Tidal Powerstation Brouwersdam

Total Page:16

File Type:pdf, Size:1020Kb

Tidal Powerstation Brouwersdam 1 Reintroduction tidal flow Grevelingenmeer Ecological recovery Grevelingenmeer and renewable energy production go hand in hand TIDAL POWERSTATION BROUWERSDAM After a construction period of more than 6 years, the building of the Brouwersdam was finished in 1971, closing off the Brouwershavense Gat and connecting Goeree-Overflakkee with Schouwen- Duiveland. The Brouwersdam is the seventh construction built within the frame of the Delta Works. With the Brouwersdam being finished, the creation of the Grevelingenmeer became a fact, offering better protection of the southwest delta area against storm floods from the North Sea. Unfortunately the construction of this dam also had a less positive side: the design of the dam appeared not to be sustainable. With the full closing off of the Brouwershavense Gat, the tidal movement was gone. In 1978 a small water passage, the Brouwerssluis, was realized in order to enable a certain amount of water to flow in and out. The capacity of this water passage is sufficient to prevent the water from changing from salt into freshwater and to enable a natural exchange of fish. It is insufficient, however, to refresh the entire water resources of the lake. And fresh seawater is what nature needs most in this salt water lake. What 'environmental activists' already were afraid of, happened: by lack of tidal movement and lack of fresh seawater flushing through the lake, the natural value of the Grevelingenmeer seriously deteriorated. There is hardly any oxygen present in the deeper water layers. From the bottom up to six meters below the surface, the percentage of oxygen is as good as nil (especially in the summer). Without sufficient measures being taken soon, also the upper six meters will run out of oxygen, which will badly affect nature. The most obvious measure to be taken in order to revitalize this natural area is to reintroduce the tidal movement by constructing a large water passage. Exploratory calculations show that a water passage with a maximum capacity of 4.000 m3/s is sufficient to realize a tidal effect of approximately 0,5 meter. A larger tidal effect is not advisable since water levels of the Grevelingenmeer would become too high and/or too low. Translation of article from Civiele Techniek 1/2 2015 by Jarda van Spengen 2 Tidal powerstation The construction of such a large water passage demands a big investment. At this moment various possibilities are being explored to optimize the output of such a big investment; it might be economically interesting, for instance, to build an entire tidal power station instead of a only a water passage. That way renewable energy can be generated from the water flowing in and out. If the extra costs of the power station (compared to the costs of only a water passage) are less than the expected profits realized by the energy production, the cost-benefit analysis is positive. Since 2008 various studies have been carried out on the possibilities of a water passage with or without a tidal power station. Up to now all calculated expenses proved to be too high. Therefore also the cost-benefit analyses of a tidal power station turned out negative. Not only the (construction) design itself is vital when it comes to sustainability; also the existing knowledge, know-how and expertise concerning hydraulic concrete constructions can make a big difference with regard to building sustainable power stations. Within the frame of the European Pro-Tide project, the Province of Zeeland has asked Iv-Infra to put in their expertise within the field of hydraulic concrete constructions. Pro-Tide is a European partnership between parties from France, Belgium, the United Kingdom and the Netherlands, promoting the research and development of tidal energy production. During the project 'Tidal Diver Waterdunen' Iv-Infra's expertise in this field had clearly been demonstrated. With this project, also the feasibility of generating tidal energy had been explored. The task assigned to Iv-Infra was to design a hydraulic construction and clever execution method for a tidal power station, in such a way that the building costs would be considerably lower than is the case in the MIRT Grevelingen and supplementary studies. Besides that, the surplus costs of a tidal power station should not be higher than the profits gained by the production of renewable energy. Also the construction should fulfil four tasks: it should function as a dam, it should regulate the water, it should make traffic possible by means of a road on top of the construction and it should generate energy from the tidal movement. Three different types of constructions had to be designed: using a diffuser, a pipe and a venturi. The costs for civil engineering comprise at least 50% of the total costs of a tidal power station. The other 50% are related to the realisation of bulb turbines that are often used in rivers, or the bi-directional turbines which have been derived from the bulb turbines. In order to make the production of tidal energy profitable, a well thought-out civil engineering design is of great importance. Work method Designs and cost calculations of earlier studies appeared not to be comparable, since secondary conditions, points of departure and definitions varied per study. During work sessions sketches and work methods for each type of device (diffuser, pipe and venturi) were conceived, discussed and analysed. Favourable variants were compared and rated on the basis of a multi-criteria analyses, in which building costs, risks, energy production, maintenance and adaptability of the construction were the most important criteria. Pro- Tide NL made a selection of three preferred variants, which were elaborated by Iv-Infra. Traditional diffuser Figure 1 Cross section: diffuse shaped device Translation of article from Civiele Techniek 1/2 2015 by Jarda van Spengen 3 A diffuser shaped device is built in order to generate a maximum of energy from the water flow. This power station contains a traditional bulb turbine, such as is used in rivers, or it makes use of bi-directional turbines, which were initially developed for the production of tidal energy. Both turbines are relatively efficient but expensive. Because of the presence of the diffusers making use of these types of turbines, there is a considerable amount of resistance, therefore the flow capacity is limited. In order to realize an output of 4.000m3/s in spite of the limited flow capacity, the construction has to be very long: about 660 m parallel to the dam. The design of the concrete construction is mainly determined by the essential shape of the diffuser, conducting the water through the turbines. The width of the construction, 35 m, is also determined by the shape of the diffuser, on both sides of the turbine, and by the stability requirements (tilting, sliding away, coming down, pushing up). The turbine is located in the middle of the construction; the technical room is located directly above it. The regulation and high tide slides are located near to the turbines, which makes it possible to use the technical room of the turbines for maintenance of the slides. The construction is filled up with sand, giving it sufficient extra weight, ensuring vertical balance. The construction is built in parts on an external building location and is installed on location later. It comprises 86 turbines, divided over six elements of about 100m each. An external lifting device is needed to put the elements into position. Narrow pipe One of the features of a narrow tube shaped device is that it involves a minimum of civil costs. In principle, various types of turbines can be installed within the construction, for instance free-flow hydraulic turbines. These turbines are relatively inexpensive, so the total investment is limited. The flow capacity is high because there is a relatively large flow surface, therefore, logically, less energy is produced by the flowing water than is the case with the diffuser that has bulb turbines. These last few years a lot of research has been done with regard to the (further) development of free-flow turbines. The output of the turbines (= the energy that can be produced by the flowing water), will increase in the future. Figure 2 Cross section: narrow tube shaped device Because of the larger flow surface of 8 x 8 m2, the necessary length of the construction is smaller than is the case with the diffuser shaped device, namely 136 m. The slides and the turbines are placed off-centre, at the seaside, therefore the provincial road N57 only has to be diverted temporarily during the building process. After realization of the project, the N57 will get back its original position. Should one succeed in finding a suitable building site, the entire construction can be moved and installed at its final destination as a whole. This has a big advantage: it is not necessary to put into place and connect all kinds of different elements. Translation of article from Civiele Techniek 1/2 2015 by Jarda van Spengen 4 Linear VETT turbine A device with a venturi and 'linear VETT turbines' is the most innovative compared to the other types of constructions. The turbines are relatively cheap, but their efficiency is still limited in comparison with the bulb turbines or the bi-directional turbines. Figure 3 Cross section: Venturi and linear VETT turbine The 'Venturi Enhanced Turbine Technology (VETT)' was designed by VerdErg. In the linear VETT the water stream is narrowed within the venturi and runs faster, which has the effect that the rising level of the water (and the water pressure) at the exit of the venturi is lower than at the inlet.
Recommended publications
  • Ruimtelijke Onderbouwing Inspiratiecentrum Brouwersdam
    RUIMTELIJKE ONDERBOUWING INSPIRATIECENTRUM BROUWERSDAM NATUUR- EN RECREATIESCHAP DE GREVELINGEN 17 juli 2013 077198816:A B01055.000649.0100 Ruimtelijke Onderbouwing Inspiratiecentrum Brouwersdam Inhoud 1 Inleiding ................................................................................................................................................................ 3 1.1 Aanleiding .................................................................................................................................................. 3 1.2 Ligging plangebied .................................................................................................................................... 3 1.3 Vigerend bestemmingsplan...................................................................................................................... 4 1.4 leeswijzer .................................................................................................................................................... 4 2 Beleidskader ......................................................................................................................................................... 5 2.1 Rijksbeleid................................................................................................................................................... 5 2.1.1 Structuurvisie infrastructuur en ruimte .............................................................................. 5 2.1.2 Besluit Algemene regels ruimtelijke ordening (Barro) ....................................................
    [Show full text]
  • Jaarstukken 2010, 1E Begrotingswijziging 2011 En Programmabegroting 2012. Gemeenschappelijke Regeling Natuur
    PROVINCE ZEELAND AFD. ~- ^ AMBT. AFD. TEBMIJN Gedeputeerde Staten Si( Provincie Zeelan DATUM 3 0 AU6. 2011 —I Ill DOC.NR 11109987 1ZAAK NF CLASS. bericht op brief van: Provinciale Staten Commissie Ruimte, Ecologie en Water uw kenmerk: t.a.v. de statengriffie ons kenmerk: 11109712 afdeling: Ruimte bijlage(n): behandeld door: F.M.M. van Pelt doorkiesnummer: (0118)631793 onderwerp: Natuur en Recreatieschap De Grevelingen verzonden: 3 0 At/6. 2011 Middeiburg, 23 augustus 2011 Geachte commissie, Op 1 juli 2011 heeft het Algemeen Bestuur van het Natuur- en Recreatieschap De Grevelingen de navolgen- de stukken vastgesteld (stukken liggen op de gebruikelijke wijze ter inzage): -jaarstukken 2010 - 1e begrotingswijziging 2011 - Programmabegroting 2012. In artikel 25 lid 61 en artikel 26 lid 42 van de gemeenschappelijke regeling is bepaald dat de deelnemers bin- nen zes weken na toezending van de stukken een zienswijze over voornoemde stukken aan de minister van Binnenlandse Zaken en Koninkrijkrelaties kunnen doen blijken. De jaarstukken 2010 met bijgevoegde goedkeurende accountantsverklaring geven ons geen aanleiding tot het maken van op-/aanmerkingen. Met de 1e begrotingswijziging 2011 (die geen verhoging van de totale uitgaven tot gevolg heeft maar een herschikking tussen de posten) stemmen wij in. De provinciale bijdrage voor 2012 ad € 117.432,-- stemt overeen met onze provinciale conceptbegroting 2012. Gelet op het bovenstaande zien wij geen redenen een zienswijze als boven genoemd in te dienen. Wij geven u in overweging de stukken voor kennisgeving aan te nemen. Hoogachtend, .voorzitter etaris Art. 25, lid 6. Provinciale Staten van de deelnemende provincies en de raden van de deelnemende gemeenten worden van het gestelde in lid 4 en 5 van dit artikel op de hoogte gesteld.
    [Show full text]
  • The Conceptual Design of a Tidal Power Plant in the Brouwersdam
    THE CONCEPTUAL DESIGN O F A T I D A L POWER PLANT I N T H E BROUWERSDAM Author M.H. van Saase Date 12 January 2018 Status Final report 2 THE CONCEPTUAL DESIGN OF A TIDAL POWER PLANT IN THE BROUWERSDAM Final Report Student M.H. van Saase Student ID: 4080319 [email protected] Tel. +316 51 92 41 14 Thesis committee: Prof. dr. ir. S.N. Jonkman, TU Delft Ir. W.F. Molenaar, TU Delft Dr. ir. Drs. C.R. Braam TU Delft Ir. B. Reedijk, BAM Infra TU Delft Faculty of Civil Engineering an Geosciences Date: 12-1-2018 3 4 PREFACE After more than seven years studying at the faculty of Civil Engineering at the TU Delft, this master thesis finalizes my master programme in Hydraulic Engineering at the Delft university of Technology. This master thesis represents a conceptual design of a Tidal Power Plant in the Brouwersdam, in the province Zeeland, the south-west of the Netherlands. In the search of a satisfying graduation topic, I found myself back at BAM, one of the largest contractor of The Netherlands. After completing an internship at BAM International in Dubai in 2015, I decided to elaborate my thesis at BAM Infraconsult. BAM provided me with a design topic, a Tidal Power Plant in the Brouwersdam. Special thanks for Bas Reedijk and Erik ten Oever for providing me with information and their knowledge of previous performed research to the Tidal Power Plant. Secondly, I would like to thank my daily supervisor from the Delft University of Technology: ir.
    [Show full text]
  • Getijdencentrale Brouwersdam
    Getijdencentrale Brouwersdam Deltatechnologie impuls voor regionale economie Getijdencentrale Brouwersdam De provincies Zuid-Holland en Zeeland, De provincies, Rijkswaterstaat en gemeenten willen Rijkswater staat en de gemeenten Goeree- het getijde op de Grevelingen voor een goede waterkwaliteit herstellen. Daarmee willen zij tevens de Overflakkee en Schouwen-Duiveland zetten gebiedsontwikkeling op en rond het meer een impuls zich in voor de bouw van een getijdencentrale geven. Het getijde verdween met de bouw van de Brouwersdam in 1971. Een doorlaat in de dam moet het op de Brouwersdam en een testcentrum voor getijde weer terugbrengen. Het zuurstofrijke zeewater dat turbines op de Grevelingendam. Samen met onder invloed van eb en vloed op zee dan weer het meer kan instromen, verbetert de condities voor natuur, bedrijven, kennisinstellingen en maatschappelijke (water)recreatie, toerisme en visserij en de regionale organisaties willen zij meerdere publieke economie als geheel. en private belangen tegelijkertijd dienen. Duurzame energie opwekken Resultaat: een nieuw icoon van de Nederlandse Bijkomend voordeel van een doorlaat in de Brouwersdam is dat die kan worden vormgegeven als een getijden- deltatechnologie met regionale, landelijke én centrale: turbines die elektriciteit opwekken uit de internationale uitstraling. waterstroom door de dam. Een getijdencentrale in de Brouwersdam kan naar verwachting groene stroom produceren voor alle circa vijftigduizend huishoudens op Goeree-Overflakkee en Schouwen-Duiveland. De centrale levert zo een bijdrage aan het regeringsbeleid voor duurzame groei én aan de ambitie van de beide gemeenten om op termijn energieneutraal te zijn. TESTCENTRUM GREVELINGENDAM Naast de getijdencentrale werken de twee provincies samen met het Rijk en het bedrijfsleven aan de realisatie van een ‘Testcentrum Grevelingendam’.
    [Show full text]
  • Strategisch Ontwikkelplan Grevelingen 2020-2030
    Strategisch Ontwikkelplan Grevelingen 2020-2030 1 Strategisch Ontwikkelplan Grevelingen 2020-2030 2 Gebied Grevelingen - Zuidwestelijke Delta Opdrachtgever Bestuurlijk Overleg Grevelingen Opgesteld door Gemeente Schouwen-Duiveland Gemeente Goeree-Overflakkee Provincie Zeeland Rijkswaterstaat Staatsbosbeheer April 2020 Inhoud 3 4 Inhoud 7.2.2.2 Natuurwaarden 27 7.2.2.3 Natura 2000 27 7.2.2.4 Instandhouding en medegebruik 31 1 Aanleiding 7 7.2.2.5 Conclusie 31 1.1 Status van het rapport Ontwikkelplan Grevelingen 8 7.2.3 Recreatie 31 2 De opgave voor dit rapport 9 7.2.3.1 Huidig recreatief aanbod 31 3 Scope ontwikkelplan 9 7.2.3.2 Huidige bezoekers Grevelingen: Brouwersdam en Grevelingendam 33 4 Het gebied de Grevelingen 11 7.2.3.3 Conclusie 35 5 Positionering van het gebied 12 7.2.4 Visserij 35 6 Context 13 7.2.4.1 Oestervisserij 35 7 Analyse 14 7.2.4.2 Sportvisserij 36 7.1 Beleidsmatige analyse 14 7.2.4.3 Interdisciplinaire werkgroep ‘Nieuwe kansen Grevelingen’ 36 7.2 Functionele analyse 19 7.2.4.4 Conclusie 36 7.2.1 Ruimtelijke kwaliteit 19 8 Trends en ontwikkelingen 39 7.2.1.1 Dammen en dijken 21 8.1 Terugbrengen van getij 39 7.2.1.2 Nollen, gorzen, slikken en inlagen 23 8.2 Klimaatverandering en zeespiegelstijging 39 7.2.1.3 De kreken en havenkanalen 23 8.3 Recreatietrends 41 7.2.1.4 Sedimentatie en erosie 24 8.4 Uitdagingen en kansen visserij 42 7.2.1.5 De kerken en torens 24 9 Knelpunten 44 7.2.1.6 Vergezichten en open ruimte 24 9.1 Ruimtelijke kwaliteit 44 7.2.1.7 Cultuurhistorie 25 9.2 Natuur 45 7.2.1.8 Beplanting 25 9.3 Recreatie
    [Show full text]
  • Re-Opening a Dam for Nature, Energy and Recreation, Lake Grevelingen - NL
    Re-opening a dam for nature, energy and recreation, Lake Grevelingen - NL Re-opening a dam for nature, energy and recreation, Lake Grevelingen - NL 1. Policy Objective & Theme SUSTAINABLE USE OF RESOURCES: Preserving coastal environment (its functioning and integrity) to share space SUSTAINABLE ECONOMIC GROWTH: Balancing economic, social, cultural development whilst enhancing environment 2. Key Approaches Integration Ecosystems based approach Technical 3. Experiences that can be exchanged The central and two regional governments (Zeeland and Zuid Holland) have produced a plan which determines how the 8km long Brouwersdam can be partially opened in order to restore the water quality of Lake Grevelingen. The opening of the dam with be used for the generation of sustainable tidal energy and coupled to improved natural areas, increased safety and enhanced socio-economic benefits. 4. Overview of the case The waters of Lake Grevelingen have deteriorated since they were cut off from the North Sea. This has negatively affected the tourist attraction of the lake and its biodiversity. The dam will be breached to allow salt-water intrusion and better connectivity between the lake and the shallow waters of the seawards delta area.. A tidal energy generator will be built into the opening as well as a lock to enhance social aspects. 5. Context and Objectives a) Context Decades ago, the Grevelingen and other inlets in the southwest of the Netherlands, together formed the outlets of the Rhine, Meuse, Waal and Scheldt rivers into the North Sea. The difference between low and high tide was around 2.5 metres. On 1 February 1953, the dykes burst during a heavy storm with the loss of over 1500 lives.
    [Show full text]
  • Rapport Vis in De Grevelingen
    Vis in de Grevelingen K. Didderen W. Lengkeek E.G.R. Bakker J. Tummers (RAVON) A. Gmelig Meyling (ANEMOON) Vis in de Grevelingen K. Didderen, W. Lengkeek, E.G.R. Bakker, J. Tummers, A. Gmelig Meyling Status uitgave: definitief Rapportnummer: 20-328 Projectnummer: 20-0740 Datum uitgave: 30 januari 2021 Foto's: Udo van Dongen / Karin Didderen / Wouter Lengkeek / Bureau Waardenburg bv Projectleider: K. Didderen Tweede lezer: N. Van Kessel/ M.Dorenbosch Opdrachtgever: Staatsbosbeheer Afdeling projecten Marieke de Gast/ Sander Terlouw Referentie opdrachtgever: E5411007 LIFE-lP C3-6 Visonderzoek Grevelingen Akkoord voor uitgave: drs. W.M. Liefveld Paraaf: Graag citeren als: Didderen, K., W. Lengkeek, E.G.R. Bakker, J. Tummers, A. Gmelig Meyling, 2021. Vis in de Grevelingen. Bureau Waardenburg Rapportnr. 20-328. Bureau Waardenburg/RAVON/ANEMOON, Culemborg. Trefwoorden: vis, kustwateren, estuaria, kraamkamer, vismigratie Bureau Waardenburg bv is niet aansprakelijk voor gevolgschade, alsmede voor schade welke voortvloeit uit toepassingen van de resultaten van werkzaamheden of andere gegevens verkregen van Bureau Waardenburg bv. Opdrachtgever hierboven aangegeven vrijwaart Bureau Waardenburg bv voor aanspraken van derden in verband met deze toepassing. © Bureau Waardenburg bv / Staatsbosbeheer Dit rapport is vervaardigd op verzoek van opdrachtgever en is zijn eigendom. Niets uit dit rapport mag worden verveelvoudigd en/of openbaar gemaakt worden d.m.v. druk, fotokopie, digitale kopie of op welke andere wijze dan ook, zonder voorafgaande schriftelijke toestemming van de opdrachtgever hierboven aangegeven en Bureau Waardenburg bv, noch mag het zonder een dergelijke toestemming worden gebruikt voor enig ander werk dan waarvoor het is vervaardigd. Lid van de branchevereniging Netwerk Groene Bureaus. Het kwaliteitsmanagementsysteem van Bureau Waardenburg bv is gecertificeerd door EIK Certificering overeenkomstig ISO 9001:2015.
    [Show full text]
  • Grevelingenmeer 2 Datum Uitgifte: 23 Januari 2013
    PASPOORT GREVELINGENMEER 2 Datum uitgifte: 23 januari 2013 De stuurgroep Zuidwestelijke Delta werkt toe naar besluiten over de Zuidwestelijke Delta waarin veiligheid, ecologie en economie zijn geborgd en elkaar onderling versterken. De Zuidwestelijke delta is opgebouwd uit verschillende wateren. Per water worden in 2013 gesprekken met de regio gevoerd om te verkennen welke langetermijnstrategieën kansrijk zijn, welke gebiedsontwikkelingen er spelen en hoe dat kan worden verbonden. Daarbij is de vraag relevant op welke wijze strategieën kunnen worden verbonden met ideeën, initiatieven en plannen van de regio. Voor ieder water is een ‘paspoort’ opgesteld, waarmee op vergelijkbare wijze informatie wordt aangeboden. Deze informatie dient als ingang voor het gesprek met de regio. Het paspoort geeft in kort bestek de hoofdlijnen van de beschikbare informatie weer. Deze informatie wordt gedurende het proces geactualiseerd. Voor een meer uitgebreide informatie wordt verwezen naar de beschikbare achtergrond documenten. Een overzicht hiervan is achter in het paspoort opgenomen. 3 Grevelingenmeer Grevelingendam Goedereede Ouddorp Stellendam Brouwersdam Melissant 1. GEGEVENS Middelharnis Dirksland Scharendijke Brouwershaven Doorlaatsluis Brouwersdam Dreischor Bruinisse Zierikzee Nieuwerkerk Grevelingensluis Flakkeese spuisluis 4 Naam: Grevelingenmeer Oppervlakte: 14.000 ha, waarvan water 10.800 ha Oevers en eilanden: 3120 ha Jaar van afsluiting: 1971 ZWD Water: zout, geen getij Diepte gemiddeld: - 5,4 m. NAP Diepte maximaal: - 48 m. NAP ZWD ZWD 5
    [Show full text]
  • Sea-Level Rise and Groundwater Salinization in the Coastal Area of Zeeland
    Sea-level rise and groundwater salinization in the coastal area of Zeeland A study of the impact of groundwater salinization around the Grevelingen lake on the livelihoods of the farmers. The Brouwersdam, which separates the Grevelingen Lake (left) from the North Sea (right). Source: Own picture, made on the 9th of May 2018. Name: Frida Boone Student number: 11042893 Supervisor: Dr. Joshua K. Maiyo Bachelor thesis, Social Geography Department of Social Science University of Amsterdam June 18, 2018 Abstract This thesis presents a research on the social impact of salinization of the groundwater on the livelihoods of the farmers around the Grevelingen lake. The results of this thesis show that salinization – driven by the sea-level rise – have a negative impact on the livelihoods of the farmers around the Grevelingen Lake. These impacts are translated in: pressure on the fresh-water lens, a decrease of the quality of the soil and a limitation on the possible crops to grow. Al these impacts have direct effect on the livelihoods of the farmers. Moreover, the incentive of the government to bring back the tide in the Grevelingen lake, to stimulate the water quality, would give the sea-level rise more opportunities to reinforce the impact of the salinization. On the long term, the salinization will have a negative impact on the livelihoods of the farmers around the Grevelingen lake, as a result of pressure to maintain the productivity of their farmlands. 2 Table of content 1.0 Introduction p. 4 2.0 Research objectives and goals p. 5 3.0 Theoretical framework p.
    [Show full text]
  • Morphological Modelling of a Nourishment at the Brouwersdam Beach
    Morphological modelling of a nourishment at the Brouwersdam beach R.A. Schrijvershof, BSc. This report is produced as part of the project KPP B&O Kust 1220040-000 © Deltares, 2015, B Title Morphological modelling of a nourishment at the Brouwersdam beach Client Project Pages Universiteit Utrecht 1220040-000 45 Rijkswaterstaat Zee en Delta Keywords Brouwersdam, morphology, nourishment, UNIBEST-CL+ Summary In the scope of an internship project for the Earth Surface and Water (ESW) master’s programme of Utrecht University a modelling study is performed with the UNIBEST-CL+ coastline model. The study aims at modelling different configurations for the planned nourishment, and it this way, establish a configuration that maximizes the ‘life-expectancy’ of the nourishment. Four different shapes in planform geometry and the effect of varying grain sizes of the used sediment are modelled. Results show that an UNIBEST coastline model is capable of reproducing the observed trends and magnitudes of coastline change if a modified Van Rijn (2004) sediment transport formula is used and a scaling factor of 1.5 in time is applied. The simulations with the nourishments show that different nourishment shapes cause different erosion rates and that if the coastline is positioned further from the original coastline, retreat will increase. The varying grain size diameter simulations shows that an increase in median diameter of sediment (D50) of 25 μm will decrease the retreat rate of the coastline with ~7 m and the decrease in surface area with 5000 m2 after 10 years. Version Date Author Initials Review Initials Approval Initials 1 27 March Reinier R.A.
    [Show full text]
  • Building the Dutch Coastline
    SYMBIOSIS: Adaptations within Dutch Architecture and Urban Planning Practices in Response to a Changing Climate NAP Michael Thomas Mitchell, LEED AP BD+C Cover Image: Aerial Image of de Ronde Venne (Google Earth) and a diagram Illustrating Typical Water-adaptive Typologies. SYMBIOSIS: Adaptations within Dutch Architecture and Urban Planning Practices in Response to a Changing Climate NAP Michael Thomas Mitchell, LEED AP BD+C A New Delta Committee ............................................................................. 32 Table of Contents ABC Delfland and Visie Greenport Westland 2020 ..................................... 33 EMBRACING THE FUTURE ........................................................ VII Restoring Nature ........................................................................................ 34 Ruimte voor de Rivier (Room for the River) ............................................... 36 CHAPTER 1: MAKING LAND FROM WATER ............................ 1 Superimposing Red, Green and Blue........................................................... 38 The National Spatial Strategy ..................................................................... 38 Building the Netherlands ............................................................................. 4 Early Settlers ................................................................................................. 4 Restructuring National Water Management ............................................... 39 Terp ..............................................................................................................
    [Show full text]
  • Impact of the Delta Works on the Recent Developments in Hydraulic Engineering
    Impact of the Delta Works on the Recent Developments in Hydraulic Engineering K.W. Pilarczyk* * Rijkswaterstaat, Hydraulic Engineering Institute, Delft, The Netherlands [email protected]; k.pilarczyk@ planet.nl Disaster in 1953 was a turning point in the Dutch policy on History shows that flooding disasters nearly always flood protection. The Delta Works, which followed this resulted into actions to improve the situation by raising disaster, contributed significantly to the recent worldwide dikes or improving the discharge capacity of the rivers. The developments in hydraulic engineering. A brief overview is disastrous flood of 1953 marks the start of a national presented of some important items related to closure reinforcement of the flood protection structures. The recent techniques, erosion, scour and protection, specifically. river floods of 1993 and 1995 did accelerate the final stages of this reinforcement programme. History also shows that neglect is the overture for the next flooding disaster. In an I. INTRODUCTION attempt to improve on this historic experience the safety of the flood protection structures in the Netherlands will be assessed regularly. Maintaining the strength of the dikes at level according to the legally prescribed safety standards is the main goal of this safety assessment. II. HISTORY To understand the historical development of the protection by dikes in the Netherlands, it is essential to know the aspect of the gradual land subsidence in combination with rise of the sea level with respect to the land and also the decreasing deposits of soil by the North Sea and the rivers (Fig. 2) [1]. Figure 1.
    [Show full text]