Electronic Analogy of Goos-H\"{A} Nchen Effect: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Valleytronic Diamond Transistor: Electrostatic Control of Valley-Currents and Charge State Manipulation of NV Centers
A valleytronic diamond transistor: electrostatic control of valley-currents and charge state manipulation of NV centers N. Suntornwipat1, S. Majdi1, M. Gabrysch1, K. K. Kovi1,3, V. Djurberg1, I. Friel2, D. J. Twitchen2 and J. Isberg1* 1 Division for Electricity, Department of Electrical Engineering, Uppsala University, Box 65, 751 03, Uppsala, Sweden. 2 Element Six, Global Innovation Centre, Fermi Ave, Harwell Oxford, Oxfordshire OX11 0QR, United Kingdom. 3 Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL-60439, United States. (Dated: 17nd Sep 2020) The valley degree of freedom in many-valley semiconductors provides a new paradigm for storing and processing information in valleytronic and quantum-computing applications. Achieving practical devices require all-electric control of long-lived valley-polarized states, without the use of strong external magnetic fields. Attributable to the extreme strength of the carbon-carbon bond, diamond possesses exceptionally stable valley states which provides a useful platform for valleytronic devices. Using ultra-pure single- crystalline diamond, we here demonstrate electrostatic control of valley-currents in a dual gate field-effect transistor, where the electrons are generated with a short UV pulse. The charge- and the valley- current measured at receiving electrodes are controlled separately by varying the gate voltages. A proposed model based on drift-diffusion equations coupled through rate terms, with the rates computed by microscopic Monte Carlo simulations, is used to interpret experimental data. As an application, valley-current charge- state modulation of nitrogen-vacancy (NV) centers is demonstrated. Charge and spin are both well-defined quantum numbers created in diamond.6 This occurs by the hot electron in solids. -
Enhanced Valley-Resolved Thermoelectric Transport in a Magnetic Silicene Superlattice
Home Search Collections Journals About Contact us My IOPscience Enhanced valley-resolved thermoelectric transport in a magnetic silicene superlattice This content has been downloaded from IOPscience. Please scroll down to see the full text. 2015 New J. Phys. 17 073026 (http://iopscience.iop.org/1367-2630/17/7/073026) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 62.204.246.50 This content was downloaded on 13/08/2015 at 09:21 Please note that terms and conditions apply. New J. Phys. 17 (2015) 073026 doi:10.1088/1367-2630/17/7/073026 PAPER Enhanced valley-resolved thermoelectric transport in a magnetic OPEN ACCESS silicene superlattice RECEIVED 19 April 2015 Zhi Ping Niu, Yong Mei Zhang and Shihao Dong REVISED College of Science, Nanjing University of Aeronautics and Astronautics, Jiangsu 210016, Peopleʼs Republic of China 8 June 2015 ACCEPTED FOR PUBLICATION E-mail: [email protected] 18 June 2015 Keywords: valleytronics, magnetic silicene superlattice, thermoelectric transport PUBLISHED 22 July 2015 Content from this work Abstract may be used under the Electrons in two-dimensional crystals with a honeycomb lattice structure possess a valley degree of terms of the Creative Commons Attribution 3.0 freedom in addition to charge and spin, which has revived the field of valleytronics. In this work we licence. investigate the valley-resolved thermoelectric transport through a magnetic silicene superlattice. Since Any further distribution of this work must maintain spin is coupled to the valley, this device allows a coexistence of the insulating transmission gap of one attribution to the author(s) and the title of valley and the metallic resonant band of the other, resulting in a strong valley polarization Pv. -
The VOI-Based Valleytronics
The VOI-Based Valleytronics G. Y. Wu,1,2,* N.-Y. Lue,1 and Y.-C. Chen,1 Abstract We discuss the valley-orbit interaction (VOI) and the concept of VOI based valleytronics. Potential of such valleytronics is illustrated, with graphene as an example material, in several frontier applications comprising FETs, quantum computing, and quantum communications. Two important devices are discussed as examples, namely, 1) valley pair qubits in coupled graphene quantum dots, to build quantum networks consisting of graphene and photons, and 2) valley- based FETs consisting of graphene quantum wires (channels) and armchair graphene nanoribbons (sources and drains), to build graphene-based, low-power FET circuits. This demonstration makes the VOI-based valleytronics an attractive R & D direction in the area of electronics. 1 Department of Physics, National Tsing-Hua University, Hsin-Chu, Taiwan 30013 2Department of Electrical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30013 * Email: [email protected] PACS numbers: 85.35.-p, 72.80.Vp, 73.63.Nm, 03.67.Lx, 03.67.Hk, 85.30.Tv 1 I. Introduction The emerging graphene[1] has provided an exciting continent of physics for exploration[1-4] and, as a promising future electronic material, numerous interesting possibilities for frontier applications. In particular, it has opened the door to implement a new realm of electronics, namely, valleytronics, based on the valley degree of freedom[5] in electrons for the control of electrical properties[5-16]. Valley filtering (or polarization)[5-12,15], magnetic effects[6,7], and devices[5,9,13-16] have been explored or proposed. -
Sculpturing the Electron Wave Function
Sculpturing the Electron Wave Function Roy Shiloh, Yossi Lereah, Yigal Lilach and Ady Arie Department of Physical Electronics, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel Coherent electrons such as those in electron microscopes, exhibit wave phenomena and may be described by the paraxial wave equation1. In analogy to light-waves2,3, governed by the same equation, these electrons share many of the fundamental traits and dynamics of photons. Today, spatial manipulation of electron beams is achieved mainly using electrostatic and magnetic fields. Other demonstrations include simple phase-plates4 and holographic masks based on binary diffraction gratings5–8. Altering the spatial profile of the beam may be proven useful in many fields incorporating phase microscopy9,10, electron holography11–14, and electron-matter interactions15. These methods, however, are fundamentally limited due to energy distribution to undesired diffraction orders as well as by their binary construction. Here we present a new method in electron-optics for arbitrarily shaping of electron beams, by precisely controlling an engineered pattern of thicknesses on a thin-membrane, thereby molding the spatial phase of the electron wavefront. Aided by the past decade’s monumental leap in nano-fabrication technology and armed with light- optic’s vast experience and knowledge, one may now spatially manipulate an electron beam’s phase in much the same way light waves are shaped simply by passing them through glass elements such as refractive and diffractive lenses. We show examples of binary and continuous phase-plates and demonstrate the ability to generate arbitrary shapes of the electron wave function using a holographic phase-mask. -
Dimensionality and Anisotropicity Dependence of Radiative Recombination in Nanostructured Phosphorene
Journal of Materials Chemistry C Dimensionality and Anisotropicity Dependence of Radiative Recombination in Nanostructured Phosphorene Journal: Journal of Materials Chemistry C Manuscript ID TC-ART-04-2019-002214.R1 Article Type: Paper Date Submitted by the 28-May-2019 Author: Complete List of Authors: Wu, Feng; University of California Santa Cruz Rocca, Dario; Universite de Lorraine Ecole Doctorale LTS Ping, Yuan; University of California Santa Cruz, Chemistry and Biochemistry Page 1 of 8 Journal of Materials Chemistry C Dimensionality and Anisotropicity Dependence of Ra- diative Recombination in Nanostructured Phospho- rene Feng Wua, Dario Roccab and Yuan Ping∗c The interplay between dimensionality and anisotropicity leads to intriguing optoelectronic prop- erties and exciton dynamics in low dimensional semiconductors. In this study we use nanos- tructured phosphorene as a prototypical example to unfold such complex physics and develop a general first-principles framework to study exciton dynamics in low dimensional systems. Specif- ically we derived the radiative lifetime and light emission intensity from 2D to 0D systems based on many body perturbation theory, and investigated the dimensionality and anisotropicity effects on radiative recombination lifetime both at 0 K and finite temperature, as well as polarization and angle dependence of emitted light. We show that the radiative lifetime at 0 K increases by an order of 103 with the lowering of one dimension (i.e. from 2D to 1D nanoribbons or from 1D to 0D quantum dots). We also show that obtaining the radiative lifetime at finite temperature requires accurate exciton dispersion beyond the effective mass approximation. Finally, we demonstrate that monolayer phosphorene and its nanostructures always emit linearly polarized light consistent with experimental observations, different from in-plane isotropic 2D materials like MoS2 and h-BN that can emit light with arbitrary polarization, which may have important implications for quantum information applications. -
Arxiv:1707.02465V2 [Cond-Mat.Mes-Hall] 28 Jun 2018 Ri Opig(O)Adaszbegpo 1 Spin- of Its Gap Large Sizable a Recently
Strain-controlled valley and spin separation in silicene heterojunctions Yuan Li1,2,∗ H. B. Zhu1, G. Q. Wang1, Y. Z. Peng1, J. R. Xu1, Z. H. Qian2, R. Bai2, G. H. Zhou3, C. Yesilyurt4, Z. B. Siu4, and M. B. A. Jalil4† 1Department of Physics, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China 2Center for Integrated Spintronic Devices (CISD), Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China 3Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Hunan Normal University, Changsha 410081, China and 4 Computational Nanoelectronics and Nano-device Laboratory, Electrical and Computer Engineering Department, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore (Dated: October 1, 2018) We adopt the tight-binding mode-matching method to study the strain effect on silicene hetero- junctions. It is found that valley and spin-dependent separation of electrons cannot be achieved by the electric field only. When a strain and an electric field are simultaneously applied to the central scattering region, not only are the electrons of valleys K and K’ separated into two distinct transmission lobes in opposite transverse directions, but the up-spin and down-spin electrons will also move in the two opposite transverse directions. Therefore, one can realize an effective modu- lation of valley and spin-dependent transport by changing the amplitude and the stretch direction of the strain. The phenomenon of the strain-induced valley and spin deflection can be exploited for silicene-based valleytronics devices. PACS numbers: 73.63.-b, 71.70.Ej, 71.70.Fk, 73.22.-f I. -
Electron Microscopy
Electron microscopy 1 Plan 1. De Broglie electron wavelength. 2. Davisson – Germer experiment. 3. Wave-particle dualism. Tonomura experiment. 4. Wave: period, wavelength, mathematical description. 5. Plane, cylindrical, spherical waves. 6. Huygens-Fresnel principle. 7. Scattering: light, X-rays, electrons. 8. Electron scattering. Born approximation. 9. Electron-matter interaction, transmission function. 10. Weak phase object (WPO) approximation. 11. Electron scattering. Elastic and inelastic scattering 12. Electron scattering. Kinematic and dynamic diffraction. 13. Imaging phase objects, under focus, over focus. Transport of intensity equation. 2 Electrons are particles and waves 3 De Broglie wavelength PhD Thesis, 1924: “With every particle of matter with mass m and velocity v a real wave must be associated” h p 2 h mv p mv Ekin eU 2 2meU Louis de Broglie (1892 - 1987) – wavelength h – Planck constant hc eU – electron energy in eV eU eU2 m c2 eU m0 – electron rest mass 0 c – speed of light The Nobel Prize in Physics 1929 was awarded to Prince Louis-Victor Pierre Raymond de Broglie "for his discovery of the wave nature of electrons." 4 De Broigle “Recherches sur la Théorie des Quanta (Researches on the quantum theory)” (1924) Electron wavelength 142 pm 80 keV – 300 keV 5 Davisson – Germer experiment (1923 – 1929) The first direct evidence confirming de Broglie's hypothesis that particles can have wave properties as well 6 C. Davisson, L. H. Germer, "The Scattering of Electrons by a Single Crystal of Nickel" Nature 119(2998), 558 (1927) Davisson – Germer experiment (1923 – 1929) The first direct evidence confirming de Broglie's hypothesis that particles can have wave properties as well Clinton Joseph Davisson (left) and Lester Germer (right) George Paget Thomson Nobel Prize in Physics 1937: Davisson and Thomson 7 C. -
Valleytronics: Opportunities, Challenges, and Paths Forward
REVIEW Valleytronics www.small-journal.com Valleytronics: Opportunities, Challenges, and Paths Forward Steven A. Vitale,* Daniel Nezich, Joseph O. Varghese, Philip Kim, Nuh Gedik, Pablo Jarillo-Herrero, Di Xiao, and Mordechai Rothschild The workshop gathered the leading A lack of inversion symmetry coupled with the presence of time-reversal researchers in the field to present their symmetry endows 2D transition metal dichalcogenides with individually latest work and to participate in honest and addressable valleys in momentum space at the K and K′ points in the first open discussion about the opportunities Brillouin zone. This valley addressability opens up the possibility of using the and challenges of developing applications of valleytronic technology. Three interactive momentum state of electrons, holes, or excitons as a completely new para- working sessions were held, which tackled digm in information processing. The opportunities and challenges associated difficult topics ranging from potential with manipulation of the valley degree of freedom for practical quantum and applications in information processing and classical information processing applications were analyzed during the 2017 optoelectronic devices to identifying the Workshop on Valleytronic Materials, Architectures, and Devices; this Review most important unresolved physics ques- presents the major findings of the workshop. tions. The primary product of the work- shop is this article that aims to inform the reader on potential benefits of valleytronic 1. Background devices, on the state-of-the-art in valleytronics research, and on the challenges to be overcome. We are hopeful this document The Valleytronics Materials, Architectures, and Devices Work- will also serve to focus future government-sponsored research shop, sponsored by the MIT Lincoln Laboratory Technology programs in fruitful directions. -
Analysis of Circularly Polarized Light Irradiation Effects on Double
Analysis of Circularly Polarized Light Irradiation Effects on Double Ferromagnetic-Gate Silicene Junction 17 Analysis of Circularly Polarized Light Irradiation Effects on Double Ferromagnetic-Gate Silicene Junction 1 2 Peerasak Chantngarm and Kou Yamada ABSTRACT graphene (C), germanene (Ge), Borophene (B), phos- phorene (P), stanene (Sn) and plumbene (Pb) in elec- We present an analytical study of effects that tronics, spintronics, valleytronics and quantum com- off-resonant circularly polarized light irradiation has puting applications. Among these elemental 2D ma- on spin-valley currents in dual ferromagnetic-gate terials, silicene is currently considered to be the most silicene-based junctions. Two identical electric fields promising candidate mainly due to the accumulation are applied to both ferromagnetic (FM) gates. Two of silicon-related technology and knowhow in semi- types of exchange field configurations, parallel (P) conductor industry. Although silicene is a zero-band- and anti-parallel (AP), are applied along with chem- gap semiconductor with a small band gap of 1.55 meV ical potential to the FM gates in this investigation. in theory, the buckled honeycomb lattice structure The results show that application of circularly po- allows Dirac electron mass and its band structure to larized light has an impact on polarized spin and be manipulated easily by electric field [2], which is valley current characteristics, particularly at the off- important in making electronics devices. The honey- resonant frequency region. It also enhances the am- comb lattice structure of silicene results in the exis- plitude of tunnelling magnetoresistance (TMR) sig- tence of two atoms in one unit cell, and gives rise to nificantly. -
Novel Topological Valleytronics in Moiré Heterostructures
Novel topological valleytronics in moiré heterostructures Chen Hu Centre for the Physics of Materials Department of Physics McGill University Montréal, Québec Canada A Thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy c Chen Hu, 2020 Je me souviens Contents Abstract ix Résumé xi Statement of Originality xiii Acknowledgments xv 1 Introduction 1 1.1 Carbon-based electronics . .1 1.2 Topological insulators . .7 1.3 Topological valleytronics in 2D . 11 1.4 Topological Zak phase in 1D . 15 1.5 Basic theorems of density functional theory . 19 1.6 Outline of the thesis . 22 2 Moiré valleytronics: realizing dense topological arrays 25 2.1 Introduction . 25 2.2 Gr/hBN moiré and topological electronic structure . 27 2.3 Topological analysis of moiré valleytronics . 30 2.3.1 Berry curvature and interlayer interaction . 30 2.3.2 Valley Chern number and bulk-edge correspondence . 33 2.3.3 Topological phase transition in periodic moiré patterns . 34 2.4 Generality of moiré valleytronics . 36 2.4.1 Moiré system of strained bilayer graphene . 36 v vi Contents 2.4.2 Moiré system of silicene/hBN . 38 2.5 Structural robustness of moiré valleytronics . 39 2.6 Summary . 41 3 Theoretical design of topological heteronanotubes 43 3.1 Introduction . 43 3.2 Geometry and electronic properties of THTs . 44 3.3 Valley-dependent topological analysis . 47 3.4 Spiral-oriented THTs and topological solenoid . 50 3.5 Generality and robustness of THTs . 53 3.5.1 Other diameters . -
Studying Charged Particle Optics: an Undergraduate Course
IOP PUBLISHING EUROPEAN JOURNAL OF PHYSICS Eur. J. Phys. 29 (2008) 251–256 doi:10.1088/0143-0807/29/2/007 Studying charged particle optics: an undergraduate course V Ovalle1,DROtomar1,JMPereira2,NFerreira1, RRPinho3 and A C F Santos2,4 1 Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n◦. Gragoata,´ Niteroi,´ 24210-346 Rio de Janeiro, Brazil 2 Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, Brazil 3 Departamento de F´ısica–ICE, Universidade Federal de Juiz de Fora, Campus Universitario,´ 36036-900, Juiz de Fora, MG, Brazil E-mail: [email protected] (A C F Santos) Received 23 August 2007, in final form 12 December 2007 Published 17 January 2008 Online at stacks.iop.org/EJP/29/251 Abstract This paper describes some computer-based activities to bring the study of charged particle optics to undergraduate students, to be performed as a part of a one-semester accelerator-based experimental course. The computational simulations were carried out using the commercially available SIMION program. The performance parameters, such as the focal length and P–Q curves are obtained. The three-electrode einzel lens is exemplified here as a study case. Introduction For many decades, physicists have been employing charged particle beams in order to investigate elementary processes in nuclear, atomic and particle physics using accelerators. In addition, many areas such as biology, chemistry, engineering, medicine, etc, have benefited from using beams of ions or electrons so that their phenomenological aspects can be understood. Among all its applications, electron microscopy may be one of the most important practical applications of lenses for charged particles. -
1 Transport of Charged Particle Beams
COURSE OUTLINE Final September 30, 2013 CPOTS 2013 CHARGED PARTICLE OPTICS – THEORY AND SIMULATION (CPOTS) Erasmus Intensive Programme Physics Department University of Crete August 15 – 31, 2013 Heraklion, Crete, Greece Participating Institutions and Instructors 1. University of Crete (UoC) Prof. Theo Zouros* (Project coordinator) 2. Afyon Kocatepe University (AKU) Prof. Mevlut Dogan (contact) Dr. Zehra Nur Ӧzer* 3. Selçuk University (SU) Prof. Hamdi Sukur Kilic (contact) 4. Universidad Computense Madrid (UCM) Prof. Genoveva Martinez - Lopez (contact) Pilar Garcés* 5. University of Ioannina (UoI) Prof. Manolis Benis* (contact) 6. Technische Universität Wien (TUW) Prof. Christoph Lemell* 7. Queen’s University Belfast (QUB) Prof. Jason Greenwood* (contact) Louise Belshaw* 8. University of Debrecen (UoD) Prof. Béla Sulik (contact) 9. University of Athens (UoA) Prof. Theo Mertzimekis (contact – was not able to be present) *SIMION user CPOTS 2013 – Erasmus IP August 15 –31, Heraklion, Crete Page 1 COURSE OUTLINE Final September 30, 2013 CPOTS 2013 Medical University of South Carolina Prof. Dan Knapp (guest) General IP rules and participant information Attendance sheet An attendance sheet will be maintained for all lectures and labs for all participants (teachers and students). Teachers 1. Minimum suggested stay at an Erasmus IP including travel both ways: 5 days (as certified by the attendance sheet). 2. Minimum number of suggested lecturing + lab hours at an Erasmus IP: 5 hours(as certified by the attendance sheet). 3. A minimum of two laboratory instructors will be available at every afternoon laboratory session. 4. The instructor in charge of each unit will be responsible for: i) The proper execution of the lectures as described in the work program.