 2.6 AUTOMATIC PRIORITY INTERRUPTS .... 2-7 2.6.1 Using the Interrupts . 2-9 2.6.2 Interrupt Procedure 2-9 2.6.3 Interrupt Servicing ............ .. 2-10 2.7 PROCESSOR TRAPS ............ 2-10 2.7.1 Power Failure .............. -
Connecticut DEEP's List of Compliant Electronics Manufacturers Notice to Connecticut Retailersi
Connecticut DEEP’s List of Compliant Electronics manufacturers Notice to Connecticut Retailersi: This list below identifies electronics manufacturers that are in compliance with the registration and payment obligations under Connecticut’s State-wide Electronics Program. Retailers must check this list before selling Covered Electronic Devices (“CEDs”) in Connecticut. If there is a brand of a CED that is not listed below including retail over the internet, the retailer must not sell the CED to Connecticut consumers pursuant to section 22a-634 of the Connecticut General Statutes. Manufacturer Brands CED Type Acer America Corp. Acer Computer, Monitor, Television, Printer eMachines Computer, Monitor Gateway Computer, Monitor, Television ALR Computer, Monitor Gateway 2000 Computer, Monitor AG Neovo Technology AG Neovo Monitor Corporation Amazon Fulfillment Service, Inc. Kindle Computers Amazon Kindle Kindle Fire Fire American Future Technology iBuypower Computer Corporation dba iBuypower Apple, Inc. Apple Computer, Monitor, Printer NeXT Computer, Monitor iMac Computer Mac Pro Computer Mac Mini Computer Thunder Bolt Display Monitor Archos, Inc. Archos Computer ASUS Computer International ASUS Computer, Monitor Eee Computer Nexus ASUS Computer EEE PC Computer Atico International USA, Inc. Digital Prism Television ATYME CORPRATION, INC. ATYME Television Bang & Olufsen Operations A/S Bang & Olufsen Television BenQ America Corp. BenQ Monitor Best Buy Insignia Television Dynex Television UB Computer Toshiba Television VPP Matrix Computer, Monitor Blackberry Limited Balckberry PlayBook Computer Bose Corp. Bose Videowave Television Brother International Corp. Brother Monitor, Printer Canon USA, Inc. Canon Computer, Monitor, Printer Oce Printer Imagistics Printer Cellco Partnership Verizon Ellipsis Computer Changhong Trading Corp. USA Changhong Television (Former Guangdong Changhong Electronics Co. LTD) Craig Electronics Craig Computer, Television Creative Labs, Inc. -
Appendix D an Alternative to RISC: the Intel 80X86
D.1 Introduction D-2 D.2 80x86 Registers and Data Addressing Modes D-3 D.3 80x86 Integer Operations D-6 D.4 80x86 Floating-Point Operations D-10 D.5 80x86 Instruction Encoding D-12 D.6 Putting It All Together: Measurements of Instruction Set Usage D-14 D.7 Concluding Remarks D-20 D.8 Historical Perspective and References D-21 D An Alternative to RISC: The Intel 80x86 The x86 isn’t all that complex—it just doesn’t make a lot of sense. Mike Johnson Leader of 80x86 Design at AMD, Microprocessor Report (1994) © 2003 Elsevier Science (USA). All rights reserved. D-2 I Appendix D An Alternative to RISC: The Intel 80x86 D.1 Introduction MIPS was the vision of a single architect. The pieces of this architecture fit nicely together and the whole architecture can be described succinctly. Such is not the case of the 80x86: It is the product of several independent groups who evolved the architecture over 20 years, adding new features to the original instruction set as you might add clothing to a packed bag. Here are important 80x86 milestones: I 1978—The Intel 8086 architecture was announced as an assembly language– compatible extension of the then-successful Intel 8080, an 8-bit microproces- sor. The 8086 is a 16-bit architecture, with all internal registers 16 bits wide. Whereas the 8080 was a straightforward accumulator machine, the 8086 extended the architecture with additional registers. Because nearly every reg- ister has a dedicated use, the 8086 falls somewhere between an accumulator machine and a general-purpose register machine, and can fairly be called an extended accumulator machine. -
Case No COMP/M.1694 - EMC / DATA GENERAL
EN Case No COMP/M.1694 - EMC / DATA GENERAL Only the English text is available and authentic. REGULATION (EEC) No 4064/89 MERGER PROCEDURE Article 6(1)(b) NON-OPPOSITION Date: 06/10/1999 Also available in the CELEX database Document No 399M1694 Office for Official Publications of the European Communities L-2985 Luxembourg COMMISSION OF THE EUROPEAN COMMUNITIES Brussels, 06.10.1999 SG(99)D/7991 In the published version of this decision, some information has been omitted pursuant to Article 17(2) of Council Regulation (EEC) No PUBLIC VERSION 4064/89 concerning non-disclosure of business secrets and other confidential information. The MERGER PROCEDURE omissions are shown thus […]. ARTICLE 6(1)(b) DECISION Where possible the information omitted has been replaced by ranges of figures or a general description. To the notifying party Dear Sirs, Subject : Case No IV/M.1694-EMC/DATA GENERAL Notification of 3-09-19999 pursuant to Article 4 of Council Regulation No 4064/89. 1. On 3 September 1999, the Commission received a notification of a proposed concentration pursuant to Article 4 of Council Regulation (EEC) No 4064/891 by which EMC Corporation (“EMC”), USA, will acquire sole control of Data General Corporation (“Data General”), USA. 2. After examination of the notification the Commission has concluded that the notified operation falls within the scope of Council Regulation (EEC) No 4064/89 and does not raise serious doubts as to its compatibility with the common market and with the EEA Agreement. I. THE PARTIES 3. EMC Corporation , based in the U.S.A, is active mainly in the design and manufacture of a wide range of information technology products, including hardware, software and related services. -
Computer Organization & Architecture Eie
COMPUTER ORGANIZATION & ARCHITECTURE EIE 411 Course Lecturer: Engr Banji Adedayo. Reg COREN. The characteristics of different computers vary considerably from category to category. Computers for data processing activities have different features than those with scientific features. Even computers configured within the same application area have variations in design. Computer architecture is the science of integrating those components to achieve a level of functionality and performance. It is logical organization or designs of the hardware that make up the computer system. The internal organization of a digital system is defined by the sequence of micro operations it performs on the data stored in its registers. The internal structure of a MICRO-PROCESSOR is called its architecture and includes the number lay out and functionality of registers, memory cell, decoders, controllers and clocks. HISTORY OF COMPUTER HARDWARE The first use of the word ‘Computer’ was recorded in 1613, referring to a person who carried out calculation or computation. A brief History: Computer as we all know 2day had its beginning with 19th century English Mathematics Professor named Chales Babage. He designed the analytical engine and it was this design that the basic frame work of the computer of today are based on. 1st Generation 1937-1946 The first electronic digital computer was built by Dr John V. Atanasoff & Berry Cliford (ABC). In 1943 an electronic computer named colossus was built for military. 1946 – The first general purpose digital computer- the Electronic Numerical Integrator and computer (ENIAC) was built. This computer weighed 30 tons and had 18,000 vacuum tubes which were used for processing. -
Does the Seventh Amendment Compel Fact-‐Finding Before
HAVE WE GONE TOO FAR: DOES THE SEVENTH AMENDMENT COMPEL FACT-FINDING BEFORE REACHING A DECISION ON PATENT- ELIGIBLE SUBJECT MATTER? JESSE D.H. SNYDER* I. INTRODUCTION Something seems amiss. Settled notions of what can be Patenta- ble are changing.1 To complicate matters further, so far, neither the SuPreme Court nor the Federal Circuit has addressed whether the in- quiry into Patent-eliGible subject matter is factual, legal, or both. And while the scoPe of Patentable subject matter is understandably con- strictinG, the end result may not be coterminous with the SuPreme Court’s Guidance in Alice Corporation Party Limited v. CLS Bank.2 Under Alice, which built uPon the Patent-eliGible subject matter frameworks of Prior cases, for those Patent claims that are directed to a Patent- ineligible concePt (e.G., abstract ideas), Patentability turns on whether an “inventive concePt” exists to “‘transform the nature of the claim’ into a Patent-eliGible aPPlication.”3 The lower courts have seized on the Alice holding, inhuming Pa- tents whose subject-matter failures render them invalid as a matter of law. But what if the means adoPted by the lower courts to reach that leGal conclusion also sidestePs certain constitutional guarantees? What if they are simPlifyinG the analysis at a facial level when a more granular investigation is required? What if, at the motion to dismiss staGe, fact-findinG is still required to determine whether a Patent is * 2015-2016 term law clerk to the Honorable Jimmie V. Reyna of the U.S. Court of APPeals for the Federal Circuit. I earned my J.D., summa cum laude, from Texas Wesleyan School of Law and my B.S. -
Aviion SERVERS and WORKSTATIONS PLUS
"Great products ••• fantastic support!" Buzz Van Santvoord, VP of Operations, Plow & Hearth, Inc. Buzz Van Santvoord, Plow & Hearth When you've got 100 telesales reps VP of Operations, and Peter Rice, processing 6,500 orders a day your President, with a selection of items computer system had better work! from their catalogue. Virginia ba ed, Plow & Hearth, Inc. i a $30 million mail order company, specializing in product for country living. Mailing over 20 million catalogue a year and with an e tabli hed ba e of over 1 million cu tomer , it computer y tems are critical to the onver ion of the AOS / VS OBOL program to ACUCOBOL company' ucce and growth. commenced in June and the ystem went live on a Data General A VUON 8500 in September, in plenty of time for the Chri tma ru h. To meet it pecific need Plow & Hearth had inve ted The AIM plu AVUON combination gave the bu ine a dramatic more than $500,000, over a period of 13 year , developing a boo t: "The much fa ter re pon e time improved morale and Data General MY-ba ed y tern in AOS{VS COBOL with 300 increa ed our tele ale capacity without adding a body, and the program and 70 INFOS databa e . But by early 1995 the extra order gained gave u our be t Chri tma ever." company realized that their MY9600 didn't have the capacity to make it through the bu y Chri tma ea on. Expert migration consultants Buzz Van Santvoord, Vice Pre ident of Operation explains: Thi ca e tudy illu trate how Tran oft' AIM offering i more "A move to Open Sy tern wa our preferred strategic direction. -
DX11-8 System 360/370 Channel to PDP-11 Unibus Interface Maintenance Manual
EK-DXIIB-MM-002 DX11-8 system 360/370 channel to PDP-11 unibus interface maintenance manual digital equipment corporation • maynard, massachusetts 1st Edition, August 1972 2nd Printing (Rev) March 1973 3rd Printing July 1973 4th Printing May 1974 5th Printing (Rev) January 1976 Copyright © 1972,1973,1974,1976 by Digital Equipment Corporation The material in this manual is for informational purposes and is subject to change without notice. Digital Equipment Corporation assumes no respon sibility for any errors which may appear in this manual. Printed in U.S.A. The following are trademarks of Digital Equipment Corporation, Maynard, Massachusetts: DEC PDP FLIP CHIP FOCAL DIGITAL COMPUTER LAB CONTENTS Page CHAPTER 1 GENERAL DESCRIPTION 1.1 Purpose of Manual 1-1 1.2 System Description 1-2 1.3 Mechanical Description 1-5 1.4 Specifications 1-5 1.4.1 Physical 1-6 1.4.2 Environmental 1-6 1.4:3 Electrical 1-6 1.4.4 Performance 1-6 1.5 Engineering Drawaing Drawings 1-7 CHAPTER 2 INSTALLATION AND ACCEPTANCE TEST 2.1 Summary of Installation Functions 2-1 2.2 Installation and Acceptance Test Requirements 2-2 2.2.1 Equipment Required 2-2 2.2.2 Diagnostics Required 2-2 2.2.3 Space Requirements 2-3 2.2.4 Power Requirements 2-3 2.2.5 Information Requirements 2-5 2.2.6 Test Schedule 2-6 2.3 Unpacking and Inspection 2-6 2.3.1 Unpacking 2-6 2.3.2 Inspection 2-7 2.4 Installation 2-7 2.4.1 PDP-II and DX11-B Cable Installation (within PDP-II System) 2-7 2.4.2 IBM Device Address Jumper Installation 2-8 2.4.3 Interrupt Vector Address Jumper Installation 2-12 -
PDP-11 Bus Handbook (1979)
The material in this document is for informational purposes only and is subject to change without notice. Digital Equipment Corpo ration assumes no liability or responsibility for any errors which appear in, this document or for any use made as a result thereof. By publication of this document, no licenses or other rights are granted by Digital Equipment Corporation by implication, estoppel or otherwise, under any patent, trademark or copyright. Copyright © 1979, Digital Equipment Corporation The following are trademarks of Digital Equipment Corporation: DIGITAL PDP UNIBUS DEC DECUS MASSBUS DECtape DDT FLIP CHIP DECdataway ii CONTENTS PART 1, UNIBUS SPECIFICATION INTRODUCTION ...................................... 1 Scope ............................................. 1 Content ............................................ 1 UNIBUS DESCRIPTION ................................................................ 1 Architecture ........................................ 2 Unibus Transmission Medium ........................ 2 Bus Terminator ..................................... 2 Bus Segment ....................................... 3 Bus Repeater ....................................... 3 Bus Master ........................................ 3 Bus Slave .......................................... 3 Bus Arbitrator ...................................... 3 Bus Request ....................................... 3 Bus Grant ......................................... 3 Processor .......................................... 4 Interrupt Fielding Processor ......................... -
CS61C : Machine Structures •Remember: “Load from Memory”
inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Review Lecture 9 – Introduction to MIPS • In MIPS Assembly Language: Data Transfer & Decisions I • Registers replace C variables • One Instruction (simple operation) per line • Simpler is Better, Smaller is Faster Lecturer PSOE Dan Garcia • New Instructions: www.cs.berkeley.edu/~ddgarcia add, addi, sub Future HVD 1 TB disks! ⇒ The future of digital storage • New Registers: (past the DVD, Blu-Ray and HD DVD) C Variables: $s0 - $s7 may be the Holographic Versatile Disc. Temporary Variables: $t0 - $t7 A massive 1 TB on each (200 DVDs)! 1TB www.zdnet.com.au/news/hardware/0,2000061702,39180148,00.htm Zero: $zero CS61C L09 Introduction to MIPS: Data Transfer & Decisions I (1) Garcia © UCB CS61C L09 Introduction to MIPS: Data Transfer & Decisions I (2) Garcia © UCB Assembly Operands: Memory Anatomy: 5 components of any Computer Registers are in the datapath of the • C variables map onto registers; what processor; if operands are in memory, about large data structures like arrays? Personal Computer we must transfer them to the processor to operate on them, and • 1 of 5 components of a computer: then transfer back to memory when done. memory contains such data structures Computer Processor Memory Devices • But MIPS arithmetic instructions only operate on registers, never directly on Control Input (“brain”) memory. Store (to) Datapath • Data transfer instructions transfer data Registers Output between registers and memory: Load (from) • Memory to register • Register to memory These are “data -
What We Learned from the PDP-11
ABSTRACT Gordon Bell, William Il. Strecker November 8, 1975 COMPUTER STRUCTURES: WHAT HAVE WE LEARNED FROM THE PDP-ll? Over the FDP-11’S six year life behave in a particular way? about 20,000 specimens have been Where does it get inputs? HOW built based on 10 species (models). does it formulate and solve Al though range was a design goal, problems? it was unquantified; the actual range has exceeded expectations 3. The rest of the DEC (5OO:l in memory size and system organization--this includes price]. The range has stressed the applications groups assoc ia ted baa ic mini (mall computer with market groups # sales, architecture along all dimensions. service and manufacturing. The marn PM.5 structure, i.e. the UNIBUS, has been adopted as a de 4. The user, who receives the facto standard of interconnection final OUtQUt. for many micro and minicomputer systems. The architectural Note, that if we assume that a experience gained in the design and QrOduc t is done sequentially, and use of the PDP-11 will be described each stage has a gestation time of in terms Of its environment about two years, it takes roughly (initial goals and constraints, eight years for an idea from basic technology, and the organization research to finally appear at the that designs, builds and user’s site. Other organizations distributes the machine). ala0 affect the design : competitors (they establish a deaign level and determine the product life): and government IsI 1.0 TNTRODUCTTON and standards. There are an ever increasing number Although one might think that of groups who feel compel led to computer architecture is the sole control all products bringing them determinant of a machine, it is all common norm : the merely the focal point for a government (“5) , testing groups such specification.