Crosstalk Reduction in Voxels for a See-Through Holographic Waveguide by Using Integral Imaging with Compensated Elemental Images

Total Page:16

File Type:pdf, Size:1020Kb

Crosstalk Reduction in Voxels for a See-Through Holographic Waveguide by Using Integral Imaging with Compensated Elemental Images hv photonics Article Crosstalk Reduction in Voxels for a See-Through Holographic Waveguide by Using Integral Imaging with Compensated Elemental Images Jiwoon Yeom *, Yeseul Son and Kwangsoon Choi Korea Electronics Technology Institute, World Cup buk-ro 54-gil, Mapo-gu, Seoul 03924, Korea; [email protected] (Y.S.); [email protected] (K.C.) * Correspondence: [email protected] Abstract: The representation of three-dimensional volumetric pixels, voxels, is an important issue for the near-to-eye displays (NEDs) to solve the vergence-accommodation conflict problem. Although the holographic waveguides using holographic optical element (HOE) couplers are promising technologies for NEDs with the ultra-thin structure and high transparency, most of them have presented only a single and fixed depth plane. In this paper, we analyze the imaging characteristics of holographic waveguides, particularly to represent the arbitrary voxels and investigate the voxel duplication problem arising from the non-collimated light from the voxels. In order to prevent the image crosstalk arising from the voxel duplication, we propose an adjustment method for the emission angle profile of voxels by using the integral imaging technique. In the proposed method, the sub-regions of elemental images, which correspond to the duplicated voxels, are masked in order to optimize the emission angle of integrated voxels. In the experimental verification, a see- through integral imaging system, based on the organic light-emitting diode display and a holographic waveguide with the thickness of 5 mm, was constructed. The fabricated HOE in the waveguide showed high diffraction efficiency of 72.8 %, 76.6%, and 72.5 % for 460 nm, 532 nm, and 640 nm lasers, Citation: Yeom, J.; Son, Y.; Choi, K. respectively. By applying the masked elemental images, the proposed method resulted in a reduced Crosstalk Reduction in Voxels for a crosstalk in the observed voxels by 2.35 times. The full-color experimental results of see-through See-Through Holographic Waveguide holographic waveguide with integral imaging are provided, whereby the observed 3D images are by Using Integral Imaging with presented clearly without the ghost images due to the voxel duplication problem. Compensated Elemental Images. Photonics 2021, 8, 217. https:// Keywords: holographic waveguide; integral imaging; see-through display; augmented reality; doi.org/10.3390/photonics8060217 autostereoscopy Received: 22 April 2021 Accepted: 6 June 2021 Published: 11 June 2021 1. Introduction See-through near-to-eye displays (NEDs), which are core components of the aug- Publisher’s Note: MDPI stays neutral mented reality (AR) headsets, have been given considerable attention recently [1,2]. Vari- with regard to jurisdictional claims in published maps and institutional affil- ous optical technologies have been actively studied for the see-through AR NEDs, such iations. as the free-form optics [3], the direct retinal projection optics [4,5], and the waveguide optics [6–15]. Among these technologies, the waveguide optics provide the best way to minimize the size of NEDs, which is crucial for the comfort and compactness of the AR headsets. Waveguide technologies can be categorized into three groups according to the types of couplers: geometric waveguides with the reflective couplers [6–8], the diffractive Copyright: © 2021 by the authors. waveguide with the surface relief grating couplers [9], and the holographic waveguide Licensee MDPI, Basel, Switzerland. with the holographic optical element (HOE) couplers [10–15]. This article is an open access article distributed under the terms and Among them, the holographic waveguides are the most promising techniques, since conditions of the Creative Commons the HOE couplers provide benefits, including having an extremely thin structure, as well Attribution (CC BY) license (https:// as high transparency compared to the other types of couplers. The HOE couplers are creativecommons.org/licenses/by/ typically fabricated using thin photopolymer films, and diffract an incident wave into the 4.0/). pre-defined wave-front, when it satisfies the Bragg condition of the volume hologram. On Photonics 2021, 8, 217. https://doi.org/10.3390/photonics8060217 https://www.mdpi.com/journal/photonics Photonics 2021, 8, 217 2 of 18 the other hand, most natural light from the real-world, which deviates from the Bragg condition, passes through the HOEs without diffraction. Such a selective functionality of HOEs allows users to view a real-world scene more clearly without severe light attenuation or degradation. Among the key features in ensuring NEDs are widespread in the market is in pro- viding the correct depth cues, including the accommodation effects for the virtual images. The vergence-accommodation conflict (VAC), which represents a mismatch between the vergence distance and focal distance of human eye [16], may lead to visual discomfort, eye fatigue, and nausea. Unfortunately, for holographic waveguides, most studies have focused on presenting the virtual images at optical infinity [10–12], which causes the VAC problem. In this case, the waveguide structure and HOEs are optimized for the collimated light source. The collimated ray bundles in the holographic waveguide do not deliver information for the correct depth cues, which makes it more difficult to represent the three-dimensional (3D) pixels, known as voxels, at the arbitrary depths. In a few studies, holographic display technologies were adopted with the holographic waveguide, in order to induce the accommodation effects [14,15]. However, in previous studies, the resultant 3D images suffered from monochrome and small virtual images. The holographic dis- plays in these studies were based on the monochrome plane wave illumination with a small diffraction angle. Therefore, a thorough analysis was not conducted regarding the imaging characteristics of a holographic waveguide for a practical light source with the non-collimation and broadband spectrum. In this paper, we analyze the imaging characteristics of holographic waveguides to represent voxels with a broad spectrum of light, and propose an adjustment method for the emission angle of voxels, in order to present them without the ghost images. For adjusting and optimizing the emission angle of voxels, we adopted the integral imaging (InIm) technique, one of the representative autostereoscopic technologies, with the compensated elemental images (EIs). In Section2, the imaging properties of holographic waveguides are investigated in view of adopting a non-collimated light source. Additionally, the voxel duplication problem is analyzed, which arises from the large emission angle of each voxel. In order to suppress the ghost images of 3D contents arising from the voxel duplication, the InIm system based on the lenslet-array adjusts the emission angle of each voxel by using the EIs compensation method. In Section3, we present a holographic waveguide prototype with high diffraction efficiency (DE), and examine the optical properties of the fabricated HOE coupler. The displaying experiments using the fabricated holographic waveguide and InIm system validate the proposed method, which presents the voxels in 3D contents without the ghost images. 2. Principles 2.1. Voxel Duplication Problem in Holographic Waveguide Figure1 presents a schematic of the voxel representation in a holographic waveguide where the unintended duplication of voxels occurs. For the holographic waveguide with the periodic volume gratings, a single voxel with the distance of |zv| from the in-coupler was considered. The voxel emits the diverging spherical wave with a large emission angle (qe) and broad spectrum. The only limited portion of qe is incident on the waveguide by the diffraction at the in-coupler. In Figure1, qin,ub and qin,lb denote the upper and lower bounds for the portion of light, respectively, which may be in-coupled into the waveguide, in the perspective of the angle of incidence (AOI). For the light rays within the angular range of qin,ub and qin,lb, the relationship between the incident angle and diffracted angle with the Bragg diffraction at the in-coupler is expressed as Equation (1) [17]. q+ = q− + 2x, (1) where x is the grating slanted angle of volume grating, and q- and q+ represent the incident angle and diffracted angle of light rays at the HOE, respectively. Note that the relationship Photonics 2021, 8, x FOR PEER REVIEW 3 of 18 where ξ is the grating slanted angle of volume grating, and θ- and θ+ represent the incident Photonics 2021, 8, 217 angle and diffracted angle of light rays at the HOE, respectively. Note that the3 of 18relationship of Equation (1) is valid, when the wavelength of incident wave (λ) satisfies the Bragg con- dition as expressed in Equation (2). of Equation (1) is valid, when the wavelength of incident wave (l) satisfies the Bragg condition as expressed in Equation (2). 2nr cos( ), (2) where nr is the refractive indexl = of2n photopolymer,rL · cos(x + q−), and Λ is the grating period (2) of volume grating. where nr is the refractive index of photopolymer, and L is the grating period of volume grating.The duplication of imaged voxel arises from the large and non-optimized emission angleThe for duplication each voxel. of imagedSupposing voxel most arises out from-coupled the large light ands non-optimizedform a desirable emission image of voxel angleafter forn-th each total voxel. internal Supposing reflections most out-coupled (TIRs) in the lights waveguide form a desirable, we define image ofthe voxel AOIs of rays aftersatisfyingn-th total this internal condition reflections as an effective (TIRs) in angular the waveguide, range (EAR we define). The the EAR AOIs corresponds of rays to the satisfyingAOIs between this condition θeff,lb and as θ aneff,ub effective in Figure angular 1. The range light (EAR). whose The AOI EAR on corresponds the waveguide to the is smaller AOIs between qeff,lb and qeff,ub in Figure1. The light whose AOI on the waveguide is smaller than θeff,lb is out-coupled from the waveguide after undergoing (n + 2)-th TIRs. Similarly, than qeff,lb is out-coupled from the waveguide after undergoing (n + 2)-th TIRs.
Recommended publications
  • Dualcad : Intégrer La Réalité Augmentée Et Les Interfaces D'ordinateurs De Bureau Dans Un Contexte De Conception Assistée Par Ordinateur
    ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L’ÉCOLE DE TECHNOLOGIE SUPÉRIEURE COMME EXIGENCE PARTIELLE À L’OBTENTION DE LA MAÎTRISE AVEC MÉMOIRE EN GÉNIE LOGICIEL M. Sc. A. PAR Alexandre MILLETTE DUALCAD : INTÉGRER LA RÉALITÉ AUGMENTÉE ET LES INTERFACES D'ORDINATEURS DE BUREAU DANS UN CONTEXTE DE CONCEPTION ASSISTÉE PAR ORDINATEUR MONTRÉAL, LE 27 AVRIL 2016 Alexandre Millette, 2016 Cette licence Creative Commons signifie qu’il est permis de diffuser, d’imprimer ou de sauvegarder sur un autre support une partie ou la totalité de cette œuvre à condition de mentionner l’auteur, que ces utilisations soient faites à des fins non commerciales et que le contenu de l’œuvre n’ait pas été modifié. PRÉSENTATION DU JURY CE MÉMOIRE A ÉTÉ ÉVALUÉ PAR UN JURY COMPOSÉ DE : M. Michael J. McGuffin, directeur de mémoire Département de génie logiciel et des TI à l’École de technologie supérieure M. Luc Duong, président du jury Département de génie logiciel et des TI à l’École de technologie supérieure M. David Labbé, membre du jury Département de génie logiciel et des TI à l’École de technologie supérieure IL A FAIT L’OBJET D’UNE SOUTENANCE DEVANT JURY ET PUBLIC LE 6 AVRIL 2016 À L’ÉCOLE DE TECHNOLOGIE SUPÉRIEURE AVANT-PROPOS Lorsqu’il m’est venu le temps de choisir si je désirais faire une maîtrise avec ou sans mémoire, les technologies à Réalité Augmentée (RA) étaient encore des embryons de projets, entrepris par des compagnies connues pour leurs innovations, telles que Google avec leur Google Glasses, ou par des compagnies émergentes, telles que META et leur Spaceglasses.
    [Show full text]
  • A Review and Selective Analysis of 3D Display Technologies for Anatomical Education
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2018 A Review and Selective Analysis of 3D Display Technologies for Anatomical Education Matthew Hackett University of Central Florida Part of the Anatomy Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Hackett, Matthew, "A Review and Selective Analysis of 3D Display Technologies for Anatomical Education" (2018). Electronic Theses and Dissertations, 2004-2019. 6408. https://stars.library.ucf.edu/etd/6408 A REVIEW AND SELECTIVE ANALYSIS OF 3D DISPLAY TECHNOLOGIES FOR ANATOMICAL EDUCATION by: MATTHEW G. HACKETT BSE University of Central Florida 2007, MSE University of Florida 2009, MS University of Central Florida 2012 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Modeling and Simulation program in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Summer Term 2018 Major Professor: Michael Proctor ©2018 Matthew Hackett ii ABSTRACT The study of anatomy is complex and difficult for students in both graduate and undergraduate education. Researchers have attempted to improve anatomical education with the inclusion of three-dimensional visualization, with the prevailing finding that 3D is beneficial to students. However, there is limited research on the relative efficacy of different 3D modalities, including monoscopic, stereoscopic, and autostereoscopic displays.
    [Show full text]
  • Multi-User Display Systems, Compendium of the State of the Art
    Multi-user display systems, Compendium of the State of the Art. Juan Sebastian Munoz-Arango; Research Assistant EAC - UA Little Rock; Little Rock, AR, Dirk Reiners; Research Scientist EAC - UA Little Rock; Little Rock, AR Carolina Cruz-Neira; Research Director EAC - UA Little Rock; Little Rock, AR Abstract egories: Spatial Barriers, Optical Filtering, Optical Routing and One of the main shortcomings of most Virtual Reality display sys- Time Multiplexing. tems, be it head-mounted displays or projection based systems like In addition to these categories it is worth mentioning volu- CAVEs, is that they can only provide the correct perspective to a metric displays and light field displays, which are relevant to the single user. This is a significant limitation that reduces the appli- multi user viewing topic even though they achieve multi user per- cability of Virtual Reality approaches for most kinds of group col- spective through a totally different approach. laborative work, which is becoming more and more important in many disciplines. Different approaches have been tried to present Spatial barriers multiple images to different users at the same time, like optical Spatial barriers take advantage of the display’s physical config- barriers, optical filtering, optical routing, time multiplex, volu- uration and user placement to display users’ specific views. Es- metric displays and lightfield displays among others. This paper sentially they form a mechanical barrier that lets each user see a describes, discusses and compares different approaches that have subset of the underlying displays’ pixels. been developed and develop an evaluation approach to identify The spatial barriers approach has been around for a while.
    [Show full text]
  • GRAPHICS HARDWARE WHAT’S in STORE GRAPHICS CARDS GRAPHICS CARDS DEDICATED (EXTERNAL) High Performance Power Consumption Heat Emission
    10 COMPUTER GRAPHICS HARDWARE WHAT’S IN STORE GRAPHICS CARDS GRAPHICS CARDS DEDICATED (EXTERNAL) High performance Power consumption Heat emission INTEGRATED (INTERNAL) Low power, low heat Mobile devices, on board Integrated with CPU ARCHITECTURE VERTEX SHADERS (TRANSFORM GEOMETRY) GEOMETRY SHADERS (CREATE NEW GEOMETRY) PIXEL SHADERS (COLORS, SHADOWS…) UNIFIED SHADERS One type of processors for all operations GTX 680 = 1536 unified shader cores CUDA, GPGPU General (not only graphics) performed on GPU Parallelism (HW video encoding, numerical computations) CONNECTORS VGA Analog DVI Digital + Analog HDMI Digital miniHDMI, microHDMI DISPLAYPORT Digital, Analog Mini DisplayPort (Apple) MANUFACTURERS NVIDIA GeForce, Quadro, Tesla AMD (FORMERLY ATI) Radeon, FirePro INTEL Integrated in Core CPUs POWERVR ARM Mali DISPLAYS CATHODE RAY TUBE (CRT) CATHODE RAY TUBE (CRT) ANALOG TVS OLD COMPUTER MONITORS MEDIUM SIZE DISPLAYS LIGHT EMISSION Black is black FLICKER 75-100 Hz for work http://www.bthompson.net/ PLASMA (PDP, NEO-PDP) NOT SUITABLE FOR COMPUTER DISPLAYS LARGE SCREENS (30”+) LIGHT EMISSION Black is black HIGH ENERGY DEMANDS VIEW ANGLE DOESN’T MATTER IMAGE RETENTION Reduced for Neo-PDP LIQUID CRYSTAL DISPLAY (LCD) CRYSTALS BLOCK LIGHT FROM BACK SOURCE Black is hard to achieve DIFFERENT TECHNOLOGIES (TN, IPS, MVA, …) LOW ENERGY CONSUMPTION LARGE SCREENS VIEW ANGLES ISSUE LCD LED CONFUSION OLED (ORGANIC LIGHT-EMITTING DIODE) LIGHT EMISSION GOOD CONTRAST AND COLORS EXPENSIVE PRODUCTION Small screens so far LOW ENERGY POTENTIALLY FLEXIBLE VIEW ANGLE
    [Show full text]
  • The Varriertm Autostereoscopic Virtual Reality Display
    submission id papers_0427 The VarrierTM Autostereoscopic Virtual Reality Display Daniel J. Sandin, Todd Margolis, Jinghua Ge, Javier Girado, Tom Peterka, Thomas A. DeFanti Electronic Visualization Laboratory University of Illinois at Chicago [email protected] Abstract In most other lenticular and barrier strip implementations, stereo is achieved by sorting image slices in integer (image) coordinates. Virtual reality (VR) has long been hampered by the gear Moreover, many autostereo systems compress scene depth in the z needed to make the experience possible; specifically, stereo direction to improve image quality but Varrier is orthoscopic, glasses and tracking devices. Autostereoscopic display devices are which means that all 3 dimensions are displayed in the same gaining popularity by freeing the user from stereo glasses, scale. Besides head-tracked perspective interaction, the user can however few qualify as VR displays. The Electronic Visualization further interact with VR applications through hand-held devices Laboratory (EVL) at the University of Illinois at Chicago (UIC) such as a 3d wand, for example to control navigation through has designed and produced a large scale, high resolution head- virtual worlds. tracked barrier-strip autostereoscopic display system that There are four main contributions of this paper. New virtual produces a VR immersive experience without requiring the user to barrier algorithms are presented that enhance image quality and wear any encumbrances. The resulting system, called Varrier, is a lower color shifts by operating at sub-pixel resolution. Automated passive parallax barrier 35-panel tiled display that produces a camera-based registration of the physical and virtual barrier strip wide field of view, head-tracked VR experience.
    [Show full text]
  • Photo-Aligned Ferroelectric Liquid Crystal Devices with Novel Electro-Optic Characteristics
    crystals Review Photo-Aligned Ferroelectric Liquid Crystal Devices with Novel Electro-Optic Characteristics Vladimir Chigrinov 1,2,* , Qi Guo 3 and Aleksey Kudreyko 4 1 School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528325, China 2 Department of Theoretical Physics, Moscow Region State University, 141014 Mytishi, Russia 3 School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China; [email protected] 4 Department of Medical Physics and Informatics, Bashkir State Medical University, 450008 Ufa, Russia; [email protected] * Correspondence: [email protected] Received: 18 May 2020; Accepted: 19 June 2020; Published: 1 July 2020 Abstract: This paper examines different applications of ferroelectric liquid crystal devices based on photo-alignment. Successful application of the photo-alignment technique is considered to be a critical breakthrough. A variety of display and photonic devices with azo dye aligned ferroelectric liquid crystals is presented: smart glasses, liquid crystal Pancharatnam–Berry phase optical elements, 2D/3D switchable lenses, and laser therapy devices. Comparison of electro-optical behavior of ferroelectric liquid crystals is described considering the performance of devices. This paper facilitates the optimization of device design, and broadens the possible applications in the display and photonic area. Keywords: photo-alignment of ferroelectric liquid crystals; electro-optic modes; new devices; imaging technologies; displays; photonics 1. Introduction The appearance of portable and wearable devices has led to an ever-increasing demand for next-generation displays with ultra-high resolution, light weight, low power consumption, and high efficiency [1,2]. However, the response time of nematic liquid crystals (LCs) is too slow for fast-switching devices.
    [Show full text]
  • Dynallax: Dynamic Parallax Barrier Autostereoscopic Display
    Dynallax: Dynamic Parallax Barrier Autostereoscopic Display BY THOMAS PETERKA B.S., University of Illinois at Chicago, 1987 M.S., University of Illinois at Chicago, 2003 PH.D. DISSERTATION Submitted as partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate College of the University of Illinois at Chicago, 2007 Chicago, Illinois This thesis is dedicated to Melinda, Chris, and Amanda, who always believed in me, and whose confidence helped me believe in myself. Graduate school would never have been possible without their love and support, and for this I will always be grateful. iii ACKNOWLEDGEMENTS I would like to express my sincere gratitude to the following individuals for their assistance and support. • Andrew Johnson of the Electronic Visualization Laboratory (EVL), University of Illinois at Chicago (UIC) for advising me during my Ph.D. studies, for serving on the dissertation committee and for providing valuable feedback and critical reviews of my writing • Dan Sandin of EVL, UIC for introducing me to autostereoscopy, for providing the opportunity to work with him in this exciting field, for serving on the dissertation committee, and for many years of dedication to the advancement of VR as both an art and a science • Jason Leigh, EVL, UIC for serving on the dissertation committee and providing guidance, support, insight, and funding for my work • Tom DeFanti, EVL, UIC, UCSD, for making time to serve on my committee, and for his ongoing support and friendship for many years at EVL • Jurgen Schulze, UCSD, for taking the time and effort to travel from San Diego to Chicago to serve on the committee and for his interest and willingness to participate TP iv TABLE OF CONTENTS CHAPTER PAGE 1.
    [Show full text]
  • Multi-User Display Systems, Compendium of the State of the Art
    https://doi.org/10.2352/ISSN.2470-1173.2019.3.SDA-645 © 2019, Society for Imaging Science and Technology Multi-user display systems, Compendium of the State of the Art. Juan Sebastian Munoz-Arango; Research Assistant EAC - UA Little Rock; Little Rock, AR, Dirk Reiners; Research Scientist EAC - UA Little Rock; Little Rock, AR Carolina Cruz-Neira; Research Director EAC - UA Little Rock; Little Rock, AR Abstract egories: Spatial Barriers, Optical Filtering, Optical Routing and One of the main shortcomings of most Virtual Reality display sys- Time Multiplexing. tems, be it head-mounted displays or projection based systems like In addition to these categories it is worth mentioning volu- CAVEs, is that they can only provide the correct perspective to a metric displays and light field displays, which are relevant to the single user. This is a significant limitation that reduces the appli- multi user viewing topic even though they achieve multi user per- cability of Virtual Reality approaches for most kinds of group col- spective through a totally different approach. laborative work, which is becoming more and more important in many disciplines. Different approaches have been tried to present Spatial barriers multiple images to different users at the same time, like optical Spatial barriers take advantage of the display’s physical config- barriers, optical filtering, optical routing, time multiplex, volu- uration and user placement to display users’ specific views. Es- metric displays and lightfield displays among others. This paper sentially they form a mechanical barrier that lets each user see a describes, discusses and compares different approaches that have subset of the underlying displays’ pixels.
    [Show full text]
  • Principles and Evaluation of Autostereoscopic Photogrammetric Measurement
    04-084 3/14/06 9:02 PM Page 365 Principles and Evaluation of Autostereoscopic Photogrammetric Measurement Jie Shan, Chiung-Shiuan Fu, Bin Li, James Bethel, Jeffrey Kretsch, and Edward Mikhail Abstract display alternating pairs of remote sensing images. Usery Stereoscopic perception is a basic requirement for photogram- (2003) discusses the critical issues such as color, resolution, metric 3D measurement and accurate geospatial data collec- and refresh rate for autostereoscopic display of geospatial tion. Ordinary stereoscopic techniques require operators data. Despite these visualization-oriented studies, properties wearing glasses or using eyepieces for interpretation and and performance of autostereoscopic measurement are measurement. However, the recent emerging autostereoscopic unknown to the photogrammetric community. In this paper, technology makes it possible to eliminate this requirement. we focus on the metric properties of the autostereoscopic This paper studies the principles and implementation of display and evaluate its performance for photogrammetric autostereoscopic photogrammetric measurement and evalu- measurement. The paper starts with a brief introduction ates its performance. We first describe the principles and to the principles of the autostereoscopic technology. As properties of the parallax barrier-based autostereoscopic an important metric property, we quantitatively show the display used in this study. As an important metric property, autostereoscopic geometry, including viewing zones and we quantitatively present the autostereoscopic geometry, the boundary of operator’s movement for autostereoscopic including viewing zones and the boundary of a viewer’s perception. To carry out autostereoscopic measurement and movement for autostereoscopic measurement. A toolkit evaluate its performance, a photogrammetric toolkit, AUTO3D, AUTO3D is developed that has common photogrammetric is developed based on a DTI (Dimension Technologies, Inc., functions.
    [Show full text]
  • Rendering and Display for Multi-Viewer Tele-Immersion
    Rendering and Display for Multi-Viewer Tele-Immersion Andrew R. Nashel A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science. Chapel Hill 2010 Approved by: Henry Fuchs, Advisor Ketan Mayer-Patel, Reader Leonard McMillan, Reader Leandra Vicci, Reader Greg Welch, Reader c 2010 Andrew R. Nashel ALL RIGHTS RESERVED ii Abstract Andrew R. Nashel: Rendering and Display for Multi-Viewer Tele-Immersion. (Under the direction of Henry Fuchs.) Video teleconferencing systems are widely deployed for business, education and personal use to enable face-to-face communication between people at distant sites. Unfortunately, the two- dimensional video of conventional systems does not correctly convey several important non- verbal communication cues such as eye contact and gaze awareness. Tele-immersion refers to technologies aimed at providing distant users with a more compelling sense of remote presence than conventional video teleconferencing. This dissertation is concerned with the particular challenges of interaction between groups of users at remote sites. The problems of video teleconferencing are exacerbated when groups of people communicate. Ideally, a group tele-immersion system would display views of the remote site at the right size and location, from the correct viewpoint for each local user. However, is is not practical to put a camera in every possible eye location, and it is not clear how to provide each viewer with correct and unique imagery. I introduce rendering techniques and multi-view display designs to support eye contact and gaze awareness between groups of viewers at two distant sites.
    [Show full text]
  • T2.Pdf (7.330Mb)
    EUROGRAPHICS 2014/ N. Holzschuch and K. Myszkowski Tutorial 3D video: from capture to diffusion Yannick Rémion and Laurent Lucas and Céline Loscosy University of Reims Champagne-Ardenne, France Figure 1: Capture, diffusion, and processing of 3D video content Abstract While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century. This tutorial aims at introducing theoretical, technological and practical concepts associated to multiview systems. It covers acquisition, manipulation, and rendering. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide the necessary elements for understanding the underlying computer-based science of these technologies. Categories and Subject Descriptors (according to ACM CCS): I.4.8 [IMAGE PROCESSING AND COMPUTER VISION]: Scene analysis—Stereo I.3.1 [COMPUTER GRAPHICS]: Hardware Architecture—Three-dimensional displays I.4.1 [IMAGE PROCESSING AND COMPUTER VISION]: Digitization and Image Capture — 1. Course summary and objectives derstanding the underlying computer-based science of these technologies. While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has Several types of camera systems are considered (mul- induced an explosion of interest for 3D acquisition technol- tiscopic or multiview) which lead to different acquisition, ogy, 3D content and 3D displays. As such, 3D video has modeling and storage-rendering solutions. Equipment will become one of the new technology trends of this century.
    [Show full text]
  • Psholix Company Presentation 10.2019
    Pseudo-Holographic Display Technology developed & patented by Company Presentation Pseudo-Holographic Display Technology Company overview • psHolix AG was founded in March 2015 in Basel, Switzerland • Dr Naske, the founder of the technology and CTO, has injected 25 patents • psHolix owns now more than 57 patents, 2 are in production • More than 2 Million USD have been invested so far • Dr Naske has worked 10 years on this project before it was merged into psHolix AG • Demo products are ready (8K display, laptop, tablet, mobile phones, VR headsets) • Based on the cutting-edge technology behind the eyewear-less 3D displays, the company has build following technologies - Virtual Reality (VR, AR, MR) Headset Software - autonomous car software 2 Pseudo-Holographic Display Technology The next AI-driven display technology • 12 years advanced research in Autostereoscopy • 1,000 times more perspectives than competition and therefore better natural perception • Highest fidelity in spacial viewing experience for everyone everywhere (no transition zones, multi users, no need for head tracking) • 2DTV backwards compatible with highest resolution • No headache and eye strain when watching 3D content over a longer period of time • Compatible with all contents (Games, TV, DVD, YouTube, etc) • Compatible with all technologies (HDR, OLED, LCD, Retina, etc) • Technology can be applied on all resolutions and sizes • 2D and 3D in a window at the same time is possible without any quality loss 3 Pseudo-Holographic Display Technology Benefits of psHolix display technology 1. Experience high quality 3D without glasses 2. Multiviewer solution, everyone can see the same spatial content in front of the screen 3.
    [Show full text]