Absolute Pitch

Total Page:16

File Type:pdf, Size:1020Kb

Absolute Pitch Psychological Bulletin Copyright 1993 by the American Psychological Association, Inc. 1993. Vol. 113. No. 2. 345-361 0033-2909/93/53.00 Absolute Pitch Annie H. Takeuchi and Stewart H. Hulse Absolute pitch (AP) is the ability to identify a tone's pitch or to produce a tone at a particular pitch without the use of an external reference pitch. AP exists in varying degrees among people generally described as AP possessors. AP possessors vary not only in the accuracy with which they can identify pitches but also in their ability to produce pitches absolutely and in their ability to identify tones of various timbres and in various pitch registers. AP possessors' memory for pitches is mediated by verbal pitch names; they do not have superior memory for pitches per se. Although the etiology of AP is not yet completely understood, evidence points toward the early-learning theory. This theory states that AP can be learned by anyone during a limited period early in development, up to about age 6, after which a general developmental shift from perceiving individual features to perceiving relations among features makes AP difficult or impossible to acquire. Absolute pitch (AP) is the ability to identify the pitch of a work with units of a single tone, whereas composers without AP musical tone or to produce a musical tone at a given pitch must work with pitch relations that require a minimum unit of without the use of an external reference pitch. Most humans two tones. process musical pitch relatively rather than absolutely. They Psychologists have puzzled over several questions about AP process the melodic and harmonic relations among pitches in- for over 100 years. Why does AP occur so rarely? Does AP stead of the absolute pitches themselves. In contrast, people involve superior memory or superior discrimination of pitches? who have AP can encode and remember absolute pitches. Do AP possessors perceive music in the same way that nonpos- AP is a rare ability; its incidence is generally estimated at less sessors do? Is AP learned, and if so, how? Why is it learned by than .01% of the general population (Bachem, 1955; Profita & some people and not by others? We address these questions in Bidder, 1988). Those who have AP claim that identifying the latter parts of this article. However, we begin by addressing pitches absolutely is effortless and immediate (Bachem, 1940; a more basic question: What exactly can an AP possessor do? Corliss, 1973; Profita & Bidder, 1988; Revesz, 1953) and that they made no special effort to develop AP (Baird, 1917; Boggs, Abilities of AP Possessors 1907; Weinert, 1929, cited in Petran, 1932). In contrast, efforts by adults to develop AP have never achieved unqualified suc- Methods of Measuring AP cess, although efforts to teach children AP have been more successful. Three kinds of tasks have been used to measure AP: identifi- These characteristics of AP would not excite so much interest cation tasks, production tasks, and memory decay tasks. We were it not for the fact that AP is generally considered a desir- discuss each of these tasks in the following sections. able ability. AP is useful to musicians, especially when studying atonal music (Crutchfield, 1990). In atonal music, there is no Pitch Identification Task tonic pitch that can serve as a reference point. Therefore it is more difficult to detect minor pitch errors by determining The most common method of assessing AP is with a pitch pitch relations in atonal music than in tonal music. AP enables identification task. Subjects are asked to identify absolutely the a performer or listener to detect pitch errors on an absolute pitches of various tones. In Western music, the octave, which is basis, without having to determine pitch relations. In addition, the interval formed by two pitches whose fundamental fre- Abraham (1901, cited in Petran, 1932) suggested that AP could quencies stand in a 2:1 ratio, is divided into 12 parts. The divi- be an advantage to composers because it would enable them to sion is into logarithmically equal parts in the equal-tempered tuning system, the tuning system most commonly used in psy- chological studies. Theoretically, the frequency at each point of Annie H. Takeuchi and Stewart H. Hulse, Department of Psychol- division corresponds to a musical pitch, although in musical ogy, Johns Hopkins University. practice, a small range of frequencies surrounding the division We thank Robert Crowder and an anonymous reviewer for their is accepted as corresponding to a particular musical pitch. comments on a draft of this article. Preparation of this article was Thus, there is a many-to-one mapping of frequency to pitch in supported in part by National Science Foundation Research Grant BNS -8911046 to Stewart H. Hulse and by a National Science Founda- music. tion predoctoral fellowship awarded to Annie H. Takeuchi. Pitch names are composed of two parts. The first part is the Correspondence concerning this article should be addressed to An- pitch class, for example, C, C-sharp, or D. The frequency at each nie H. Takeuchi, who is now at the Research Laboratory of Electron- of the 12 divisions of an octave corresponds to a different pitch ics, Room 36-747, Massachusetts Institute of Technology, Cambridge, class. The distance from one pitch class to an adjacent pitch Massachusetts 02139. class is called a semitone. In an equal-tempered tuning system, 345 346 ANNIE H. TAKEUCHI AND STEWART H. HULSE tones a semitone apart have fundamental frequencies forming a would be perfect. Two bits of information implies 4 response 21/12:1 ratio. The second part of a pitch name is the octave categories would produce perfectly accurate identification; 3 designation. All pairs of tones an octave apart have the same bits implies 8 response categories, and so on (Miller, 1956). pitch class; they are distinguished by their octave designation. Measuring performance in terms of information transmitted Although there is no universal means of designating octaves in eliminates the need to establish criteria for a correct or incor- music, in the most commonly used system, the octave runs rect pitch identification because it measures consistency rather from C up to B, and middle C (261.6 Hz) is designated C4. The B than accuracy of identification. AP possessors can retain about next to middle C (246.9 Hz) is B3. The C an octave above middle 6 bits of information about pitch, which corresponds to about C (523.2 Hz) is C5, the C an octave below middle C (130.8 Hz) is 64 response categories (Attneave, 1959; Carroll, 1975; Ward, C3, and so on. The pitch A4, used to tune orchestras, corre- 1953, 1963b), whereas nonpossessors retain on average about sponds to 440.0 Hz by modern convention. 2.5 bits or 5.7 categories (Fulgosi, Knezovic, & Zarevski, 1984; Accuracy of absolute pitch identifications. Percentage of Hartman, 1954; Pollack, 1952,1953). correct identification is the most common measure of perfor- Given the foregoing, how accurate are absolute pitch identifi- mance in pitch identification tasks, and under normal circum- cations as measured by percentage of correct identification? In stances, the measure works well. However, simple percentage Table 1, we present the results of several absolute pitch identifi- correct can be a misleading index under certain conditions. cation experiments conducted since 1970. The table shows the Some subjects may consistently identify pitches a semitone low range and the mean of the percentage of correct pitch identifi- or a semitone high (Bartholomew, 1925, cited in Petran, 1932; cations by AP possessors in each experiment, where correct- Weinert, 1929, cited in Ward, 1963a). This can occur because a ness is determined by the criteria given in the rightmost col- subject is accustomed to a different tuning standard for A4 than umn. Octave errors, which are discussed below, occur when the 440.0 Hz. There are also anecdotal reports that as a result of pitch class of a tone is correctly identified but the octave identi- aging, an AP possessor's pitch perception may shift by one or fication is incorrect. two semitones, so that all pitch identifications are one or two It is apparent from the table that accuracy of absolute pitch semitones too high (Triepel, 1934, cited in Ward & Burns, 1982; identification has varied widely across experiments. There are a Vernon, 1977). To the extent that pitch perception depends on number of possible reasons for this fact. One is that experi- the place of maximum stimulation on the basilar membrane, menters have used different methods to determine whether a this shift in absolute pitch perception may be due to loss of particular subject would qualify as an AP possessor. For exam- elasticity of the basilar membrane as the subject ages, which ple, Zatorre and Beckett (1989) relied on self-reports. In con- results in a gradual shift in the place where a particular fre- trast, Miyazaki (1988a) simply tested a number of music stu- quency maximally excites the basilar membrane (Vernon, 1977; dents and determined from analysis of the data which subjects Ward & Burns, 1982). were AP possessors. Other factors affecting accuracy of identi- Ward (1963a, Ward & Burns, 1982) proposed four solutions to fication, which are discussed in more detail later, are the timbre the problem of measuring AP in subjects who consistently err and pitch register of the tones tested. Also, it has been widely by a semitone. The first solution was to adjust the stimuli to reported that tones above 4000-5000 Hz lose their musical each individual subject's musical scale, which would involve a quality and have no distinct pitch class (Semal & Demany, 1990; calibration process before actually testing absolute pitch identi- Stevens & Volkmann, 1940; Ward, 1954).
Recommended publications
  • Absolute and Relative Pitch Processing in the Human Brain: Neural and Behavioral Evidence
    bioRxiv preprint doi: https://doi.org/10.1101/526541; this version posted March 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Absolute and relative pitch processing in the human brain: Neural and behavioral evidence Simon Leipold a, Christian Brauchli a, Marielle Greber a, Lutz Jäncke a, b, c Author Affiliations a Division Neuropsychology, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland b University Research Priority Program (URPP), Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland c Department of Special Education, King Abdulaziz University, 21589 Jeddah, Kingdom of Saudi Arabia Corresponding Authors Simon Leipold Binzmühlestrasse 14, Box 25 CH-8050 Zürich Switzerland [email protected] Lutz Jäncke Binzmühlestrasse 14, Box 25 CH-8050 Zürich Switzerland [email protected] Keywords Absolute Pitch, Multivariate Pattern Analysis, Neural Efficiency, Pitch Processing, fMRI Acknowledgements This work was supported by the Swiss National Science Foundation (SNSF), grant no. 320030_163149 to LJ. We thank our research interns Anna Speckert, Chantal Oderbolz, Désirée Yamada, Fabian Demuth, Florence Bernays, Joëlle Albrecht, Kathrin Baur, Laura Keller, Marilena Wilding, Melek Haçan, Nicole Hedinger, Pascal Misala, Petra Meier, Sarah Appenzeller, Tenzin Dotschung, Valerie Hungerbühler, Vanessa Vallesi,
    [Show full text]
  • TUNING JUDGMENTS 1 1 2 3 4 Does Tuning Influence Aesthetic
    TUNING JUDGMENTS 1 1 2 3 4 5 Does Tuning Influence Aesthetic Judgments of Music? Investigating the Generalizability 6 of Absolute Intonation Ability 7 8 Stephen C. Van Hedger 1 2 and Huda Khudhair 1 9 10 11 1 Department of Psychology, Huron University College at Western 12 2 Department of Psychology & Brain and Mind Institute, University of Western Ontario 13 14 15 16 17 18 19 20 Author Note 21 Word Count (Main Body): 7,535 22 Number of Tables: 2 23 Number of Figures: 2 24 We have no known conflict of interests to disclose. 25 All materials and data associated with this manuscript can be accessed via Open Science 26 Framework (https://osf.io/zjcvd/) 27 Correspondences should be sent to: 28 Stephen C. Van Hedger, Department of Psychology, Huron University College at Western: 1349 29 Western Road, London, ON, N6G 1H3 Canada [email protected] 30 31 32 TUNING JUDGMENTS 2 1 Abstract 2 Listening to music is an enjoyable activity for most individuals, yet the musical factors that relate 3 to aesthetic experiences are not completely understood. In the present paper, we investigate 4 whether the absolute tuning of music implicitly influences listener evaluations of music, as well 5 as whether listeners can explicitly categorize musical sounds as “in tune” versus “out of tune” 6 based on conventional tuning standards. In Experiment 1, participants rated unfamiliar musical 7 excerpts, which were either tuned conventionally or unconventionally, in terms of liking, interest, 8 and unusualness. In Experiment 2, participants were asked to explicitly judge whether several 9 types of musical sounds (isolated notes, chords, scales, and short excerpts) were “in tune” or 10 “out of tune.” The results suggest that the absolute tuning of music has no influence on listener 11 evaluations of music (Experiment 1), and these null results are likely caused, in part, by an 12 inability for listeners to explicitly differentiate in-tune from out-of-tune musical excerpts 13 (Experiment 2).
    [Show full text]
  • Philosophy of Music Education
    University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2017 Philosophy of Music Education Mary Elizabeth Barba Follow this and additional works at: https://scholars.unh.edu/honors Part of the Music Education Commons, and the Music Pedagogy Commons Recommended Citation Barba, Mary Elizabeth, "Philosophy of Music Education" (2017). Honors Theses and Capstones. 322. https://scholars.unh.edu/honors/322 This Senior Honors Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Honors Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Philosophy of Music Education Mary Barba Dr. David Upham December 9, 2016 Barba 1 Philosophy of Music Education A philosophy of music education refers to the value of music, the value of teaching music, and how to practically utilize those values in the music classroom. Bennet Reimer, a renowned music education philosopher, wrote the following, regarding the value of studying the philosophy of music education: “To the degree we can present a convincing explanation of the nature of the art of music and the value of music in the lives of people, to that degree we can present a convincing picture of the nature of music education and its value for human life.”1 In this thesis, I will explore the philosophies of Emile Jacques-Dalcroze, Carl Orff, Zoltán Kodály, Bennett Reimer, and David Elliott, and suggest practical applications of their philosophies in the orchestral classroom, especially in the context of ear training and improvisation.
    [Show full text]
  • Effects of Harmonics on Relative Pitch Discrimination in a Musical Context
    Perception & Psychophysics 1996, 58 (5), 704-712 Effects of harmonics on relative pitch discrimination in a musical context LAUREL J. TRAINOR McMaster University, Hamilton, Ontario, Canada The contribution of different harmonics to pitch salience in a musical context was examined by re­ quiring subjects to discriminate a small (% semitone) pitch change in one note of a melody that re­ peated in transposition. In Experiment 1,performance was superior when more harmonics were pres­ ent (first five vs. fundamental alone) and when the second harmonic (of tones consisting of the first two harmonics) was in tune compared with when it was out of tune. In Experiment 2, the effects ofhar­ monies 6 and 8, which stand in octave-equivalent simple ratios to the fundamental (2:3 and 1:2, re­ spectively) were compared with harmonics 5 and 7, which stand in more complex ratios (4:5 and 4:7, respectively). When the harmonics fused into a single percept (tones consisting of harmonics 1,2, and one of 5, 6, 7, or 8), performance was higher when harmonics 6 or 8 were present than when harmon­ ics 5 or 7 were present. When the harmonics did not fuse into a single percept (tones consisting of the fundamental and one of 5, 6, 7, or 8), there was no effect of ratio simplicity. This paper examines the contribution of different har­ gion depended to some extent on the fundamental fre­ monics to relative pitch discrimination in a musical con­ quency: The fourth and higher harmonics dominated for text. Relative pitch discrimination refers to the ability to fundamental frequencies up to 350 Hz, the third and higher compare the pitch interval (i.e., distance on a log frequency for fundamentals between 350 and 700 Hz, the second and scale) between one set oftwo tones and another, where the higher for fundamental frequencies between 700 and fundamentals ofthe tones are at different absolute frequen­ 1400 Hz, and the first for frequencies above 1400 Hz.
    [Show full text]
  • Shepard, 1982
    Psychological Review VOLUME 89 NUMBER 4 JULY 1 9 8 2 Geometrical Approximations to the Structure of Musical Pitch Roger N. Shepard Stanford University ' Rectilinear scales of pitch can account for the similarity of tones close together in frequency but not for the heightened relations at special intervals, such as the octave or perfect fifth, that arise when the tones are interpreted musically. In- creasingly adequate a c c o u n t s of musical pitch are provided by increasingly gen- eralized, geometrically regular helical structures: a simple helix, a double helix, and a double helix wound around a torus in four dimensions or around a higher order helical cylinder in five dimensions. A two-dimensional "melodic map" o f these double-helical structures provides for optimally compact representations of musical scales and melodies. A two-dimensional "harmonic map," obtained by an affine transformation of the melodic map, provides for optimally compact representations of chords and harmonic relations; moreover, it is isomorphic to the toroidal structure that Krumhansl and Kessler (1982) show to represent the • psychological relations among musical keys. A piece of music, just as any other acous- the musical experience. Because the ear is tic stimulus, can be physically described in responsive to frequencies up to 20 kHz or terms of two time-varying pressure waves, more, at a sampling rate of two pressure one incident at each ear. This level of anal- values per cycle per ear, the physical spec- ysis has, however, little correspondence to ification of a half-hour symphony requires well in excess of a hundred million numbers.
    [Show full text]
  • The Perception of Melodic Consonance: an Acoustical And
    The perception of melodic consonance: an acoustical and neurophysiological explanation based on the overtone series Jared E. Anderson University of Pittsburgh Department of Mathematics Pittsburgh, PA, USA Abstract The melodic consonance of a sequence of tones is explained using the overtone series: the overtones form “flow lines” that link the tones melodically; the strength of these flow lines determines the melodic consonance. This hypothesis admits of psychoacoustical and neurophysiological interpretations that fit well with the place theory of pitch perception. The hypothesis is used to create a model for how the auditory system judges melodic consonance, which is used to algorithmically construct melodic sequences of tones. Keywords: auditory cortex, auditory system, algorithmic composition, automated com- position, consonance, dissonance, harmonics, Helmholtz, melodic consonance, melody, musical acoustics, neuroacoustics, neurophysiology, overtones, pitch perception, psy- choacoustics, tonotopy. 1. Introduction Consonance and dissonance are a basic aspect of the perception of tones, commonly de- scribed by words such as ‘pleasant/unpleasant’, ‘smooth/rough’, ‘euphonious/cacophonous’, or ‘stable/unstable’. This is just as for other aspects of the perception of tones: pitch is described by ‘high/low’; timbre by ‘brassy/reedy/percussive/etc.’; loudness by ‘loud/soft’. But consonance is a trickier concept than pitch, timbre, or loudness for three reasons: First, the single term consonance has been used to refer to different perceptions. The usual convention for distinguishing between these is to add an adjective specifying what sort arXiv:q-bio/0403031v1 [q-bio.NC] 22 Mar 2004 is being discussed. But there is not widespread agreement as to which adjectives should be used or exactly which perceptions they are supposed to refer to, because it is difficult to put complex perceptions into unambiguous language.
    [Show full text]
  • A Definition of Song from Human Music Universals Observed in Primate Calls
    bioRxiv preprint doi: https://doi.org/10.1101/649459; this version posted May 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. A definition of song from human music universals observed in primate calls David Schruth1*, Christopher N. Templeton2, Darryl J. Holman1 1 Department of Anthropology, University of Washington 2 Department of Biology, Pacific University *Corresponding author, [email protected] bioRxiv preprint doi: https://doi.org/10.1101/649459; this version posted May 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. Abstract Musical behavior is likely as old as our species with song originating as early as 60 million years ago in the primate order. Early singing likely evolved into the music of modern humans via multiple selective events, but efforts to disentangle these influences have been stifled by challenges to precisely define this behavior in a broadly applicable way. Detailed here is a method to quantify the elaborateness of acoustic displays using published spectrograms (n=832 calls) culled from the literature on primate vocalizations. Each spectrogram was scored by five trained analysts via visual assessments along six musically relevant acoustic parameters: tone, interval, transposition, repetition, rhythm, and syllabic variation.
    [Show full text]
  • Absolute Pitch (AP)
    Absolute Pitch (AP) • A.k.a. ‘perfect pitch’ • The ability to name or produce a tone without a reference tone • Very rare: 1 in 10,000 Vs. Relative pitch (RP) • Most people use relative pitch: • Recognizing tones relative to other tones • Remember and produce intervals abstracted from specific pitch, or given a reference pitch AP: how it works • Thought to be a labeling process: – AP possessors associate names/ meaning with pitches or pitch classes – Retain this association over time • AP is not ‘perfect’; i.e., auditory perception/ pitch discrimination not more accurate than RP Imaging evidence • When making judgments using AP: • possessors compared to non- possessors show more activation in frontal naming/labeling areas • Anatomically, AP possessors show greater planum temporale asymmetry – Apparently due to reduced RH PT size AP ‘flavors’ • AP not purely ‘have’ or ‘have-not; ability level varies along continuum • Some possessors make more accurate judgments with certain instruments – e.g. piano vs. pure sine wave tones – Sometimes called ‘absolute piano’ AP ‘flavors’ cont’d • Other possessors may perform more accurately with white-key notes than black-key notes – E.g. C,D,E vs. C#, D# • May be due to early learning influence – Early musical training on keyboard usually starts with white-key notes only • So, is AP learned? Learnable? Nature vs. Nurture, of course • The debate continues: – Some researchers ascribe genetic origins to AP, suspecting that early musical training is neither sufficient nor necessary – Others find most possessors
    [Show full text]
  • Frequency Ratios and the Perception of Tone Patterns
    Psychonomic Bulletin & Review 1994, 1 (2), 191-201 Frequency ratios and the perception of tone patterns E. GLENN SCHELLENBERG University of Windsor, Windsor, Ontario, Canada and SANDRA E. TREHUB University of Toronto, Mississauga, Ontario, Canada We quantified the relative simplicity of frequency ratios and reanalyzed data from several studies on the perception of simultaneous and sequential tones. Simplicity offrequency ratios accounted for judgments of consonance and dissonance and for judgments of similarity across a wide range of tasks and listeners. It also accounted for the relative ease of discriminating tone patterns by musically experienced and inexperienced listeners. These findings confirm the generality ofpre­ vious suggestions of perceptual processing advantages for pairs of tones related by simple fre­ quency ratios. Since the time of Pythagoras, the relative simplicity of monics of a single complex tone. Currently, the degree the frequency relations between tones has been consid­ of perceived consonance is believed to result from both ered fundamental to consonance (pleasantness) and dis­ sensory and experiential factors. Whereas sensory con­ sonance (unpleasantness) in music. Most naturally OCCUf­ sonance is constant across musical styles and cultures, mu­ ring tones (e.g., the sounds of speech or music) are sical consonance presumably results from learning what complex, consisting of multiple pure-tone (sine wave) sounds pleasant in a particular musical style. components. Terhardt (1974, 1978, 1984) has suggested Helmholtz (1885/1954) proposed that the consonance that relations between different tones may be influenced of two simultaneous complex tones is a function of the by relations between components of a single complex tone. ratio between their fundamental frequencies-the simpler For single complex tones, ineluding those of speech and the ratio, the more harmonics the tones have in common.
    [Show full text]
  • Docunint Mori I
    DOCUNINT MORI I. 00.175 695 SE 020 603 *OTROS Schaaf, Willias L., Ed. TITLE Reprint Series: Mathematics and Music. RS-8. INSTITUTION Stanford Univ., Calif. School Mathematics Study Group. SKINS AGENCY National Science Foundation, Washington, D.C. DATE 67 28p.: For related documents, see SE 028 676-640 EDRS PRICE RF01/PCO2 Plus Postage. DESCRIPTORS Curriculum: Enrichment: *Fine Arts: *Instruction: Mathesatics Education: *Music: *Rustier Concepts: Secondary Education: *Secondary School Mathematics: Supplementary Reading Materials IDENTIFIERS *$chool Mathematics Study Group ABSTRACT This is one in a series of SBSG supplesentary and enrichment pamphlets for high school students. This series makes available expository articles which appeared in a variety of athematical periodicals. Topics covered include: (1) the two most original creations of the human spirit: (2) mathematics of music: (3) numbers and the music of the east and west: and (4) Sebastian and the Wolf. (BP) *********************************************************************** Reproductions snpplied by EDRS are the best that cam be made from the original document. *********************************************************************** "PERMISSION TO REPRODUCE THIS U S DE PE* /NE NT Of MATERIAL HAS BEEN GRANTED SY EOUCATION WELFAIE NATIONAL INSTITUTE OF IEDUCAT1ON THISLX)( 'API NT HAS141 IN WI P410 Oti(10 4 MA, Yv AS WI t1,4- 0 4 tiONI TH4 Pi 40SON 4)44 fwftAN,IA t.(1N 041.G114. AT,sp, .1 po,sos 1)1 1 ev MW OP4NIONS STA 'Fp LX) NE.IT NI SSI144,t Y RIPWI. TO THE EDUCATIONAL RESOURCES SI NT (7$$ M A NAIhj N',1,11)11E 01 INFORMATION CENTER (ERIC)." E.),,f T P(1,1140N ,1 V 0 1967 by The Board cf Trustees of theLeland Stanford AU rights reeerved Junior University Prieted ia the UnitedStates of Anverka Financial support for tbe SchoolMatbernatks Study provided by the Group has been Nasional ScienceFoundation.
    [Show full text]
  • Physics 101 Physics
    PhysicsPhysics 101101 LectureLecture 2121 DopplerDoppler EffectEffect LoudnessLoudness HumanHuman HearingHearing InterferenceInterference ofof SoundSound WavesWaves ReflectionReflection && RefractionRefraction ofof SoundSound Quiz: Monday Oct. 18; Chaps. 16,17,18(as covered in class),19 CR/NC Deadline Oct. 19 1/32 DemoDemo:: DopplerDoppler ShiftShift Hear frequency as higher when whistle is moving towards you and hear it as lower when moving away from you. Summary: Source & observer approaching, fobs>fs Source & observer separating, fobs<fs Higher Shorter Wavelength Frequency Lower Frequency Longer Wavelength 13-Oct-10 2/32 LoudnessLoudness && AmplitudeAmplitude Loudness depends on amplitude of pressure and density variations in sound waves. 13-Oct-10 3/32 deciBelsdeciBels (dB) (dB) Loudness of sound depends on the amplitude of pressure variation in the sound wave. Loudness is measured in deciBels (dB), which is a logarithmic scale (since our perception of loudness varies logarithmically). From the threshold of hearing (0 dB) to the threshold of pain (120 dB), the pressure amplitude is a million times higher. At the threshold of pain (120 db), the pressure variation is still only about 10 Pascals, which is one ten thousandth of atmospheric pressure. 4/32 5/32 Human Hearing 6/32 7/32 HearingHearing LossLoss The hair cells that line the cochlea are a delicate and vulnerable part of the ear. Repeated or sustained exposure to loud noise destroys the neurons in this region. Once destroyed, the hair cells are not replaced, and the sound frequencies interpreted by them are no longer heard. Hair cells that respond to high frequency sound are very vulnerable to destruction, and loss of these neurons typically produces difficulty understanding human voices.
    [Show full text]
  • Perception of Relative Pitch with Different References: Some Absolute
    Perception & Psychophysics 1995. 57 (7). 962-970 Perception ofrelative pitch with different references: Some absolute-pitch listeners can't tell musical interval names KEN'ICHI MIYAZAKI Niigata University, Niigata, Japan 1\\'0 experiments were conducted to examine the effect of absolute-pitch possession on relative­ pitch processing. Listeners attempted to identify melodic intervals ranging from a semitone to an oc­ tave with different reference tones. Listeners with absolute pitch showed declined performance when the reference was out-of-tune C,out-of-tune E, or F#, relative to when the reference was C.In contrast, listeners who had no absolute pitch maintained relatively high performance in all reference conditions. These results suggest that absolute-pitch listeners are weak in relative-pitch processing and show a ten­ dency to rely on absolute pitch in relative-pitch tasks. One ofthe most important areas in our auditory experi­ erty and could be regarded as a medium in which tonal ence where pitch is used in a highly elaborated manner is patterns occur. music. In music ofthe tonal harmonic idiom, pitch, in as­ People who have good absolute pitch have been admired sociation with time, provides a tonal space in which as highly talented musicians. Indeed, absolute pitch may melodic and harmonic events occur in a hierarchical man­ be quite useful in musical practice, particularly when tran­ ner. Musical tones have different degrees of stability de­ scribing a heard musical passage into a musical notation or pending on the established tonal context (Lerdahl, 1988; singing a complicated melody at first sight. However, it Piston, 1987).
    [Show full text]