Exploring Visual Representationof Sound Incomputer Music

Total Page:16

File Type:pdf, Size:1020Kb

Exploring Visual Representationof Sound Incomputer Music University of Huddersfield Repository Freeman, Samuel David Exploring visual representation of sound in computer music software through programming and composition Original Citation Freeman, Samuel David (2013) Exploring visual representation of sound in computer music software through programming and composition. Doctoral thesis, University of Huddersfield. This version is available at http://eprints.hud.ac.uk/23318/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ – Exploring visual representation of sound in computer music software through programming and composition Samuel David Freeman A thesis submitted with a portfolio of works to the University of Huddersfield in partial fulfilment of the requirements for the degree of Doctor of Philosophy December 2013 Minor amendments and corrections April–June 2014 – Summary Table of Contents Abstract ________________________________________________________________________3 Overview of the Portfolio Directories _________________________________________________5 1: Introduction ___________________________________________________________________6 1.1 Motivation _________________________________________________________________6 1.2 Initial context _______________________________________________________________ 7 1.3 Thesis structure ____________________________________________________________ 11 2: Looking at sound ______________________________________________________________13 2.1 Looking at physical aspects ___________________________________________________13 2.2 Looking at psychological aspects ______________________________________________22 2.3 Looking at looking at sound __________________________________________________27 3: In software, on screen ___________________________________________________________28 3.1 Pixels ____________________________________________________________________29 3.2 Visyn ____________________________________________________________________38 3.3 Sub synth amp map _________________________________________________________42 3.4 Conceptual model of a gramophone ____________________________________________63 3.5 Gramophone_005g __________________________________________________________76 3.6 saw~onepole~noise~click~ __________________________________________________ 101 3.7 Software as substance ______________________________________________________111 4: Spiroid _____________________________________________________________________128 4.1 Spiroid __________________________________________________________________128 4.2 Some similar spirals ________________________________________________________137 4.3 Spiroid display of partials as arcs on an lcd in MaxMSP ___________________________144 4.4 Spiroid as an interface for input _______________________________________________154 4.5 Assessment of the spiroid ___________________________________________________168 5: CirSeq ______________________________________________________________________ 172 5.1 CirSeq and thisis __________________________________________________________173 5.2 CirSeq inception __________________________________________________________175 5.3 CirSeq Zero ______________________________________________________________182 5.4 Aesthetic analogies in the exploration of CirSeq patterns ___________________________208 5.5 Critique and chapter conclusion ______________________________________________212 6: Sdfsys ______________________________________________________________________218 6.1 Introducing sdfsys _________________________________________________________218 6.2 Alpha ___________________________________________________________________221 6.3 Beta ____________________________________________________________________241 6.4 Composing with sdfsys _____________________________________________________261 6.5 Evaluating sdfsys __________________________________________________________274 7: Conclusion __________________________________________________________________276 7.1 Framing the project ________________________________________________________276 7.2 Contextual grounding ______________________________________________________277 7.3 Techno-aesthetic development ________________________________________________278 7.4 Tildegraphing _____________________________________________________________279 7.5 Music via visual representations ______________________________________________279 7.6 The sdfsys environment _____________________________________________________281 Detailed Table of Contents _______________________________________________________ 283 Table of Figures ________________________________________________________________ 288 Bibliography __________________________________________________________________291 2 Abstract Abstract – Abstract Abstract Presented through contextualisation of the portfolio works are developments of a practice in which the acts of programming and composition are intrinsically connected. This practice-based research (conducted 2009–2013) explores visual representation of sound in computer music software. Towards greater understanding of composing with the software medium, initial questions are taken as stimulus to explore the subject through artistic practice and critical thinking. The project begins by asking: How might the ways in which sound is visually represented influence the choices that are made while those representations are being manipulated and organised as music? Which aspects of sound are represented visually, and how are those aspects shown? Recognising sound as a psychophysical phenomenon, the physical and psychological aspects of aesthetic interest to my work are identified. Technological factors of mediating these aspects for the interactive visual-domain of software are considered, and a techno-aesthetic understanding developed. Through compositional studies of different approaches to the problem of looking at sound in software, on screen, a number of conceptual themes emerge in this work: the idea of software as substance, both as a malleable material (such as in live coding), and in terms of outcome artefacts; the direct mapping between audio data and screen pixels; the use of colour that maintains awareness of its discrete (as opposed to continuous) basis; the need for integrated display of parameter controls with their target data; and the tildegraph concept that began as a conceptual model of a gramophone and which is a spatio-visual sound synthesis technique related to wave terrain synthesis. The spiroid-frequency-space representation is introduced, contextualised, and combined both with those themes and a bespoke geometrical drawing system (named thisis), to create a new modular computer music software environment named sdfsys. 3 Abstract Abstract – Abstract Acknowledgements This projected was supported by the Arts and Humanities Research Council (AHRC) and supervised by Professors Clarke and Adkins (JMC and Monty) to whom I am eternally grateful, as I am also to family, to friends, and to Huddersfield. Copyright Statement i. The author of this thesis (including any appendices and/or schedules to this thesis) owns any copyright in it (the “Copyright”) and s/he has given The University of Huddersfield the right to use such Copyright for any administrative, promotional, educational and/or teaching purposes. ii. Copies of this thesis, either in full or in extracts, may be made only in accordance with the regulations of the University Library. Details of these regulations may be obtained from the Librarian. This page must form part of any such copies made. iii. The ownership of any patents, designs, trademarks and any and all other intellectual property rights except for the Copyright (the “Intellectual Property Rights”) and any reproductions of copyright works, for example graphs and tables (“Reproductions”), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property Rights and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property Rights and/or Reproductions. 4 Overview of the Portfolio Directories Overview of the Portfolio Directories – Overview of the Portfolio Directories Overview of the Portfolio Directories An overview of the portfolio directories – found on the attached DVD, and also available online at http://sdfphd.net/portfolio – is given here, showing only folder names, and only to a depth of two: • sdfphd_portfolio_by_chapter ◦ chapter3_inSoftware_onScreen ▪ model_of_a_gramophone ▪ MoEpixels ▪ saw~onepole~noise~click~ ▪ sub_synth_amp_map ▪ visyn ◦ chapter4_Spiroid ▪ BensonSymmetryEx3 ▪ nRadii ▪ spiralArc300 ▪ spiroidArc+timespace ◦ chapter5_CirSeq
Recommended publications
  • Shepard, 1982
    Psychological Review VOLUME 89 NUMBER 4 JULY 1 9 8 2 Geometrical Approximations to the Structure of Musical Pitch Roger N. Shepard Stanford University ' Rectilinear scales of pitch can account for the similarity of tones close together in frequency but not for the heightened relations at special intervals, such as the octave or perfect fifth, that arise when the tones are interpreted musically. In- creasingly adequate a c c o u n t s of musical pitch are provided by increasingly gen- eralized, geometrically regular helical structures: a simple helix, a double helix, and a double helix wound around a torus in four dimensions or around a higher order helical cylinder in five dimensions. A two-dimensional "melodic map" o f these double-helical structures provides for optimally compact representations of musical scales and melodies. A two-dimensional "harmonic map," obtained by an affine transformation of the melodic map, provides for optimally compact representations of chords and harmonic relations; moreover, it is isomorphic to the toroidal structure that Krumhansl and Kessler (1982) show to represent the • psychological relations among musical keys. A piece of music, just as any other acous- the musical experience. Because the ear is tic stimulus, can be physically described in responsive to frequencies up to 20 kHz or terms of two time-varying pressure waves, more, at a sampling rate of two pressure one incident at each ear. This level of anal- values per cycle per ear, the physical spec- ysis has, however, little correspondence to ification of a half-hour symphony requires well in excess of a hundred million numbers.
    [Show full text]
  • Real-Time 3D Graphic Augmentation of Therapeutic Music Sessions for People on the Autism Spectrum
    Real-time 3D Graphic Augmentation of Therapeutic Music Sessions for People on the Autism Spectrum John Joseph McGowan Submitted in partial fulfilment of the requirements of Edinburgh Napier University for the degree of Doctor of Philosophy October 2018 Declaration I, John McGowan, declare that the work contained within this thesis has not been submitted for any other degree or professional qualification. Furthermore, the thesis is the result of the student’s own independent work. Published material associated with the thesis is detailed within the section on Associate Publications. Signed: Date: 12th October 2019 J J McGowan Abstract i Abstract This thesis looks at the requirements analysis, design, development and evaluation of an application, CymaSense, as a means of improving the communicative behaviours of autistic participants through therapeutic music sessions, via the addition of a visual modality. Autism spectrum condition (ASC) is a lifelong neurodevelopmental disorder that can affect people in a number of ways, commonly through difficulties in communication. Interactive audio-visual feedback can be an effective way to enhance music therapy for people on the autism spectrum. A multi-sensory approach encourages musical engagement within clients, increasing levels of communication and social interaction beyond the sessions. Cymatics describes a resultant visualised geometry of vibration through a variety of mediums, typically through salt on a brass plate or via water. The research reported in this thesis focuses on how an interactive audio-visual application, based on Cymatics, might improve communication for people on the autism spectrum. A requirements analysis was conducted through interviews with four therapeutic music practitioners, aimed at identifying working practices with autistic clients.
    [Show full text]
  • From Hydrophonics to Interactive Sound Fountains
    From Hydrophonics to Interactive Sound Fountains Johannes Birringer From “Series One” – Open Studio Exhibition, Derby University April – May 2008. Although modest and seemingly unspectacular, Caroline Locke’s phrase “seeing sound” – a phrase she used to describe her interests in creating sculptural sound-performance works when I first met her in 2004 – has stuck with me. It is an odd paradox, but one that has gained resonance in recent years as we have moved along with the scientific and technological advances in a culture obsessed with data visualizations and location mapping. Today’s ultrasonic medical scanning of our arterial blood flow allows us to peer inside ourselves, so to speak. We depend on x-ray vision to diagnose a fracture of our bones, and neurologists look into our brains to pinpoint areas responsible for thoughts, feelings, and actions. Sound and vision are two closely related sensory registers, yet we do not commonly think of sight being audible, and sound being visible. We do not see with our ears, we use them to listen to the wind as we go forth in the world, as the anthropologist Tim Ingold once suggested, noting that wind and breath are intimately related in the continuous movement of inhalation and exhalation that is fundamental to life and being.1 1 Cf. Tim Ingold, “Against Soundscape,” in Angus Carlyle (ed.), Autumn. Leaves: Sound and the Environment in Artistic Practice (Paris: Double Entendre, 2007), pp. 10-13. 2 Even though my immediate contact with Caroline Locke’s artistic creativity and collaborative ventures was limited to a brief two-year period (2004-05), I propose to reflect here on her major performance installation Hydrophonics (2005) and her on-going preoccupation with water and sound, attempting to sketch a particular collaborative and interactive trajectory in the various manifestations of her artistic project.
    [Show full text]
  • Selected Filmography of Digital Culture and New Media Art
    Dejan Grba SELECTED FILMOGRAPHY OF DIGITAL CULTURE AND NEW MEDIA ART This filmography comprises feature films, documentaries, TV shows, series and reports about digital culture and new media art. The selected feature films reflect the informatization of society, economy and politics in various ways, primarily on the conceptual and narrative plan. Feature films that directly thematize the digital paradigm can be found in the Film Lists section. Each entry is referenced with basic filmographic data: director’s name, title and production year, and production details are available online at IMDB, FilmWeb, FindAnyFilm, Metacritic etc. The coloured titles are links. Feature films Fritz Lang, Metropolis, 1926. Fritz Lang, M, 1931. William Cameron Menzies, Things to Come, 1936. Fritz Lang, The Thousand Eyes of Dr. Mabuse, 1960. Sidney Lumet, Fail-Safe, 1964. James B. Harris, The Bedford Incident, 1965. Jean-Luc Godard, Alphaville, 1965. Joseph Sargent, Colossus: The Forbin Project, 1970. Henri Verneuil, Le serpent, 1973. Alan J. Pakula, The Parallax View, 1974. Francis Ford Coppola, The Conversation, 1974. Sidney Pollack, The Three Days of Condor, 1975. George P. Cosmatos, The Cassandra Crossing, 1976. Sidney Lumet, Network, 1976. Robert Aldrich, Twilight's Last Gleaming, 1977. Michael Crichton, Coma, 1978. Brian De Palma, Blow Out, 1981. Steven Lisberger, Tron, 1982. Godfrey Reggio, Koyaanisqatsi, 1983. John Badham, WarGames, 1983. Roger Donaldson, No Way Out, 1987. F. Gary Gray, The Negotiator, 1988. John McTiernan, Die Hard, 1988. Phil Alden Robinson, Sneakers, 1992. Andrew Davis, The Fugitive, 1993. David Fincher, The Game, 1997. David Cronenberg, eXistenZ, 1999. Frank Oz, The Score, 2001. Tony Scott, Spy Game, 2001.
    [Show full text]
  • Docunint Mori I
    DOCUNINT MORI I. 00.175 695 SE 020 603 *OTROS Schaaf, Willias L., Ed. TITLE Reprint Series: Mathematics and Music. RS-8. INSTITUTION Stanford Univ., Calif. School Mathematics Study Group. SKINS AGENCY National Science Foundation, Washington, D.C. DATE 67 28p.: For related documents, see SE 028 676-640 EDRS PRICE RF01/PCO2 Plus Postage. DESCRIPTORS Curriculum: Enrichment: *Fine Arts: *Instruction: Mathesatics Education: *Music: *Rustier Concepts: Secondary Education: *Secondary School Mathematics: Supplementary Reading Materials IDENTIFIERS *$chool Mathematics Study Group ABSTRACT This is one in a series of SBSG supplesentary and enrichment pamphlets for high school students. This series makes available expository articles which appeared in a variety of athematical periodicals. Topics covered include: (1) the two most original creations of the human spirit: (2) mathematics of music: (3) numbers and the music of the east and west: and (4) Sebastian and the Wolf. (BP) *********************************************************************** Reproductions snpplied by EDRS are the best that cam be made from the original document. *********************************************************************** "PERMISSION TO REPRODUCE THIS U S DE PE* /NE NT Of MATERIAL HAS BEEN GRANTED SY EOUCATION WELFAIE NATIONAL INSTITUTE OF IEDUCAT1ON THISLX)( 'API NT HAS141 IN WI P410 Oti(10 4 MA, Yv AS WI t1,4- 0 4 tiONI TH4 Pi 40SON 4)44 fwftAN,IA t.(1N 041.G114. AT,sp, .1 po,sos 1)1 1 ev MW OP4NIONS STA 'Fp LX) NE.IT NI SSI144,t Y RIPWI. TO THE EDUCATIONAL RESOURCES SI NT (7$$ M A NAIhj N',1,11)11E 01 INFORMATION CENTER (ERIC)." E.),,f T P(1,1140N ,1 V 0 1967 by The Board cf Trustees of theLeland Stanford AU rights reeerved Junior University Prieted ia the UnitedStates of Anverka Financial support for tbe SchoolMatbernatks Study provided by the Group has been Nasional ScienceFoundation.
    [Show full text]
  • Physics 101 Physics
    PhysicsPhysics 101101 LectureLecture 2121 DopplerDoppler EffectEffect LoudnessLoudness HumanHuman HearingHearing InterferenceInterference ofof SoundSound WavesWaves ReflectionReflection && RefractionRefraction ofof SoundSound Quiz: Monday Oct. 18; Chaps. 16,17,18(as covered in class),19 CR/NC Deadline Oct. 19 1/32 DemoDemo:: DopplerDoppler ShiftShift Hear frequency as higher when whistle is moving towards you and hear it as lower when moving away from you. Summary: Source & observer approaching, fobs>fs Source & observer separating, fobs<fs Higher Shorter Wavelength Frequency Lower Frequency Longer Wavelength 13-Oct-10 2/32 LoudnessLoudness && AmplitudeAmplitude Loudness depends on amplitude of pressure and density variations in sound waves. 13-Oct-10 3/32 deciBelsdeciBels (dB) (dB) Loudness of sound depends on the amplitude of pressure variation in the sound wave. Loudness is measured in deciBels (dB), which is a logarithmic scale (since our perception of loudness varies logarithmically). From the threshold of hearing (0 dB) to the threshold of pain (120 dB), the pressure amplitude is a million times higher. At the threshold of pain (120 db), the pressure variation is still only about 10 Pascals, which is one ten thousandth of atmospheric pressure. 4/32 5/32 Human Hearing 6/32 7/32 HearingHearing LossLoss The hair cells that line the cochlea are a delicate and vulnerable part of the ear. Repeated or sustained exposure to loud noise destroys the neurons in this region. Once destroyed, the hair cells are not replaced, and the sound frequencies interpreted by them are no longer heard. Hair cells that respond to high frequency sound are very vulnerable to destruction, and loss of these neurons typically produces difficulty understanding human voices.
    [Show full text]
  • Firmament of Sound
    Firmament of Sound Before there were eyes to see when a vast darkness still permeated the void, All rested beneath a firmament of Sound. I stare into the primal pool breath ripples the water and light appears –as if from within– a raiment of pastel profusion barely the faintest hint of definition. I open myself and eyes appear –as if from within– so that I might see myself apart from the landscape, a part of the landscape– my original face peering out of the darkness, peering into the void. Without fear; without pain; no sharp edges; no hard places; no borders. Nothing to recoil from no need for protection no need for rejection– no separation. I raise my voice and Behold! I Create my own personal playground, a universe of figure, form and motion arising from my impetuous imagination. © 2009, Jeff Volk Autumn 2010 FROM VIBRATION TO MANIFESTATION: Assuming our Rightful Place in Creation All is vibration! ––Novalis Editor’s Note: The following article builds on Cymatics: Insights into the Invisible World of Sound, published in the Summer 2009 issue of The Quester. A brief overview of the science of Cymatics will be given at the outset, but for a more thorough understanding, please refer to that article at http://www.cymaticsource.com/pdf/CaduceusArticle.pdf. Cymatics in a Sound-bite Cymatics, the study of wave phenomena and vibration, is a scientific methodology that demonstrates the vibratory nature of matter and the transformational nature of sound. It is sound science at its finest, and its implications are vast! The term (Kymatiks in German), was adapted from the Greek word for wave, ta Kyma, in the 1960s by Swiss medical doctor and natural scientist, Hans Jenny (1904-1972).
    [Show full text]
  • Cymatics: a Novel Approch to Convert Sound Into Image
    WorldAcademics World Academics Journal of Engineering Sciences ____________________________________________________________ World Acad. J. Eng. Sci. 01 1004 (2014) ISSN: 2348-635X doi:10.15449/wjes.2014.1004 Cymatics: A Novel Approch to Convert Sound into Image Bhaurao S. Badak* and Ajay A.Gurjar* Department of Electronics and Telecommunication Sipna C.O.E.T amravati Amravati, India *Email: [email protected], [email protected] Abstract: In a day to day life we come across many sounds which are mechanical vibration that may be through air or water. To every sound some form of visual image is attached which is normally not visible. We are making an attempt to make sound visible. This paper gives a novel approach to convert one dimensional signal (sound) into two dimensional signals (Image) which can be used as a tool to freeze sound in the form of images. We are using low frequency signals as an example. But as the frequency increases the patterns become more complex. Keywords: particle contamination, CSM, analytical method. Chladni known as the father of Acoustics, who laid Introduction the foundation for the study of physics of sound. In 1831 the great experimental scientist In the beginning was the ‘word’ or in Sanskrit, .Michael Faraday, published a paper of describing ‘Nada Brahma’, the world is sound. The amazing his observation of geometric ‘nodal forms’. Appear power of sound to change and shape matter is in granular solid under the effect of vibration. fundamental to all life and many spiritual In 1885, an American, Margaret watts Hughes, a technologies. Cymatics is the study of wave singer and ‘devout Congregationalist’, begin phenomenon, which emerged as a distinct scientific experimenting with the ‘eidophone’,a small, discipline in the 1950s.
    [Show full text]
  • Sine Waves and Simple Acoustic Phenomena in Experimental Music - with Special Reference to the Work of La Monte Young and Alvin Lucier
    Sine Waves and Simple Acoustic Phenomena in Experimental Music - with Special Reference to the Work of La Monte Young and Alvin Lucier Peter John Blamey Doctor of Philosophy University of Western Sydney 2008 Acknowledgements I would like to thank my principal supervisor Dr Chris Fleming for his generosity, guidance, good humour and invaluable assistance in researching and writing this thesis (and also for his willingness to participate in productive digressions on just about any subject). I would also like to thank the other members of my supervisory panel - Dr Caleb Kelly and Professor Julian Knowles - for all of their encouragement and advice. Statement of Authentication The work presented in this thesis is, to the best of my knowledge and belief, original except as acknowledged in the text. I hereby declare that I have not submitted this material, either in full or in part, for a degree at this or any other institution. .......................................................... (Signature) Table of Contents Abstract..................................................................................................................iii Introduction: Simple sounds, simple shapes, complex notions.............................1 Signs of sines....................................................................................................................4 Acoustics, aesthetics, and transduction........................................................................6 The acoustic and the auditory......................................................................................10
    [Show full text]
  • A Biological Rationale for Musical Consonance Daniel L
    PERSPECTIVE PERSPECTIVE A biological rationale for musical consonance Daniel L. Bowlinga,1 and Dale Purvesb,1 aDepartment of Cognitive Biology, University of Vienna, 1090 Vienna, Austria; and bDuke Institute for Brain Sciences, Duke University, Durham, NC 27708 Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved June 25, 2015 (received for review March 25, 2015) The basis of musical consonance has been debated for centuries without resolution. Three interpretations have been considered: (i) that consonance derives from the mathematical simplicity of small integer ratios; (ii) that consonance derives from the physical absence of interference between harmonic spectra; and (iii) that consonance derives from the advantages of recognizing biological vocalization and human vocalization in particular. Whereas the mathematical and physical explanations are at odds with the evidence that has now accumu- lated, biology provides a plausible explanation for this central issue in music and audition. consonance | biology | music | audition | vocalization Why we humans hear some tone combina- perfect fifth (3:2), and the perfect fourth revolution in the 17th century, which in- tions as relatively attractive (consonance) (4:3), ratios that all had spiritual and cos- troduced a physical understanding of musi- and others as less attractive (dissonance) has mological significance in Pythagorean phi- cal tones. The science of sound attracted been debated for over 2,000 years (1–4). losophy (9, 10). many scholars of that era, including Vincenzo These perceptual differences form the basis The mathematical range of Pythagorean and Galileo Galilei, Renee Descartes, and of melody when tones are played sequen- consonance was extended in the Renaissance later Daniel Bernoulli and Leonard Euler.
    [Show full text]
  • The Convergence of Sound and Space 2
    ACADEMY OF NEUROSCIENCE FOR ARCHITECTURE ANFA 2016 CONFERENCE R Resonant Form: The Convergence of Sound and Space 2. IMPLICATIONS FOR FUTURE WORK ESONANT While this body of research and design currently remains in the realm of proposition and experimentation, the exploration SHEA MICHAEL TRAHAN, ASSOCIATE AIA, LEED AP, M.ARCH acts to exhibit how lessons learned through cross-disciplinary research might be applied into the built environment. Potential F Trapolin Peer Architects OR [email protected] programmatic uses for such architectural spaces would include sensory laboratories, sonic therapy chambers, sonic exploratoria, M : use in theater design, church/sacred spaces, and even urban follies offering a sonic oasis from a disastrous urban soundscape. The T H E “Listen! Interiors are like large instruments, collecting sound, amplifying it, trasmitting it elsewhere.” - Peter Zumthor built results of such research may someday offer the opportunity for further acoustic testing. Such a focus on the power of sound C to effect brain states could offer exciting new insight into the role of architecture in creating healthy spaces; or taken to its furthest ONVERGENCE Human spatial perception is a sensual experience of the world we inhabit. While we experience architecture through all of our senses by varying extents, create tools for meditative experience and instruments for expanded sonic perception. degrees, the process of design has long preferenced the visual at the expense of other modes of perception. This body of research and proposed design methodology aims to focus on acoustic aesthetics to create spaces which manifest sonic phenomenon that not only elicit psychological 3. REFERENCES OF responses for inhabitants but also induce shifts in brain states toward meditative and/or mystical experience.
    [Show full text]
  • A Study to Explore the Effects of Sound Vibrations on Consciousness
    International Journal of Social Work and Human Services Practice Horizon Research Publishing Vol.6. No.3 July, 2018, pp. 75-88 A Study to Explore the Effects of Sound Vibrations on Consciousness Meera Raghu Independent Researcher, New Zealand Abstract Sound is a form of energy produced by cause happiness, joy, courage or calmness, dissonant vibrations caused by movement of particles. Sound can intervals can cause tension, anger, fear or sadness, thereby travel through solids (such as metal, wood, membranes), affecting the emotional aspect of consciousness. liquids (water) and gases (air). The sound vibrations that reach our ear are produced by the movement of particles in Keywords Consciousness, Sound, Vibration, Music, the air surrounding the source of sound. The movement or Emotion, Chladni, Pattern, Energy vibration of particles produces waves of sound. Sound waves are longitudinal and travel in the direction of propagation of vibrations. The pitch of sound is related directly to its frequency, which is given by the number of Introduction vibrations or cycles per second. The higher the pitch of sound, the higher is its frequency, and the lower the pitch, Sound is everywhere. There is perpetual movement and the lower is its frequency. Human ear can hear sounds of action in the world around us, and this produces a variety of frequencies ranging from 20 – 20,000 cycles per second (or sounds, such as those coming from Nature, from animals, Hertz – Hz). Sound waves can be visually seen and studied those generated by humans in the form of speech or music, using ‘Chladni’ plates, which was devised and those that are generated by vehicles, machines, gadgets that experimented by Ernst Chladni, a famous physicist with a are used for comfort, leisure and convenience.
    [Show full text]