Novel Topological Valleytronics in Moiré Heterostructures

Total Page:16

File Type:pdf, Size:1020Kb

Novel Topological Valleytronics in Moiré Heterostructures Novel topological valleytronics in moiré heterostructures Chen Hu Centre for the Physics of Materials Department of Physics McGill University Montréal, Québec Canada A Thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy c Chen Hu, 2020 Je me souviens Contents Abstract ix Résumé xi Statement of Originality xiii Acknowledgments xv 1 Introduction 1 1.1 Carbon-based electronics . .1 1.2 Topological insulators . .7 1.3 Topological valleytronics in 2D . 11 1.4 Topological Zak phase in 1D . 15 1.5 Basic theorems of density functional theory . 19 1.6 Outline of the thesis . 22 2 Moiré valleytronics: realizing dense topological arrays 25 2.1 Introduction . 25 2.2 Gr/hBN moiré and topological electronic structure . 27 2.3 Topological analysis of moiré valleytronics . 30 2.3.1 Berry curvature and interlayer interaction . 30 2.3.2 Valley Chern number and bulk-edge correspondence . 33 2.3.3 Topological phase transition in periodic moiré patterns . 34 2.4 Generality of moiré valleytronics . 36 2.4.1 Moiré system of strained bilayer graphene . 36 v vi Contents 2.4.2 Moiré system of silicene/hBN . 38 2.5 Structural robustness of moiré valleytronics . 39 2.6 Summary . 41 3 Theoretical design of topological heteronanotubes 43 3.1 Introduction . 43 3.2 Geometry and electronic properties of THTs . 44 3.3 Valley-dependent topological analysis . 47 3.4 Spiral-oriented THTs and topological solenoid . 50 3.5 Generality and robustness of THTs . 53 3.5.1 Other diameters . 53 3.5.2 Multi-period THTs . 55 3.5.3 Reverse-ordered THTs . 56 3.5.4 Commensurate double-wall heteronanotubes . 56 3.5.5 Zigzag and chiral heteronanotubes . 57 3.5.6 Topological properties of double-wall CNTs . 57 3.6 Summary . 59 4 Topological Zak phase of zigzag carbon nanotubes 61 4.1 Introduction . 61 4.2 Z2, Wannier center and Zak phase . 63 4.3 Topological Zak phase of zigzag CNT . 64 4.3.1 Two-band model of zigzag CNT . 65 4.3.2 Parity analysis of eigenstates . 67 4.3.3 The 2N -rule . 70 4.3.4 Wannier center analysis . 71 Contents vii 4.4 Edge states in finite zigzag CNTs . 72 4.4.1 FES and TES under gating electric field . 74 4.4.2 FES and TES under random edge-potential environment . 76 4.5 Further discussions on different terminations . 78 4.6 Summary . 80 5 Dirac electrons in 2D moiré superlattice 81 5.1 Introduction . 81 5.2 Dirac electronic states in flat-sheet moiré patterns . 82 5.3 Dirac electronic states in wavelike moiré patterns . 89 5.4 Summary . 92 6 Conclusion 93 A calculations of berry curvature 97 B calculations of zak phase 100 Bibliography 104 Abstract Two-dimensional (2D) van der Waals (vdW) heterostructures have attracted great attentions in recent years. By stacking different 2D materials to weakly bond via the vdW force, the re- sulting artificial bilayers and/or multi-layers create novel material platforms for fundamental as well as technological exploration. A nearly ubiquitous feature of the vdW heterostruc- tures is the moiré pattern caused by lattice mismatch or relative rotation of the two stacking lattices which creates a periodic lateral modulation on the electronic potential in the het- erostructure. Such moiré modulation can form large-scale 2D and 1D superlattice leading to interesting new physics. In this thesis, we propose and theoretically investigate the notion of topological valleytron- ics in 2D vdW heterostructures where moiré patterns are predicted to induce arrays of topo- logically protected pathways of valley electronic states. Systematic and first-principles cal- culations on the graphene/hBN systems are carried out to establish a basic understanding of the formation of topological moiré edges, and the novel moiré topological physics is also found in a broad range of other 2D vdW materials. Importantly, due to the structural robustness, the moiré topological physics can be extended to 1D: where the 2D graphene/hBN mate- rials are rolled up into tubular structures to form topological heteronanotubes (THT). Due to essentially infinite possibilities of the tube index, interesting valley topological states are found and modulated by various 1D moiré patterns with different moiré periods and chiral orientations. We also show that the novel valley-Dirac physics resulted from moiré patterns show up in other aspects, including the appearance of secondary Dirac cones induced by the large-scale honeycomb graphene/hBN moiré superlattice. The topological order of the 2D moiré systems are analyzed by calculating the valley Chern number of the electronic bands. For 1D carbon nanotube (CNT) systems, the topological classification can be built by cal- culating the topological Zak phase. Interestingly, we discover that the Zak phase of zigzag CNTs can be quantized to take 0 or π, suggesting topological differences in the insulating phases of the zigzag CNT, and a 2N -rule is established both analytically and numerically that topologically classifies the insulating phases. We conclude that moiré patterns which appear naturally on 2D vdW double-layer ma- terials and/or 1D tubular carbon structures lead to very rich and novel valley topological ix x Abstract states which are protected by certain topological orders and thus can sustain large external perturbations. Our researches in this thesis provide a general, robust and experimentally feasible platform for both investigating fundamental science of low-dimensional topological physics and practical applications in reliable low-power carbon-based nanodevices and nano- electronics. Résumé Les hétérostructures bidimensionnelles (2D) de van der Waals (vdW) ont attiré l’attention dans les dernières années. En empilant différents matériaux 2D liés faiblement par la force de vdW, on obtient des bicouches ou des multicouches artificielles qui créent autant de su- jets recherche fondamentale et d’avenues de développement technologique. Une caractéris- tique presque commune à toutes les hétérostructures de vdW est le moiré provoqué par le mésappariement des structures cristallines ou la rotation relative des couches, ce qui crée une modulation latérale périodique du potentiel électronique dans l’hétérostructure. Un tel moiré peut ainsi former une super-structure cristalline 1D ou 2D produisant d’intéressants phénomènes physiques. Dans cette thèse, nous proposons et étudions théoriquement la notion de vallétronique topologique dans les hétérostructures 2D de vdW, selon laquelle les moirés induisent des mosaïques de canaux de conductions topologiques pour les états électroniques des vallées. Des calculs systématiques à partir de principes premiers sont effectuées sur des systèmes graphène/hBN pour établir une compréhension de base de la formation de canaux topologiques de moiré, et les nouveaux phénomènes topologiques des moirés se retrouvent également dans une vaste gamme de matériaux 2D de vdW. En effet, en raison de la robustesse struc- turelle, la physique topologique des moirés peut aussi être observée en 1D: où les matériaux graphène/hBN 2D sont enroulés de sorte à former des structures tubulaires qu’on nomme des hétéronanotubes topologiques (THT). à cause des possibilités infinies de l’indice des tubes, des états de vallée topologiques intéressants sont présents en 1D et modulés par les moirés avec diverses périodes et orientations chirales. Nous montrons également que la nou- velle physique des points de Dirac provenant des moirés se manifeste sous d’autres formes, y compris en induisant des cônes de Dirac secondaires dans les super-structures cristallines graphène/hBN en nid d’abeille. L’ordre topologique des moirés 2D est analysé en calculant le nombre Chern de vallée des bandes électroniques. Pour les nanotubes de carbone 1D (CNT), la classification topologique peut être établie en calculant la phase topologique de Zak. Fait intéressant, nous découvrons que la phase de Zak des CNT orientés zigzag est quantifiée et prend une valeur de 0 ou π, ce qui suggère la présence de différentes topologies parmi les phases isolantes des CNT orientés zigzag, et une règle 2N qui classe topologiquement les phases isolantes est établie à la fois analytiquement et numériquement. xi xii Résumé Nous concluons que les moirés qui apparaissent naturellement dans les matériaux bicouches 2D de vdW et les structures de carbone tubulaires 1D mènent à des états topologiques de vallée nouveaux et variés qui sont protégés par certains ordres topologiques, et qui peuvent donc resister à de grandes perturbations. Les recherches exposées dans cette thèse fournissent un aperçu général, robuste et expérimentalement faisable permettant d’étudier la science fondamentale de la topologie de dimension réduite et les applications pratiques que sont les nanodispositifs à base de carbone et la nanoélectronique fiables de faible puissance. Statement of Originality In this thesis, by analytical as well as numerical first-principles techniques, I have theoretically investigated novel valleytronics, topological physics and Dirac electronics in emerging low- dimensional carbon-based materials. My original contributions include: • I proposed and investigated the idea of moiré valleytronics - a rather general and robust material platform to realize high-density arrays of 1D topological helical channels. I developed methods to numerically calculate the Berry curvature and the topological Chern invariants based on the k · p perturbation theory within our state-of-the-art large-scale DFT codes. Results are summarized in Chapter 2. • I proposed and investigated the idea of topological heteronanotubes (THT) formed by a carbon nanotube (CNT) inside a boron nitride nanotube (BNNT). I discovered that such THTs are low-dissipation 1D conductors and the spiral-type THTs could serve as nanoscale solenoids generating remarkable magnetic fields. Results are summarized in Chapter 3. • I discovered a 2N -rule that topologically classifies the insulating phases of zigzag CNTs, using the topological Zak phase. I have demonstrated that topological zigzag CNTs generate very robust topological end states that survive strong external perturbations.
Recommended publications
  • A Valleytronic Diamond Transistor: Electrostatic Control of Valley-Currents and Charge State Manipulation of NV Centers
    A valleytronic diamond transistor: electrostatic control of valley-currents and charge state manipulation of NV centers N. Suntornwipat1, S. Majdi1, M. Gabrysch1, K. K. Kovi1,3, V. Djurberg1, I. Friel2, D. J. Twitchen2 and J. Isberg1* 1 Division for Electricity, Department of Electrical Engineering, Uppsala University, Box 65, 751 03, Uppsala, Sweden. 2 Element Six, Global Innovation Centre, Fermi Ave, Harwell Oxford, Oxfordshire OX11 0QR, United Kingdom. 3 Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL-60439, United States. (Dated: 17nd Sep 2020) The valley degree of freedom in many-valley semiconductors provides a new paradigm for storing and processing information in valleytronic and quantum-computing applications. Achieving practical devices require all-electric control of long-lived valley-polarized states, without the use of strong external magnetic fields. Attributable to the extreme strength of the carbon-carbon bond, diamond possesses exceptionally stable valley states which provides a useful platform for valleytronic devices. Using ultra-pure single- crystalline diamond, we here demonstrate electrostatic control of valley-currents in a dual gate field-effect transistor, where the electrons are generated with a short UV pulse. The charge- and the valley- current measured at receiving electrodes are controlled separately by varying the gate voltages. A proposed model based on drift-diffusion equations coupled through rate terms, with the rates computed by microscopic Monte Carlo simulations, is used to interpret experimental data. As an application, valley-current charge- state modulation of nitrogen-vacancy (NV) centers is demonstrated. Charge and spin are both well-defined quantum numbers created in diamond.6 This occurs by the hot electron in solids.
    [Show full text]
  • Enhanced Valley-Resolved Thermoelectric Transport in a Magnetic Silicene Superlattice
    Home Search Collections Journals About Contact us My IOPscience Enhanced valley-resolved thermoelectric transport in a magnetic silicene superlattice This content has been downloaded from IOPscience. Please scroll down to see the full text. 2015 New J. Phys. 17 073026 (http://iopscience.iop.org/1367-2630/17/7/073026) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 62.204.246.50 This content was downloaded on 13/08/2015 at 09:21 Please note that terms and conditions apply. New J. Phys. 17 (2015) 073026 doi:10.1088/1367-2630/17/7/073026 PAPER Enhanced valley-resolved thermoelectric transport in a magnetic OPEN ACCESS silicene superlattice RECEIVED 19 April 2015 Zhi Ping Niu, Yong Mei Zhang and Shihao Dong REVISED College of Science, Nanjing University of Aeronautics and Astronautics, Jiangsu 210016, Peopleʼs Republic of China 8 June 2015 ACCEPTED FOR PUBLICATION E-mail: [email protected] 18 June 2015 Keywords: valleytronics, magnetic silicene superlattice, thermoelectric transport PUBLISHED 22 July 2015 Content from this work Abstract may be used under the Electrons in two-dimensional crystals with a honeycomb lattice structure possess a valley degree of terms of the Creative Commons Attribution 3.0 freedom in addition to charge and spin, which has revived the field of valleytronics. In this work we licence. investigate the valley-resolved thermoelectric transport through a magnetic silicene superlattice. Since Any further distribution of this work must maintain spin is coupled to the valley, this device allows a coexistence of the insulating transmission gap of one attribution to the author(s) and the title of valley and the metallic resonant band of the other, resulting in a strong valley polarization Pv.
    [Show full text]
  • The VOI-Based Valleytronics
    The VOI-Based Valleytronics G. Y. Wu,1,2,* N.-Y. Lue,1 and Y.-C. Chen,1 Abstract We discuss the valley-orbit interaction (VOI) and the concept of VOI based valleytronics. Potential of such valleytronics is illustrated, with graphene as an example material, in several frontier applications comprising FETs, quantum computing, and quantum communications. Two important devices are discussed as examples, namely, 1) valley pair qubits in coupled graphene quantum dots, to build quantum networks consisting of graphene and photons, and 2) valley- based FETs consisting of graphene quantum wires (channels) and armchair graphene nanoribbons (sources and drains), to build graphene-based, low-power FET circuits. This demonstration makes the VOI-based valleytronics an attractive R & D direction in the area of electronics. 1 Department of Physics, National Tsing-Hua University, Hsin-Chu, Taiwan 30013 2Department of Electrical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30013 * Email: [email protected] PACS numbers: 85.35.-p, 72.80.Vp, 73.63.Nm, 03.67.Lx, 03.67.Hk, 85.30.Tv 1 I. Introduction The emerging graphene[1] has provided an exciting continent of physics for exploration[1-4] and, as a promising future electronic material, numerous interesting possibilities for frontier applications. In particular, it has opened the door to implement a new realm of electronics, namely, valleytronics, based on the valley degree of freedom[5] in electrons for the control of electrical properties[5-16]. Valley filtering (or polarization)[5-12,15], magnetic effects[6,7], and devices[5,9,13-16] have been explored or proposed.
    [Show full text]
  • Dimensionality and Anisotropicity Dependence of Radiative Recombination in Nanostructured Phosphorene
    Journal of Materials Chemistry C Dimensionality and Anisotropicity Dependence of Radiative Recombination in Nanostructured Phosphorene Journal: Journal of Materials Chemistry C Manuscript ID TC-ART-04-2019-002214.R1 Article Type: Paper Date Submitted by the 28-May-2019 Author: Complete List of Authors: Wu, Feng; University of California Santa Cruz Rocca, Dario; Universite de Lorraine Ecole Doctorale LTS Ping, Yuan; University of California Santa Cruz, Chemistry and Biochemistry Page 1 of 8 Journal of Materials Chemistry C Dimensionality and Anisotropicity Dependence of Ra- diative Recombination in Nanostructured Phospho- rene Feng Wua, Dario Roccab and Yuan Ping∗c The interplay between dimensionality and anisotropicity leads to intriguing optoelectronic prop- erties and exciton dynamics in low dimensional semiconductors. In this study we use nanos- tructured phosphorene as a prototypical example to unfold such complex physics and develop a general first-principles framework to study exciton dynamics in low dimensional systems. Specif- ically we derived the radiative lifetime and light emission intensity from 2D to 0D systems based on many body perturbation theory, and investigated the dimensionality and anisotropicity effects on radiative recombination lifetime both at 0 K and finite temperature, as well as polarization and angle dependence of emitted light. We show that the radiative lifetime at 0 K increases by an order of 103 with the lowering of one dimension (i.e. from 2D to 1D nanoribbons or from 1D to 0D quantum dots). We also show that obtaining the radiative lifetime at finite temperature requires accurate exciton dispersion beyond the effective mass approximation. Finally, we demonstrate that monolayer phosphorene and its nanostructures always emit linearly polarized light consistent with experimental observations, different from in-plane isotropic 2D materials like MoS2 and h-BN that can emit light with arbitrary polarization, which may have important implications for quantum information applications.
    [Show full text]
  • Arxiv:1707.02465V2 [Cond-Mat.Mes-Hall] 28 Jun 2018 Ri Opig(O)Adaszbegpo 1 Spin- of Its Gap Large Sizable a Recently
    Strain-controlled valley and spin separation in silicene heterojunctions Yuan Li1,2,∗ H. B. Zhu1, G. Q. Wang1, Y. Z. Peng1, J. R. Xu1, Z. H. Qian2, R. Bai2, G. H. Zhou3, C. Yesilyurt4, Z. B. Siu4, and M. B. A. Jalil4† 1Department of Physics, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China 2Center for Integrated Spintronic Devices (CISD), Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China 3Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Hunan Normal University, Changsha 410081, China and 4 Computational Nanoelectronics and Nano-device Laboratory, Electrical and Computer Engineering Department, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore (Dated: October 1, 2018) We adopt the tight-binding mode-matching method to study the strain effect on silicene hetero- junctions. It is found that valley and spin-dependent separation of electrons cannot be achieved by the electric field only. When a strain and an electric field are simultaneously applied to the central scattering region, not only are the electrons of valleys K and K’ separated into two distinct transmission lobes in opposite transverse directions, but the up-spin and down-spin electrons will also move in the two opposite transverse directions. Therefore, one can realize an effective modu- lation of valley and spin-dependent transport by changing the amplitude and the stretch direction of the strain. The phenomenon of the strain-induced valley and spin deflection can be exploited for silicene-based valleytronics devices. PACS numbers: 73.63.-b, 71.70.Ej, 71.70.Fk, 73.22.-f I.
    [Show full text]
  • Valleytronics: Opportunities, Challenges, and Paths Forward
    REVIEW Valleytronics www.small-journal.com Valleytronics: Opportunities, Challenges, and Paths Forward Steven A. Vitale,* Daniel Nezich, Joseph O. Varghese, Philip Kim, Nuh Gedik, Pablo Jarillo-Herrero, Di Xiao, and Mordechai Rothschild The workshop gathered the leading A lack of inversion symmetry coupled with the presence of time-reversal researchers in the field to present their symmetry endows 2D transition metal dichalcogenides with individually latest work and to participate in honest and addressable valleys in momentum space at the K and K′ points in the first open discussion about the opportunities Brillouin zone. This valley addressability opens up the possibility of using the and challenges of developing applications of valleytronic technology. Three interactive momentum state of electrons, holes, or excitons as a completely new para- working sessions were held, which tackled digm in information processing. The opportunities and challenges associated difficult topics ranging from potential with manipulation of the valley degree of freedom for practical quantum and applications in information processing and classical information processing applications were analyzed during the 2017 optoelectronic devices to identifying the Workshop on Valleytronic Materials, Architectures, and Devices; this Review most important unresolved physics ques- presents the major findings of the workshop. tions. The primary product of the work- shop is this article that aims to inform the reader on potential benefits of valleytronic 1. Background devices, on the state-of-the-art in valleytronics research, and on the challenges to be overcome. We are hopeful this document The Valleytronics Materials, Architectures, and Devices Work- will also serve to focus future government-sponsored research shop, sponsored by the MIT Lincoln Laboratory Technology programs in fruitful directions.
    [Show full text]
  • Analysis of Circularly Polarized Light Irradiation Effects on Double
    Analysis of Circularly Polarized Light Irradiation Effects on Double Ferromagnetic-Gate Silicene Junction 17 Analysis of Circularly Polarized Light Irradiation Effects on Double Ferromagnetic-Gate Silicene Junction 1 2 Peerasak Chantngarm and Kou Yamada ABSTRACT graphene (C), germanene (Ge), Borophene (B), phos- phorene (P), stanene (Sn) and plumbene (Pb) in elec- We present an analytical study of effects that tronics, spintronics, valleytronics and quantum com- off-resonant circularly polarized light irradiation has puting applications. Among these elemental 2D ma- on spin-valley currents in dual ferromagnetic-gate terials, silicene is currently considered to be the most silicene-based junctions. Two identical electric fields promising candidate mainly due to the accumulation are applied to both ferromagnetic (FM) gates. Two of silicon-related technology and knowhow in semi- types of exchange field configurations, parallel (P) conductor industry. Although silicene is a zero-band- and anti-parallel (AP), are applied along with chem- gap semiconductor with a small band gap of 1.55 meV ical potential to the FM gates in this investigation. in theory, the buckled honeycomb lattice structure The results show that application of circularly po- allows Dirac electron mass and its band structure to larized light has an impact on polarized spin and be manipulated easily by electric field [2], which is valley current characteristics, particularly at the off- important in making electronics devices. The honey- resonant frequency region. It also enhances the am- comb lattice structure of silicene results in the exis- plitude of tunnelling magnetoresistance (TMR) sig- tence of two atoms in one unit cell, and gives rise to nificantly.
    [Show full text]
  • Valleytronics" – a New Type of Electronics in Diamond 22 July 2013
    "Valleytronics" – a new type of electronics in diamond 22 July 2013 (Phys.org) —An alternative and novel concept in crystal. At low temperatures electrons will reside in electronics is to utilize the wave quantum number these valleys of minimum energy, of which there of the electron in a crystalline material to encode are six in diamond. information. In a new article in Nature Materials, Isberg et.al. propose using this valley degree of Other materials than diamond, e.g. silicon and freedom in diamond to enable valleytronic graphene also have similar valleys, but in diamond information processing or as a new route to electrons reside in their respective valley for, in this quantum computing. context, extremely long times: about 300 nanoseconds at liquid nitrogen temperature. This is In electronic circuits, bits of information (1:s and long enough to be useful for information 0:s) are encoded by the presence or absence of processing. The analogy with spintronics also electric charge. For fast information processing, implies that a future application for valleytronics is e.g. in computer processors or memories, charges within quantum computers. have to be moved around at high switching rates. Moving charges requires energy, which inevitably "The observation that the electron resides in a causes heating and gives rise to a fundamental valley for such a long period that it is possible to limit to the switching rate. As an alternative it is manipulate these states is an important step possible to utilize other properties than the charge towards valleytronic devices. We hope that this will of electrons to encode information and thereby prove to be a first step towards integrated avoid this fundamental limit.
    [Show full text]
  • Electronic Analogy of Goos-H\"{A} Nchen Effect: a Review
    Electronic analogy of Goos-Hanchen¨ effect: a review Xi Chen1,2, Xiao-Jing Lu1, Yue Ban2, and Chun-Fang Li1 1 Department of Physics, Shanghai University, 200444 Shanghai, China 2 Departamento de Qu´ımica-F´ısica, UPV-EHU, Apdo 644, 48080 Bilbao, Spain E-mail: [email protected] Abstract. The analogies between optical and electronic Goos-H¨anchen effects are established based on electron wave optics in semiconductor or graphene-based nanostructures. In this paper, we give a brief overview of the progress achieved so far in the field of electronic Goos-H¨anchen shifts, and show the relevant optical analogies. In particular, we present several theoretical results on the giant positive and negative Goos-H¨anchen shifts in various semiconductor or graphen-based nanostructures, their controllability, and potential applications in electronic devices, e.g. spin (or valley) beam splitters. Submitted to: J. Opt. A: Pure Appl. Opt. arXiv:1301.3549v1 [physics.optics] 16 Jan 2013 Electronic analogy of Goos-H¨anchen effect: a review 2 1. Introduction The Goos-H¨anchen (GH) effect, named after Hermann Fritz Gustav Goos and Hilda H¨anchen [1], is an optical phenomenon in which a light beam undergoes a lateral shift from the position predicted by geometrical optics, when totally reflected from a single interface of two media having different refraction indices [2]. The lateral GH shift, conjectured by Isaac Newton in the 18th century [3], was theoretically explained by Artmann’s stationary phase method [4] and Renard’s energy flux method [5]. With the development of laser beam and integrated optics [2], the GH shift becomes very significant nowadays, e.g.
    [Show full text]
  • ECE 492-Lecture5
    ECE 492 Future Electronic Devices from Condensed Matter Physics Topics Prof. Stephen Wu [email protected] OH: F 9-10 AM HPN 340 http://labsites.rochester.edu/swulab/teaching/ece-492-course-materials/ Lecture 5:New 2D materials for single layer electronics Last time… We explored carbon based electronics • Graphene • Carbon Nanotubes Last time… Some problems: Graphene Carbon Nanotubes • No bandgap • Cannot easily synthesize one type of CNT • Low on-off ratio • Cannot orient them on a • Can’t compete substrate against HEMTs Slowly making progress as evidenced by our presentation papers New 2D materials revolution Transition metal Phosphorene Silicene dichalcogenides Hexagonal Boron Nitride Bi2Se3 Borophene Outline • Transition metal dichalcogenides • Introduction to family • Transistors • Optoelectronic properties • Valleytronics • Heterostructures • Xenes • Introduction to family • Growth • Properties Transition metal dichalcogenides (TMDCs) Chalcogens Transition metals M=Mo, W, Ta, Nb, … Early successes: MoS2 TMDC= MX2 X=S, Se, Te, … Transition metal dichalcogenides (TMDCs) 2H 1T Source: Wang, et al., Nature Nanotechnology (2012) Kappera, et al. Nature Materials (2014) Lin, et al. Nature Nanotechnology (2014) TMDC Library and Phases Metallic/Superconducting/Charge density wave Metallic Semiconducting NbS2, NbSe2, TaS2, TaSe2 TaTe2, NbTe2 MoS2, WS2, MoSe2, WSe2, MoSe2, MoTe Source: Wang, et al., Nature Nanotechnology (2012) 2 Isolation and growth Exfoliation Wet processing Chemical Vapor Deposition Transfer Process Source: Shanmugam,
    [Show full text]
  • Valleytronics Quantum States
    Valleytronics Quantum States An international research team led by physicists at the University of California, Riverside, has revealed a new quantum process in valleytronics that can speed up the development of this fairly new technology. [59] Scientists from the University of Bristol and the Technical University of Denmark have found a promising new way to build the next generation of quantum simulators combining light and silicon micro-chips. [58] Researchers at the University of Southampton and the Korea Institute for Advanced Study have recently showed that supersymmetry is anomalous in N=1 superconformal quantum field theories (SCFTs) with an anomalous R symmetry. [57] Researchers at ETH Zurich have developed a method that allows them to characterize the fluctuations in detail. [56] A team of researchers from Nanyang Technological University, Singapore (NTU Singapore) and Griffith University in Australia have constructed a prototype quantum device that can generate all possible futures in a simultaneous quantum superposition. [55] Physicists have proposed an entirely new way to test the quantum superposition principle—the idea that a quantum object can exist in multiple states at the same time. [54] Researchers have developed a new device that can measure and control a nanoparticle trapped in a laser beam with unprecedented sensitivity. [53] Researchers have discovered a 'blind spot' in atomic force microscopy—a powerful tool capable of measuring the force between two atoms, imaging the structure of individual cells and the motion of biomolecules. [52] Australian scientists have investigated new directions to scale up qubits—utilising the spin-orbit coupling of atom qubits—adding a new suite of tools to the armory.
    [Show full text]
  • Arxiv:2106.06379V2 [Cond-Mat.Mes-Hall] 16 Jun 2021
    Valley-reversible Berry phase effects in 2D valley-half-semiconductors Xiaodong Zhou,1, 2, ∗ Run-Wu Zhang,1, 2, ∗ Zeying Zhang,3, ∗ Wanxiang Feng,1, 2, y Yuriy Mokrousov,4, 5 and Yugui Yao1, 2 1Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China 2Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China 3College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China 4Peter Gr¨unberg Institut and Institute for Advanced Simulation, Forschungszentrum J¨ulichand JARA, 52425 J¨ulich, Germany 5Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany (Dated: June 17, 2021) Manipulating valley-dependent Berry phase effects provides remarkable opportunities for both fundamental research and practical applications. Here, by referring to effective model analysis, we propose a general scheme for realizing topological magneto-valley phase transitions. More im- portantly, by using valley-half-semiconducting VSi2N4 as an outstanding example, we investigate valley-reversible Berry phase effects which drive the change-in-sign valley anomalous transport char- acteristics via external means such as biaxial strain, electric field, and correlation effects. As a result, this gives rise to quantized versions of valley anomalous transport phenomena. Our findings not only uncover a general
    [Show full text]