Novel Topological Valleytronics in Moiré Heterostructures

Novel Topological Valleytronics in Moiré Heterostructures

Novel topological valleytronics in moiré heterostructures Chen Hu Centre for the Physics of Materials Department of Physics McGill University Montréal, Québec Canada A Thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy c Chen Hu, 2020 Je me souviens Contents Abstract ix Résumé xi Statement of Originality xiii Acknowledgments xv 1 Introduction 1 1.1 Carbon-based electronics . .1 1.2 Topological insulators . .7 1.3 Topological valleytronics in 2D . 11 1.4 Topological Zak phase in 1D . 15 1.5 Basic theorems of density functional theory . 19 1.6 Outline of the thesis . 22 2 Moiré valleytronics: realizing dense topological arrays 25 2.1 Introduction . 25 2.2 Gr/hBN moiré and topological electronic structure . 27 2.3 Topological analysis of moiré valleytronics . 30 2.3.1 Berry curvature and interlayer interaction . 30 2.3.2 Valley Chern number and bulk-edge correspondence . 33 2.3.3 Topological phase transition in periodic moiré patterns . 34 2.4 Generality of moiré valleytronics . 36 2.4.1 Moiré system of strained bilayer graphene . 36 v vi Contents 2.4.2 Moiré system of silicene/hBN . 38 2.5 Structural robustness of moiré valleytronics . 39 2.6 Summary . 41 3 Theoretical design of topological heteronanotubes 43 3.1 Introduction . 43 3.2 Geometry and electronic properties of THTs . 44 3.3 Valley-dependent topological analysis . 47 3.4 Spiral-oriented THTs and topological solenoid . 50 3.5 Generality and robustness of THTs . 53 3.5.1 Other diameters . 53 3.5.2 Multi-period THTs . 55 3.5.3 Reverse-ordered THTs . 56 3.5.4 Commensurate double-wall heteronanotubes . 56 3.5.5 Zigzag and chiral heteronanotubes . 57 3.5.6 Topological properties of double-wall CNTs . 57 3.6 Summary . 59 4 Topological Zak phase of zigzag carbon nanotubes 61 4.1 Introduction . 61 4.2 Z2, Wannier center and Zak phase . 63 4.3 Topological Zak phase of zigzag CNT . 64 4.3.1 Two-band model of zigzag CNT . 65 4.3.2 Parity analysis of eigenstates . 67 4.3.3 The 2N -rule . 70 4.3.4 Wannier center analysis . 71 Contents vii 4.4 Edge states in finite zigzag CNTs . 72 4.4.1 FES and TES under gating electric field . 74 4.4.2 FES and TES under random edge-potential environment . 76 4.5 Further discussions on different terminations . 78 4.6 Summary . 80 5 Dirac electrons in 2D moiré superlattice 81 5.1 Introduction . 81 5.2 Dirac electronic states in flat-sheet moiré patterns . 82 5.3 Dirac electronic states in wavelike moiré patterns . 89 5.4 Summary . 92 6 Conclusion 93 A calculations of berry curvature 97 B calculations of zak phase 100 Bibliography 104 Abstract Two-dimensional (2D) van der Waals (vdW) heterostructures have attracted great attentions in recent years. By stacking different 2D materials to weakly bond via the vdW force, the re- sulting artificial bilayers and/or multi-layers create novel material platforms for fundamental as well as technological exploration. A nearly ubiquitous feature of the vdW heterostruc- tures is the moiré pattern caused by lattice mismatch or relative rotation of the two stacking lattices which creates a periodic lateral modulation on the electronic potential in the het- erostructure. Such moiré modulation can form large-scale 2D and 1D superlattice leading to interesting new physics. In this thesis, we propose and theoretically investigate the notion of topological valleytron- ics in 2D vdW heterostructures where moiré patterns are predicted to induce arrays of topo- logically protected pathways of valley electronic states. Systematic and first-principles cal- culations on the graphene/hBN systems are carried out to establish a basic understanding of the formation of topological moiré edges, and the novel moiré topological physics is also found in a broad range of other 2D vdW materials. Importantly, due to the structural robustness, the moiré topological physics can be extended to 1D: where the 2D graphene/hBN mate- rials are rolled up into tubular structures to form topological heteronanotubes (THT). Due to essentially infinite possibilities of the tube index, interesting valley topological states are found and modulated by various 1D moiré patterns with different moiré periods and chiral orientations. We also show that the novel valley-Dirac physics resulted from moiré patterns show up in other aspects, including the appearance of secondary Dirac cones induced by the large-scale honeycomb graphene/hBN moiré superlattice. The topological order of the 2D moiré systems are analyzed by calculating the valley Chern number of the electronic bands. For 1D carbon nanotube (CNT) systems, the topological classification can be built by cal- culating the topological Zak phase. Interestingly, we discover that the Zak phase of zigzag CNTs can be quantized to take 0 or π, suggesting topological differences in the insulating phases of the zigzag CNT, and a 2N -rule is established both analytically and numerically that topologically classifies the insulating phases. We conclude that moiré patterns which appear naturally on 2D vdW double-layer ma- terials and/or 1D tubular carbon structures lead to very rich and novel valley topological ix x Abstract states which are protected by certain topological orders and thus can sustain large external perturbations. Our researches in this thesis provide a general, robust and experimentally feasible platform for both investigating fundamental science of low-dimensional topological physics and practical applications in reliable low-power carbon-based nanodevices and nano- electronics. Résumé Les hétérostructures bidimensionnelles (2D) de van der Waals (vdW) ont attiré l’attention dans les dernières années. En empilant différents matériaux 2D liés faiblement par la force de vdW, on obtient des bicouches ou des multicouches artificielles qui créent autant de su- jets recherche fondamentale et d’avenues de développement technologique. Une caractéris- tique presque commune à toutes les hétérostructures de vdW est le moiré provoqué par le mésappariement des structures cristallines ou la rotation relative des couches, ce qui crée une modulation latérale périodique du potentiel électronique dans l’hétérostructure. Un tel moiré peut ainsi former une super-structure cristalline 1D ou 2D produisant d’intéressants phénomènes physiques. Dans cette thèse, nous proposons et étudions théoriquement la notion de vallétronique topologique dans les hétérostructures 2D de vdW, selon laquelle les moirés induisent des mosaïques de canaux de conductions topologiques pour les états électroniques des vallées. Des calculs systématiques à partir de principes premiers sont effectuées sur des systèmes graphène/hBN pour établir une compréhension de base de la formation de canaux topologiques de moiré, et les nouveaux phénomènes topologiques des moirés se retrouvent également dans une vaste gamme de matériaux 2D de vdW. En effet, en raison de la robustesse struc- turelle, la physique topologique des moirés peut aussi être observée en 1D: où les matériaux graphène/hBN 2D sont enroulés de sorte à former des structures tubulaires qu’on nomme des hétéronanotubes topologiques (THT). à cause des possibilités infinies de l’indice des tubes, des états de vallée topologiques intéressants sont présents en 1D et modulés par les moirés avec diverses périodes et orientations chirales. Nous montrons également que la nou- velle physique des points de Dirac provenant des moirés se manifeste sous d’autres formes, y compris en induisant des cônes de Dirac secondaires dans les super-structures cristallines graphène/hBN en nid d’abeille. L’ordre topologique des moirés 2D est analysé en calculant le nombre Chern de vallée des bandes électroniques. Pour les nanotubes de carbone 1D (CNT), la classification topologique peut être établie en calculant la phase topologique de Zak. Fait intéressant, nous découvrons que la phase de Zak des CNT orientés zigzag est quantifiée et prend une valeur de 0 ou π, ce qui suggère la présence de différentes topologies parmi les phases isolantes des CNT orientés zigzag, et une règle 2N qui classe topologiquement les phases isolantes est établie à la fois analytiquement et numériquement. xi xii Résumé Nous concluons que les moirés qui apparaissent naturellement dans les matériaux bicouches 2D de vdW et les structures de carbone tubulaires 1D mènent à des états topologiques de vallée nouveaux et variés qui sont protégés par certains ordres topologiques, et qui peuvent donc resister à de grandes perturbations. Les recherches exposées dans cette thèse fournissent un aperçu général, robuste et expérimentalement faisable permettant d’étudier la science fondamentale de la topologie de dimension réduite et les applications pratiques que sont les nanodispositifs à base de carbone et la nanoélectronique fiables de faible puissance. Statement of Originality In this thesis, by analytical as well as numerical first-principles techniques, I have theoretically investigated novel valleytronics, topological physics and Dirac electronics in emerging low- dimensional carbon-based materials. My original contributions include: • I proposed and investigated the idea of moiré valleytronics - a rather general and robust material platform to realize high-density arrays of 1D topological helical channels. I developed methods to numerically calculate the Berry curvature and the topological Chern invariants based on the k · p perturbation theory within our state-of-the-art large-scale DFT codes. Results are summarized in Chapter 2. • I proposed and investigated the idea of topological heteronanotubes (THT) formed by a carbon nanotube (CNT) inside a boron nitride nanotube (BNNT). I discovered that such THTs are low-dissipation 1D conductors and the spiral-type THTs could serve as nanoscale solenoids generating remarkable magnetic fields. Results are summarized in Chapter 3. • I discovered a 2N -rule that topologically classifies the insulating phases of zigzag CNTs, using the topological Zak phase. I have demonstrated that topological zigzag CNTs generate very robust topological end states that survive strong external perturbations.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    142 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us