The Spaceplane

Total Page:16

File Type:pdf, Size:1020Kb

The Spaceplane There’s new interest in a reusable aerospace vehicle that could be anywhere on Earth in less than an hour. The Spaceplane By Suzann Chapman, Associate Editor asa and US industry are devel- Requirements, in a January interview. data about the history, critical tech- N oping reusable launch vehicle The team is not locked into one mis- nologies, and possible missions in a technologies with an eye toward cutting sion area—such as space operations, briefing called “Military Space planes: costs and reestablishing US dominance which covers satellite launch. Instead The Future.” in the field. The Air Force, however, they envision applications across all One key question for the team con- has begun to envision RLV applications space missions. Hence the use of the cerns whether a spaceplane could help that go beyond pure space launch. broad er term “spaceplane.” US space forces conduct their tasks In May 1996, officials at Air Force The USAF team, which includes more efficiently and cheap er than they Space Command and Air Force Ma- NASA and Air Combat Command do today. The civil-commercial RLV teriel Command created a military personnel, developed a concept of effort is geared toward providing low- spaceplane integrated concept team operations last summer. It envisions er-cost, reliable, and fast-turnaround to capitalize on the NASA-led effort aircraft-like operations with rapid turn- space transportation. That satisfies to produce an RLV demonstrator, around time; operations to, through, and only one aspect of the US military the X-33. “The [AFSPC and AFMC] from space; multimission capability; space missions: launch. commanders asked us to look at what and worldwide operations from conti- The ability to perform space con- mission areas might be satisfied by this nental US basing. trol—that is, ensuring safe passage of technology, at the timing, and then to Over the past several months, AF- US satellites on orbit and denying an establish a roadmap,” said Brig. Gen. SPC officials pulled together basic enemy the ability to use its satellites Herbert M. Ward, AFSPC director of against the US or its allies—does not 62 AIR FORCE Magazine / March 1997 exist today. Nor does the US possess around for more than 50 years. In 1944, of RLV technology that they have any capability to apply force from two German scientists, Eugen Sanger already begun to discuss follow-ons space, other than with an ICBM, and Irene Bredt, set down their prewar to the X-33. whose trajectory would take it through and postwar work into a concept for space before it plunged back to strike a hypersonic rocket-powered aircraft Today’s RLVs a target on Earth. that could be boosted into orbit, then NASA began a three-pronged RLV For that reason, the Air Force’s glide back to Earth—creating the term program in 1994. The research effort team members are also looking at “boost glider.” NASA officials credit includes technology demonstrations the potential of military spaceplanes the Sanger-Bredt work with directly with the DC-XA, X-34, and X-33— to provide space control and force influencing the shape of the first US each designed to demonstrate various application from space, as well as to spaceplane, the X-15, conceived in technologies that could lead to a com- provide force enhancement, such as 1954. From it, USAF’s Dyna-Soar X- mercial RLV. space surveillance, reconnaissance, 20A, and the follow-on lifting bodies, NASA and McDonnell Douglas warning, and communications. the US developed technologies that led upgraded the DC-X, a subsonic rocket A military spaceplane might take to the space shuttle. flown eight times by Phillips Lab from military payloads into orbit, deorbit However, today, the Air Force, 1993 to 1995. The DC-XA, Clipper payloads, or perform on-orbit main- NASA, and industry maintain that the Graham, made four successful flights tenance. It might release a satellite in technology for turning the original demonstrating its vertical landing ca- space, then come back into suborbit concept into reality now exists or is pability. However, testing ended July and fly around the globe once or twice very close at hand. 31, 1996, when the vehicle toppled to conduct communications support Both the Air Force and the Navy and exploded after its fourth flight. or bomb-damage assessment. It could collaborated with NASA on the X-15 The rocket tipped over, according take advantage of the high ground of program, which produced three ve- to an incident investigation released space and, with operations closely hicles for hypersonic aerodynamic January 7, because “a brake line on the resembling a conventional airplane’s, research. In all, 199 flights took place helium pneumatic system for landing fly over any region of the globe with from 1959 through 1968 in which the gear number two was not connected.” impunity. X-15s reached Mach 6.7 and an altitude NASA officials believe the four DC- General Ward emphasized that he is of 354,200 feet. XA test flights will aid RLV research not predisposed to a particular RLV The lifting bodies, such as the light- but do not plan to build a follow-on concept. He said that no decisions weight M2-F1 and heavyweight M2-F2, DC-XB. had been made concerning whether HL-10, and X-24A and B, were wingless The second element of the RLV the spaceplane should be manned or vehicles designed to fly back to Earth program features the X-34, a single- unmanned, employ vertical or hori- from space and land like airplanes. engine rocket with short wings and a zontal takeoff, or be single-stage or Versions of these lifting bodies, both small tail surface capable of flying at multistage to orbit. powered and unpowered, flew success- Mach 8 and an altitude of 250,000 feet. Early successes in NASA’s current fully from 1963 to 1975. Orbital Sciences Corp. is developing RLV effort, which since its inception Probably the most recent US re- the X-34, which will be carried aloft has included participation by engi- search effort was the high-profile aboard OSC’s L-1011 aircraft. It is neers from USAF’s Phillips Lab at USAF-NASA National Aerospace scheduled to fly in 1998. Kirtland AFB, N. M., spurred officials Plane (NASP), or X-30. Established at The final element is the larger, more to formalize the operational concept Wright-Patterson AFB, Ohio, in 1986, powerful X-33 test vehicle, which will team to ensure that they would be in the NASP program heralded some of reach Mach 15 and altitudes of up to a position to use those technologies the same concepts now set forth by the 50 miles. It will be half the size of when they matured. When that might spaceplane concept team. However, but demonstrate all the technologies be is another question that concerns budget cuts forced the program’s needed for a full-scale RLV. NASA the team members. demise in 1994. selected Lockheed Mar tin to build the The concept team will try to answer AFSPC officials point out that timing X-33, based on its lifting-body concept these questions when it reports this and technology separate NASP from the called Venture Star. It has a new aero- spring. It will also try to determine current spaceplane concept. The technol- spike engine and will launch vertically what kind of investments to make in ogy is more mature now than it was 10 but land like an airplane. The first test research and development or proto- years ago. They said the key also is to flight for the X-33 single-stage-to-orbit typing to develop that capability for ensure that the system is affordable, as vehicle is set for March 1999. the Defense Department. “One of our well as useful. NASA officials stated last year that responsibilities is to go back to our The US is not the only country they are already working on technology commanders with the roadmap that interested in spaceplanes. Britain has beyond the X-33. They are looking at says if this technology is mature then developed several spaceplane con- air-boosted rocket engines, currently we can do the next step and these are cepts, some of which date to the 1950s. under study, as well as the possibility for the kinds of funds required,” stated Japan began research into spaceplane small two-stage vehicles. Unofficially General Ward. technology in 1987. The European dubbed “X-37,” the effort would prob- Space Agency had similar thoughts ably include two to four variants rather Not Really Déjà Vu in mind when it designed its Hermes than one, as with X-34 and X-33. The The spaceplane concept is not really manned spaceplane. only criteria, they said, is that they be new. In fact, the general idea has been NASA officials are so confident reusable. ■ AIR FORCE Magazine / March 1997 63.
Recommended publications
  • The Flight to Orbit
    There are numerous ways to get there— Around the Corner Th As then–US Space Command chief from rocket The Gen. Howell M. Estes III said to launch to space defense writers just before his re- tirement in August, “This is going maneuver to come along a lot quicker than we vehicles—and the think it is. ... We tend to think this stuff is way out there in the future, Air Force is but it’s right around the corner.” keeping its Flight The Air Force and NASA have divided the task of providing the options open. US government with a means of reliable, low-cost transportation to Earth orbit. The Air Force, with the largest immediate need, is heading to up the effort to revamp the Expend- to able Launch Vehicles now used to loft military and other government satellites. Called the Evolved ELV, this program is focused on derivatives of existing rockets. Competitors have been invited to redesign or value- engineer their proven boosters with new materials and technologies to provide reliable launch services at a he Air Force would like to go Orbit far lower price than today’s bench- back and forth to Earth orbit as bit mark of around $10,000 a pound to T O easily as it goes back and forth to Low Earth Orbit. The reasoning is 30,000 feet—routinely, reliably, and that an “evolved”—rather than an relatively cheaply. Such a capability all-new—vehicle will yield cost sav- goes hand in hand with being a true ings while reducing technical risk.
    [Show full text]
  • The SKYLON Spaceplane
    The SKYLON Spaceplane Borg K.⇤ and Matula E.⇤ University of Colorado, Boulder, CO, 80309, USA This report outlines the major technical aspects of the SKYLON spaceplane as a final project for the ASEN 5053 class. The SKYLON spaceplane is designed as a single stage to orbit vehicle capable of lifting 15 mT to LEO from a 5.5 km runway and returning to land at the same location. It is powered by a unique engine design that combines an air- breathing and rocket mode into a single engine. This is achieved through the use of a novel lightweight heat exchanger that has been demonstrated on a reduced scale. The program has received funding from the UK government and ESA to build a full scale prototype of the engine as it’s next step. The project is technically feasible but will need to overcome some manufacturing issues and high start-up costs. This report is not intended for publication or commercial use. Nomenclature SSTO Single Stage To Orbit REL Reaction Engines Ltd UK United Kingdom LEO Low Earth Orbit SABRE Synergetic Air-Breathing Rocket Engine SOMA SKYLON Orbital Maneuvering Assembly HOTOL Horizontal Take-O↵and Landing NASP National Aerospace Program GT OW Gross Take-O↵Weight MECO Main Engine Cut-O↵ LACE Liquid Air Cooled Engine RCS Reaction Control System MLI Multi-Layer Insulation mT Tonne I. Introduction The SKYLON spaceplane is a single stage to orbit concept vehicle being developed by Reaction Engines Ltd in the United Kingdom. It is designed to take o↵and land on a runway delivering 15 mT of payload into LEO, in the current D-1 configuration.
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Glex-2021 – 6.1.1
    Global Space Exploration Conference (GLEX 2021), St Petersburg, Russian Federation, 14-18 June 2021. Copyright ©2021 by Christophe Bonnal (CNES). All rights reserved. GLEX-2021 – 6.1.1 Human spaceflight from Guiana Space Center Ch. Bonnal1* – J-M. Bahu1 – Ph. Berthe2 – J. Bertrand1 – Ch. Bonhomme1 – M. Caporicci2 J-F. Clervoy3 – N. Costedoat4 – E. Coletti5 – G. Collange5 – G. Debas5 – R. Delage6 – J. Droz5 E. Louaas1 – P. Marx8 – B. Muller6 – S. Perezzan1 – I. Quinquis5 – S. Sandrone7 D. Schmitt2 – V. Taponier1 1 CNES Launcher Directorate, Pairs, France – 2 ESA Human & Robotic Exploration Directorate, ESTEC, Noordwijk, Netherlands – 3 Astronaut Novespace, Paris, France – 4CNES Guiana Space Center, Kourou, France 5ArianeGroup, Les Mureaux, France – 6Airbus Defence & Space, Toulouse, France – 7Airbus Defence & Space, Bremen Germany – 8Consultant, Paris, France * Corresponding Author Abstract The use of Space has drastically evolved these last ten years. Tomorrow will see easier and cheaper access to Space, satellite servicing, in-orbit manufacturing, human private spaceflights to ever increasing number of Orbital Stations, road to the Moon, Asteroids, Mars. It seems fundamental to make sure we can rely on robust, reliable, frequent and affordable access to and from LEO with both automatic systems and human missions; such systems are the bricks with which all the future operations in Space will be built. Independent human access to space from Europe for our astronauts is a key to any future in Space. It has been studied in depth since the 80's with Hermes Spaceplane, then through numerous studies, pre- development activities, and demonstrations such as ARD, X38-CRV or IXV, which now allow Europe to reconsider such an endeavor with a much higher confidence.
    [Show full text]
  • Rockets for Education 5 June 2019
    Rockets for education 5 June 2019 Technology, Poland. Several modular experiments are held in the circular containers imaged here. Called Hedgehog, the experiment tested patented instruments for measuring acceleration, vibration and heat flow during launch. The team hopes to refine the tools for use on ground-based qualification tests that all payloads must pass before launch. At launch, Rexus produces a peak vertical acceleration of around 17 times the force of gravity. Once the rocket motors shut off, the experiments enter freefall. On the downward arc parachutes deploy, lowering the experiments to the ground for transport back to the launch site by helicopter as quickly as possible. Credit: European Space Agency A service module sends data and receives commands from the ground to keep everything on course while sending videos and data to ground Why rockets are so captivating is not exactly rocket stations. science. Watching a chunk of metal defy the forces of gravity satisfies many a human's wish to soar ESA has used sounding rockets for over 30 years through the air and into space. to investigate phenomena under microgravity from the state-of-the-art facilities are available at Today there are countless rockets to satisfy the Esrange. The laboratories include microscopes, itch, and they are not all big launchers delivering centrifuges and incubators so investigators can heavy satellites into space, like Europe's Ariane 5 prepare and analyse their experiments around and the upcoming Ariane 6. flight. Sounding rockets, like this Rexus (Rocket Coordinated by ESA Education, the Rexus/Bexus Experiments for University Students) being programme launches two sounding rockets a year assembled at the ZARM facilities in Bremen, and provides an experimental near-space platform Germany, are launched regularly in the name of for students who can work on different research science from the Esrange Space Center in areas from atmospheric research and fluid physics, northern Sweden.
    [Show full text]
  • A Pictorial History of Rockets
    he mighty space rockets of today are the result A Pictorial Tof more than 2,000 years of invention, experi- mentation, and discovery. First by observation and inspiration and then by methodical research, the History of foundations for modern rocketry were laid. Rockets Building upon the experience of two millennia, new rockets will expand human presence in space back to the Moon and Mars. These new rockets will be versatile. They will support Earth orbital missions, such as the International Space Station, and off- world missions millions of kilometers from home. Already, travel to the stars is possible. Robotic spacecraft are on their way into interstellar space as you read this. Someday, they will be followed by human explorers. Often lost in the shadows of time, early rocket pioneers “pushed the envelope” by creating rocket- propelled devices for land, sea, air, and space. When the scientific principles governing motion were discovered, rockets graduated from toys and novelties to serious devices for commerce, war, travel, and research. This work led to many of the most amazing discoveries of our time. The vignettes that follow provide a small sampling of stories from the history of rockets. They form a rocket time line that includes critical developments and interesting sidelines. In some cases, one story leads to another, and in others, the stories are inter- esting diversions from the path. They portray the inspirations that ultimately led to us taking our first steps into outer space. NASA’s new Space Launch System (SLS), commercial launch systems, and the rockets that follow owe much of their success to the accomplishments presented here.
    [Show full text]
  • The New American Space Age: a Progress Report on Human Spaceflight the New American Space Age: a Progress Report on Human Spaceflight the International Space
    The New American Space Age: A PROGRESS REPORT ON HUMAN SpaCEFLIGHT The New American Space Age: A Progress Report on Human Spaceflight The International Space Station: the largest international scientific and engineering achievement in human history. The New American Space Age: A Progress Report on Human Spaceflight Lately, it seems the public cannot get enough of space! The recent hit movie “Gravity” not only won 7 Academy Awards – it was a runaway box office success, no doubt inspiring young future scientists, engineers and mathematicians just as “2001: A Space Odyssey” did more than 40 years ago. “Cosmos,” a PBS series on the origins of the universe from the 1980s, has been updated to include the latest discoveries – and funded by a major television network in primetime. And let’s not forget the terrific online videos of science experiments from former International Space Station Commander Chris Hadfield that were viewed by millions of people online. Clearly, the American public is eager to carry the torch of space exploration again. Thankfully, NASA and the space industry are building a host of new vehicles that will do just that. American industry is hard at work developing new commercial transportation services to suborbital altitudes and even low Earth orbit. NASA and the space industry are also building vehicles to take astronauts beyond low Earth orbit for the first time since the Apollo program. Meanwhile, in the U.S. National Lab on the space station, unprecedented research in zero-g is paving the way for Earth breakthroughs in genetics, gerontology, new vaccines and much more.
    [Show full text]
  • Boarding the Spaceplane by Roger D
    PageMark-Color-Comp Job Name: 546280_SpaceTimes_Oct2015 ❏ OK to proceed PDF Page: 01_24_SpaceTimes_Oct2015.p4.pdf ❏ Make corrections and proceed Process Plan: VP.MultiPage.PDF Date: 15-10-01 ❏ Make corrections and show another proof Time: 15:28:48 Signed: ___________________ Date: ______ Operator: ____________________________ Boarding the Spaceplane by Roger D. Launius During the administration of President Ronald Reagan, senior government officials began to discuss the possibility of developing an “Orient Express,” a hybrid air and spaceplane that could carry ordinary people between New York City and Tokyo in about one hour. How is this possible? Actually, the concept is quite simple: Develop an aerospace plane that can take off like a conventional jetliner from an ordinary runway. Flying supersonic, it reaches an altitude of 45,000-50,000 feet, where the pilots start scramjet engines, a jet technology that has the potential to push jetcraft to hypersonic speeds. The spaceplane rises to the edge of space and darts to the opposite side of the globe, where the process is reversed, and the vehicle lands like a conventional airplane. It never reaches orbit, but technically it flies in space. The experience is similar to orbital flight, except for the shorter time. Artist concept of the X-37 advanced technology flight demonstrator re-entering Earth’s atmosphere. The X-37 was intended as a testbed for dozens of advanced structural, propulsion, and operational technologies that could dramatically lower the cost of future reusable launch vehicles. (Source: NASA) 4 SPACE TIMES • September/October 2015 PageMark-Color-Comp Job Name: 546280_SpaceTimes_Oct2015 ❏ OK to proceed PDF Page: 01_24_SpaceTimes_Oct2015.p5.pdf ❏ Make corrections and proceed Process Plan: VP.MultiPage.PDF Date: 15-10-01 ❏ Make corrections and show another proof Time: 15:28:48 Signed: ___________________ Date: ______ Operator: ____________________________ The spaceplane concept has long been a staple of dreams of spaceflight.
    [Show full text]
  • Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
    Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1.
    [Show full text]
  • First Stage of a Highly Reliable Reusable Launch System
    First Stage of a Highly Reliable Reusable Launch System * $ Kurt J. Kloesel , Jonathan B. Pickrelf, and Emily L. Sayles NASA Dryden Flight Research Center, Edwards, California, 93523-0273 Michael Wright § NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771-0001 Darin Marriott** Embry-Riddle University, Prescott, Arizona, 86301-3720 Dr. Leo Hollandtf General Atomics Electromagnetic Systems Division, San Diego, California, 92121-1194 Dr. Stephen Kuznetsov$$ Power Superconductor Applications Corporation, New Castle, Pennsylvania, 16101-5241 Electromagnetic launch assist has the potential to provide a highly reliable reusable first stage to a space access system infrastructure at a lower overall cost. This paper explores the benefits of a smaller system that adds the advantages of a high specific impulse air-breathing stage and supersonic launch speeds. The method of virtual specific impulse is introduced as a tool to emphasize the gains afforded by launch assist. Analysis shows launch assist can provide a 278-s virtual specific impulse for a first-stage solid rocket. Additional trajectory analysis demonstrates that a system composed of a launch-assisted first-stage ramjet plus a bipropellant second stage can provide a 48-percent gross lift-off weight reduction versus an all-rocket system. The combination of high-speed linear induction motors and ramjets is identified, as the enabling technologies and benchtop prototypes are investigated. The high-speed response of a standard 60 Hz linear induction motor was tested with a pulse width modulated variable frequency drive to 150 Hz using a 10-lb load, achieving 150 mph. A 300-Hz stator-compensated linear induction motor was constructed and static-tested to 1900 lbf average.
    [Show full text]
  • Nasa's Commercial Crew Development
    NASA’S COMMERCIAL CREW DEVELOPMENT PROGRAM: ACCOMPLISHMENTS AND CHALLENGES HEARING BEFORE THE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED TWELFTH CONGRESS FIRST SESSION WEDNESDAY, OCTOBER 26, 2011 Serial No. 112–46 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PRINTING OFFICE 70–800PDF WASHINGTON : 2011 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. RALPH M. HALL, Texas, Chair F. JAMES SENSENBRENNER, JR., EDDIE BERNICE JOHNSON, Texas Wisconsin JERRY F. COSTELLO, Illinois LAMAR S. SMITH, Texas LYNN C. WOOLSEY, California DANA ROHRABACHER, California ZOE LOFGREN, California ROSCOE G. BARTLETT, Maryland BRAD MILLER, North Carolina FRANK D. LUCAS, Oklahoma DANIEL LIPINSKI, Illinois JUDY BIGGERT, Illinois GABRIELLE GIFFORDS, Arizona W. TODD AKIN, Missouri DONNA F. EDWARDS, Maryland RANDY NEUGEBAUER, Texas MARCIA L. FUDGE, Ohio MICHAEL T. MCCAUL, Texas BEN R. LUJA´ N, New Mexico PAUL C. BROUN, Georgia PAUL D. TONKO, New York SANDY ADAMS, Florida JERRY MCNERNEY, California BENJAMIN QUAYLE, Arizona JOHN P. SARBANES, Maryland CHARLES J. ‘‘CHUCK’’ FLEISCHMANN, TERRI A. SEWELL, Alabama Tennessee FREDERICA S. WILSON, Florida E. SCOTT RIGELL, Virginia HANSEN CLARKE, Michigan STEVEN M. PALAZZO, Mississippi VACANCY MO BROOKS, Alabama ANDY HARRIS, Maryland RANDY HULTGREN, Illinois CHIP CRAVAACK, Minnesota LARRY BUCSHON, Indiana DAN BENISHEK, Michigan VACANCY (II) C O N T E N T S Wednesday, October 26, 2011 Page Witness List ............................................................................................................
    [Show full text]
  • Virgin Galactic Holdings, Inc. (SPCE) Putting the Zero in Zero-G
    June 2021 Virgin Galactic Holdings, Inc. (SPCE) Putting the Zero in Zero-G We are short shares of Virgin Galactic Holdings, Inc., often described as the only publicly traded space-tourism company. After going public in October 2019 by way of a merger with a “blank check” company, Virgin Galactic has seen its share price and trading volume soar. It’s become a retail darling, with day traders captivated by images of billionaires donning space suits, blasting off from launchpads, and looking down on the blue marble of Earth. But Virgin Galactic’s $250,000+ commercial “spaceflights” – if they ever actually happen, after some 17 years of delays and disasters – will offer only the palest imitations of these experiences. In lieu of pressurized space suits with helmets – unnecessary since so little time will be spent in the upper atmosphere – the company commissioned Under Armour to provide “high-tech pajamas.” In lieu of vertical takeoff, Virgin’s “spaceship” must cling to the underside of a specialized airplane for the first 45,000 feet up, because its rocket motor is too weak to push through the lower atmosphere on its own. In lieu of the blue-marble vista and life in zero-g, Virgin’s so-called astronauts will at best be able to catch a glimpse of the curvature of Earth and a few minutes of weightlessness before plunging back to ground. This isn’t “tourism,” let alone Virgin’s more grandiose term, “exploration”; it’s closer to a souped- up roller coaster, like the “Drop of Doom” ride at Six Flags.
    [Show full text]