Characterization of the CYP3A4 Enzyme Inhibition Potential of Selected Flavonoids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Estroquench™ Hormone Specific Formulation™
PRODUCT DATA DOUGLAS LABORATORIES® 08/2014 1 EstroQuench™ Hormone Specific Formulation™ DESCRIPTION EstroQuench™ is a Hormone Specific Formulation™ of ingredients that have documented anti-aromatase activity as well as androgenic adaptogens which support the function of endogenous aromatase inhibitors. Collectively these herbs promote minimal production and function of estrogens, while promoting testosterone function, including optimal sexual function in both genders. This formulation is designed to quench excessive production of estrogens and aberrant functions of them while supporting optimal function of androgens by maintaining the health of androgen producing glands.† Hormone Specific Formulation™ provided by Douglas Laboratories® and formulated by Dr. Joseph J Collins is created to support the optimal function of specific hormones through the use of hormone specific adaptogens, hormone specific agonists and hormone specific functional mimetics. This formulation may be used as part of a hormone health program with dietary and nutrient support. In addition, this formulation may be used by clinicians as an adjuvant to support optimal hormone health in patients who have been prescribed bioidentical hormone therapies. FUNCTIONS Aromatase (a cytochrome P450 enzyme {CYP19}) is the enzyme that controls the conversion of androgens to estrogens. More specifically, aromatase is the enzyme responsible for catalyzing the biosynthesis of androstenedione into estrone, and the biosynthesis of testosterone to estradiol. Estrogens include the broad range of aromatized hormones created form androgens. The specific attribute of estrogens that separate them from progestogens, androgens and corticoids is that estrogens are the only aromatized steroid hormones. Estradiol, the most potent endogenous estrogen, is biosynthesized by aromatization from androgens by aromatase (which is also called estrogen synthase). -
Test Report Comprehensive Hormone Insights™
698814 COMPREHENSIVE HORMONE INSIGHTS™ TEST REPORT Dr. Maximus, N.D. E: [email protected] Date of Collection: P: 403-241-4500 Time of Collection: F: 403-241-4501 Date of Receipt: www.rmalab.com Reported On: CHI Accession: 698814 Healthcare Professional Patient Age: Dr. Maximus, N.D. Date of Birth: Gender: Male F: Relevant Medications Biometrics Curcumin Height (in) : 73 Weight (lb) : 180 BMI : 24 Waist (in) : 35 Hip (in) : 41 CHI Accession: 698814 SUMMARY HMUS01 How to read the graphs LEGEND: 50 66 Sex Steroid Hormones 50 66 Middle third of 33 33 84 reference population Hormone Start of 83 100 80 100 highest 16 Percentile Precursors 16 Percentile third of Sum of Androgens Sum of Estrogens 50 66 reference 0 0 population (T, DHT, α+β androstanediol) Listed in Interp Guide 33 84 End of 100 16 lowest Percentile00 50 66 50 66 third of 33 33 84 reference 0 population Patient’s percentile rank 81 100 95 100 compared to reference 16 Percentile 16 Percentile population (see summary) DHEA + Metabolites Sum of Progesterone Metabolites 0 (DHEA + A + E) 0 α+β Pregnanediol Cortisol Melatonin Oxidative Stress Free Cortisol Profile (ng/mg) 100 50 66 50 66 33 84 33 84 80 64 100 0 100 16 Percentile 16 Percentile 60 6-sulfatoxy 8-Hydroxy-2- 0 Melatonin 0 deoxyguanosine 40 (Overnight) (Overnight) 20 6-sulfatoxymelatonin provides 8-hydroxy-2-deoxyguanosine is Cortisol/Creatinine (ng/mg) insight into melatonin levels. a marker of oxidative stress 0 Morning Dinner Bedtime A B C 50 66 Free cortisol Cortisol Metabolites 33 84 profile is used to provides a general Testosterone Cortisol assess diurnal assessment of 16 100 cortisol rhythm adrenal cortisol 16 Percentile Cortisol production Cortisol Metabolites 0 (α+β THF + THE) Testosterone Cortisol/Testosterone provides insight into relative catabolic (cortisol) and anabolic (testosterone) states. -
2018 Apigenin Male Infertility (2).Pdf
Original Article Thai Journal of Pharmaceutical Sciences Apigenin and baicalin, each alone or in low-dose combination, attenuated chloroquine induced male infertility in adult rats Amira Akilah, Mohamed Balaha*, Mohamed-Nabeih Abd-El Rahman, Sabiha Hedya Department of Pharmacology, Faculty of Medicine, Tanta University, Postal No. 31527, El-Gish Street, Tanta, Egypt Corresponding Author: Department of Pharmacology, ABSTRACT Faculty of Medicine, Tanta University, Postal No. 31527, Introduction: Male infertility is a worldwide health problem, which accounts for about 50% of all El-Gish Street, Tanta, Egypt. cases of infertility and considered as the most common single defined cause of infertility. Recently, Tel.: +201284451952. E-mail: apigenin and baicalin exhibited a powerful antioxidant and antiapoptotic activities. Consequently, in [email protected]. the present study, we evaluated the possible protective effect of apigenin and baicalin, either alone or Edu.Eg (M. Balaha). in low-dose combination, on a rat model of male infertility, regarding for its effects on the hormonal assay, testicular weight, sperm parameters, oxidative-stress state, apoptosis, and histopathological Received: Mar 06, 2018 changes. Material and methods: 12-week-old adult male Wister rats received 10 mg/kg/d Accepted: May 08, 2018 chloroquine orally for 30 days to induce male infertility. Either apigenin (30 or 15 mg/kg/d), baicalin Published: July 10, 2018 (100 or 50 mg/kg/d) or a combination of 15 mg/kg/d apigenin and 50 mg/kg/d baicalin received daily -
Effects of Enzymatic and Thermal Processing on Flavones, the Effects of Flavones on Inflammatory Mediators in Vitro, and the Absorption of Flavones in Vivo
Effects of enzymatic and thermal processing on flavones, the effects of flavones on inflammatory mediators in vitro, and the absorption of flavones in vivo DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Gregory Louis Hostetler Graduate Program in Food Science and Technology The Ohio State University 2011 Dissertation Committee: Steven Schwartz, Advisor Andrea Doseff Erich Grotewold Sheryl Barringer Copyrighted by Gregory Louis Hostetler 2011 Abstract Flavones are abundant in parsley and celery and possess unique anti-inflammatory properties in vitro and in animal models. However, their bioavailability and bioactivity depend in part on the conjugation of sugars and other functional groups to the flavone core. Two studies were conducted to determine the effects of processing on stability and profiles of flavones in celery and parsley, and a third explored the effects of deglycosylation on the anti-inflammatory activity of flavones in vitro and their absorption in vivo. In the first processing study, celery leaves were combined with β-glucosidase-rich food ingredients (almond, flax seed, or chickpea flour) to determine test for enzymatic hydrolysis of flavone apiosylglucosides. Although all of the enzyme-rich ingredients could convert apigenin glucoside to aglycone, none had an effect on apigenin apiosylglucoside. Thermal stability of flavones from celery was also tested by isolating them and heating at 100 °C for up to 5 hours in pH 3, 5, or 7 buffer. Apigenin glucoside was most stable of the flavones tested, with minimal degradation regardless of pH or heating time. -
(Apigenin, Luteolin, Chrysin) and Their Importance for Health
Mellifera 2020, 20(1):16-27 MELLIFERA REVIEW ARTICLE Flavones (Apigenin, Luteolin, Chrysin) and Their Importance for Health Fatma Özsel ÖZCAN1*, Ozan ALDEMİR2, Bülent KARABULUT3 1Beykoz Üniversity, Faculty of Art and Design, Department of Gastronomy and Culinary Arts, İstanbul, Turkey 2Ege University Faculty of Medicine, Department of Biochemistry, İzmir, TURKEY 3Ege University Faculty of Medicine, Department of Oncology, İzmir, TURKEY * Corresponding author e-mail: [email protected] Received: 14th March, 2020; accepted: 4th May, 2020; published: 29th June, 2020 A B S T R A C T It has been shown in recent years that foods called functional foods may protect against certain types of cancer, cardiovascular diseases and cognitive dysfunctions. In the studies performed, the flavonoids (apigenin, chrysin, luteolin) which are subclass of flavonoids have been shown to have antioxidant, antiinflammatory, antiallergic, neuroprotective and cardioprotective effects and it is presented as the current treatment method in the treatment of some diseases. The structure function, nutritional resources and potential therapeutic properties of the flavones, which are also used as supplement in the compost, have been studied. The purpose of this review is to evaluate the therapeutic effects of flavones in certain diseases. The positive effect of 16 flavones on health can be proven in many experimental studies and can be proven in the long run. Keywords: Functional nutrients, flavones, apigenin, luteolin, chrysin Introduction Polyphenolic flavonoids are among the affected by factors such as plant species, wide variety of phytochemicals found in the environment, genetics, light, maturity, human diet. Current studies reveal that harvest [3]. Flavones, a subset of dietary flavonoids are inversely related to flavonoids, form glycosylation and contain many cancers and age-related diseases [1]. -
Systematic Classification of Unknowns Using Fragmentation Spectra
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.17.046672. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Classes for the masses: Systematic classification of unknowns using fragmentation spectra Kai Dührkop1, Louis Felix Nothias2, Markus Fleischauer1, Marcus Ludwig1, Martin A. Hoffmann1,3, Juho Rousu4, Pieter C. Dorrestein2, Sebastian Böcker1 1 Chair for Bioinformatics, Friedrich-Schiller-University, Jena, Germany 2 Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, USA 3 International Max Planck Research School “Exploration of Ecological Interactions with Molecular and Chemical Techniques”, Max Planck Institute for Chemical Ecology, Jena, Germany 4 Helsinki institute for Information Technology HIIT, Department of Computer Science, Aalto University, Espoo, Finland ABSTRACT Metabolomics experiments can employ non-targeted tandem mass spectrometry to detect hundreds to thousands of molecules in a biological sample. Structural annotation of molecules is typically carried out by searching their fragmentation spectra in spectral libraries or, recently, in structure databases. Annotations are limited to structures present in the library or database employed, prohibiting a thorough utilization of the experimental data. We present a computational tool for systematic compound class annotation: CANOPUS uses a deep neural network to predict 1,270 compound classes from fragmentation spectra, and explicitly targets compounds where neither spectral nor structural reference data are available. CANOPUS even predicts classes for which no MS/MS training data are available. We demonstrate the broad utility of CANOPUS by investigating the effect of the microbial colonization in the digestive system in mice, and through analysis of the chemodiversity of different Euphorbia plants; both uniquely revealing biological insights at the compound class level. -
Inhibitory Effect of Acacetin, Apigenin, Chrysin and Pinocembrin on Human Cytochrome P450 3A4
ORIGINAL SCIENTIFIC PAPER Croat. Chem. Acta 2020, 93(1), 33–39 Published online: August 03, 2020 DOI: 10.5562/cca3652 Inhibitory Effect of Acacetin, Apigenin, Chrysin and Pinocembrin on Human Cytochrome P450 3A4 Martin Kondža,1 Hrvoje Rimac,2,3 Željan Maleš,4 Petra Turčić,5 Ivan Ćavar,6 Mirza Bojić2,* 1 University of Mostar, Faculty of Pharmacy, Matice hrvatske bb, 88000 Mostar, Bosnia and Herzegovina 2 University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Medicinal Chemistry, A. Kovačića 1, 10000 Zagreb, Croatia 3 South Ural State University, Higher Medical and Biological School, Laboratory of Computational Modeling of Drugs, 454000 Chelyabinsk, Russian Federation 4 University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Botany, Schrottova 39, 10000 Zagreb, Croatia 5 University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmacology, Domagojeva 2, 10000 Zagreb, Croatia 6 University of Mostar, Faculty of Medicine, Kralja Petra Krešimira IV bb, 88000 Mostar, Bosnia and Herzegovina * Corresponding author’s e-mail address: [email protected] RECEIVED: June 26, 2020 REVISED: July 28, 2020 ACCEPTED: July 30, 2020 Abstract: Cytochrome P450 3A4 is the most significant enzyme in metabolism of medications. Flavonoids are common secondary plant metabolites found in fruits and vegetables. Some flavonoids can interact with other drugs by inhibiting cytochrome P450 enzymes. Thus, the objective of this study was to determine inhibition kinetics of cytochrome P450 3A4 by flavonoids: acacetin, apigenin, chrysin and pinocembrin. For this purpose, testosterone was used as marker substrate, and generation of the 6β-hydroxy metabolite was monitored by high performance liquid chromatography coupled with diode array detector. -
Cphi & P-MEC China Exhibition List展商名单version版本20180116
CPhI & P-MEC China Exhibition List展商名单 Version版本 20180116 Booth/ Company Name/公司中英文名 Product/产品 展位号 Carbosynth Ltd E1A01 Toronto Research Chemicals Inc E1A08 SiliCycle Inc. E1A10 SA TOURNAIRE E1A11 Indena SpA E1A17 Trifarma E1A21 LLC Velpharma E1A25 Anuh Pharma E1A31 Chemclone Industries E1A51 Hetero Labs Limited E1B09 Concord Biotech Limited E1B10 ScinoPharm Taiwan Ltd E1B11 Dongkook Pharmaceutical Co., Ltd. E1B19 Shenzhen Salubris Pharmaceuticals Co., Ltd E1B22 GfM mbH E1B25 Leawell International Ltd E1B28 DCS Pharma AG E1B31 Agno Pharma E1B32 Newchem Spa E1B35 APEX HEALTHCARE LIMITED E1B51 AMRI E1C21 Aarti Drugs Limited E1C25 Espee Group Innovators E1C31 Ruland Chemical Co., Ltd. E1C32 Merck Chemicals (Shanghai) Co., Ltd. E1C51 Mediking Pharmaceutical Group Ltd E1C57 珠海联邦制药股份有限公司/The United E1D01 Laboratories International Holdings Ltd. FMC Corporation E1D02 Kingchem (Liaoning) Chemical Co., Ltd E1D10 Doosan Corporation E1D22 Sunasia Co., Ltd. E1D25 Bolon Pharmachem Co., Ltd. E1D26 Savior Lifetec Corporation E1D27 Alchem International Pvt Ltd E1D31 Polish Investment and Trade Agency E1D57 Fischer Chemicals AG E1E01 NGL Fine Chem Limited E1E24 常州艾柯轧辊有限公司/ECCO Roller E1E25 Linnea SA E1E26 Everlight Chemical Industrial Corporation E1E27 HARMAN FINOCHEM E1E28 Zhechem Co Ltd E1F01 Midas Pharma GmbH Shanghai Representativ E1F03 Supriya Lifescience Ltd E1F10 KOA Shoji Co Ltd E1F22 NOF Corporation E1F24 上海贺利氏工业技术材料有限公司/Heraeus E1F26 Materials Technology Shanghai Ltd. Novacyl Asia Pacific Ltd E1F28 PharmSol Europe Limited E1F32 Bachem AG E1F35 Louston International Inc. E1F51 High Science Co Ltd E1F55 Chemsphere Technology Inc. E1F57a PharmaCore Biotech Co., Ltd. E1F57b Rockwood Lithium GmbH E1G51 Sarv Bio Labs Pvt Ltd E1G57 抗病毒类、抗肿瘤类、抗感染类和甾体类中间体、原料药和药物制剂及医药合约研发和加工服务 上海创诺医药集团有限公司/Shanghai Desano APIs and Finished products of ARV, Oncology, Anti-infection and Hormone drugs and E1H01 Pharmaceuticals Co., Ltd. -
Molecular Docking Study on Several Benzoic Acid Derivatives Against SARS-Cov-2
molecules Article Molecular Docking Study on Several Benzoic Acid Derivatives against SARS-CoV-2 Amalia Stefaniu *, Lucia Pirvu * , Bujor Albu and Lucia Pintilie National Institute for Chemical-Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; [email protected] (B.A.); [email protected] (L.P.) * Correspondence: [email protected] (A.S.); [email protected] (L.P.) Academic Editors: Giovanni Ribaudo and Laura Orian Received: 15 November 2020; Accepted: 1 December 2020; Published: 10 December 2020 Abstract: Several derivatives of benzoic acid and semisynthetic alkyl gallates were investigated by an in silico approach to evaluate their potential antiviral activity against SARS-CoV-2 main protease. Molecular docking studies were used to predict their binding affinity and interactions with amino acids residues from the active binding site of SARS-CoV-2 main protease, compared to boceprevir. Deep structural insights and quantum chemical reactivity analysis according to Koopmans’ theorem, as a result of density functional theory (DFT) computations, are reported. Additionally, drug-likeness assessment in terms of Lipinski’s and Weber’s rules for pharmaceutical candidates, is provided. The outcomes of docking and key molecular descriptors and properties were forward analyzed by the statistical approach of principal component analysis (PCA) to identify the degree of their correlation. The obtained results suggest two promising candidates for future drug development to fight against the coronavirus infection. Keywords: SARS-CoV-2; benzoic acid derivatives; gallic acid; molecular docking; reactivity parameters 1. Introduction Severe acute respiratory syndrome coronavirus 2 is an international health matter. Previously unheard research efforts to discover specific treatments are in progress worldwide. -
Science Based Authentication of Dietary Supplements
University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2010 Science Based Authentication of Dietary Supplements: Studies on the Chemical Constituents, Analytical Method and Biological Activities of Scutellaria Spp and Pfaffiaaniculata P Jing Li Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Plant Sciences Commons Recommended Citation Li, Jing, "Science Based Authentication of Dietary Supplements: Studies on the Chemical Constituents, Analytical Method and Biological Activities of Scutellaria Spp and Pfaffiaaniculata P " (2010). Electronic Theses and Dissertations. 179. https://egrove.olemiss.edu/etd/179 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. SCIENCE BASED AUTHENTICATION OF DIETARY SUPPLEMENTS ---STUDIES ON THE CHEMICAL CONSTITUENTS, ANALYTICAL METHOD AND BIOLOGICAL ACTIVITIES OF SCUTELLARIA SPP AND PFAFFIA PANICULATA KUNTZE A Dissertation presented in partial fulfillment of requirements for the degree of Doctor of Philosophy in the Department of Pharmacognosy The University of Mississippi JING LI Nov. 2010 Copyright © 2010 by Jing Li All rights reserved ii ABSTRACT During the last decade, the use of herbal medicine has expanded globally and gained popularity. With the tremendous expansion in the use of herbal medicine worldwide, safety and efficacy as well as quality control of herbal medicines have become more and more issues of concern for both health authorities and the public. Although herbal medicine has been in use for hundreds to thousands years, very limited science-based data exist to explicit its chemical constituents, pharmacological activities and toxicity. -
Bioactive Properties and Phenolic Compound Profiles of Turnip
molecules Article Bioactive Properties and Phenolic Compound Profiles of Turnip-Rooted, Plain-Leafed and Curly-Leafed Parsley Cultivars Ângela Liberal 1 , Ângela Fernandes 1 , Nikolaos Polyzos 2 , Spyridon A. Petropoulos 2,* , Maria Inês Dias 1 , José Pinela 1 , Jovana Petrovi´c 3, Marina Sokovi´c 3 , Isabel C.F.R. Ferreira 1 and Lillian Barros 1,* 1 Mountain Research Center (CIMO), Institute Polytechnic of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; [email protected] (Â.L.); [email protected] (Â.F.); [email protected] (M.I.D.); [email protected] (J.P.); [email protected] (I.C.F.R.F.) 2 Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece; [email protected] 3 Institute for Biological Research “Siniša Stankovi´c”-NationalInstitute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; [email protected] (J.P.); [email protected] (M.S.) * Correspondence: [email protected] (S.A.P.); [email protected] (L.B.); Tel.: +30-2421-093-196 (S.A.P.); +351-2733-309-01 (L.B.) Academic Editor: Ryszard Amarowicz Received: 30 October 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: Petroselinum crispum Mill., Fuss., is a culinary vegetable used as an aromatic herb that garnishes and flavours a great variety of dishes. In the present study, the chemical profiles and bioactivities of leaf samples from 25 cultivars (three types: plain- and curly-leafed and turnip-rooted) from this species were assessed. Seven phenolic compounds were identified in all the varieties, including apigenin and kaempherol derivates. -
Natural Compounds to Counteract Testosterone Depletion in Aging
s & H oid orm er o t n S f a Rojas and Pandey, J Steroids Horm Sci 2014, 5:1 l o S l c a i Journal of DOI: 10.4172/2157-7536.1000e112 n e r n u c o e J ISSN: 2157-7536 Steroids & Hormonal Science Editorial Open Access Natural Compounds to Counteract Testosterone Depletion in Aging Daniela P Rojas and Akhilesh K Pandey* Garrison Institute on Aging, Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA Aging is accompanied by many biological and physiological been seen that mutations in StAR protein result in sometimes lethal changes in the body, including the depletion of sex hormones such condition called, congenital lipoid adrenal hyperplasia, which involves as testosterone. Testosterone is an important sex hormone for many a blockage in the synthesis of steroid hormones, again expressing the physiological and biological functions in the body, and depletion of it importance of StAR protein function to produce testosterone [7]. StAR may cause changes that can be negative to the normal functioning of protein is expressed via a response to trophic hormone and it is cAMP- the body. Aging is associated with a gradual depletion of testosterone of mediated [8]. about 2-3% annually, starting from the age of 30 [1]. This depletion of With this information, one can conclude that aging is related the sex hormones has many implications in the physiological functions to a decrease in the levels of StAR protein and, thus, a decrease in in the body, such as effects in muscle mass, liver function and immune testosterone biosynthesis.