<<

Index

Note: bold type numbers denote illustrations and tables

Acerno Basin, S Italy see pollen analysis, Acerno Camptonectes tigerinus I 15 Acmaea testudinalis 115 Carboniferous-Permian transition, lake sediments, Albian lamination and primary production 5-14 latest Cenomanian time distribution of planktonic Foraminiferida 368 bauxites, and evaporites 20 paleogeography map 37 general circulation model (GCM) palaeoclimate planktonic morphotypes 34 simulations 18-24 angiosperms, Maastrichtian 46 mean temperature 19 Archaean, temperature history 2 NPP and LAI, SDGVM solutions 22 Arctica islandica, Guest, Mediterranean region Cenomanian-Turanian planktonic faunas 34 113-17 Cenozoic, temperature history 2 Arvicola, Uzzo cave, Sicily 180 chromosomal data affinity (Aa) species 114 hominid evolution and climate 189-93 Austria, SE, Late cave deposits, dichotomic chromosomal model 192 taphocoenoses 199-211 trichotomic chromosomal model 189-92 geological and morphological setting 199-200 climate leaf analysis multivariate program (CLAMP) karst rocks 44 chronology 205 analysis, results 46-8 location map 200 climatic modelling, Cretaceous, distribution of plank- palaeoclimatic significance 204-10 tonic Foraminiferida 33-40 biological and archaeological biases 204 distribution of modern fauna 35-6 contextual malacology 208 Globotruncana/Rotalipora lines 33-5 glaciology and palaeoenvironments 209 Late Santonian 38-40 human evidence 209-10 latest Albian 36-8 intra-site changes and diversity and regional climatic oscillations vs environmental changes heterogeneity 206-8 Tertiary plant assemblages 89-93 molluscs 208 climatic change within Late time in palaeoecological implications 204-6 92-3 palaeovegetation 208-9 environmental bias in palaeoclimatic interpreta- present climatic setting 200-4 tion of Early flora of Bilina 90-2 taxa, list 202-3 Coldwater (Cw) species, Recent records 115, 118 Autunian, climatic models, relationship to palaeocli- Constance, Lake, phytoplankton succession 7 mate in Carboniferous-Permian transition 12-13 Contrada Pianetti-Castello faunal complex, Sicily 175, 179 13CO2, discrimination values 27, 28 Badenian , Transylvania, Miocene 58 CO2, high, effects on global terrestrial productivity, Balaton, Lake, and Great Hungarian Plain, Late Mesozoic era 25-8 Glacial and Post-Glacial pollen records 121-32 Craigia (Tertiary flora) 90 Betic Strait, Lorca Basin (SE Spain) 65, 66 Cretaceous Bilina, North Bohemian Basin, Early Miocene 89-93 Late, see also Maastrichtian riparian forest 91 planktonic Foraminiferida, five latitudinal zones 33- swamp forest 90 40 upland-shore forest 91 cycadophytes, Maastrichtian 46 Bodensee 6 Bohemian Basin, Bilina, Miocene, Early 89-93 Boreal Guests (BGs) diatoms Mediterranean 113-17 abundances, Equatorial and Antarctic Pacific 71 Residual Boreal Guests (RBGs) 114 Lorca Basin (SE Spain) 65-76 see also Miocene, Late, pre-evaporitic diatoms Dice coefficient 208 calcareous nannofossils, - Dryas, Older and Younger Dryas Events, Italy 107 changes (Gaeta Bay, Sea) 96-100, Dryas I-III, Lake Balaton and Great Hungarian Plain 97-9 123-6 Cambrian, temperature history 2 Campania, Italy, climate and vegetation, present-day 152-5 Egerian stage, Transylvania, Miocene 55 216 INDEX

Eggenburgian stage, Transylvania, Miocene 56 primitive and modern Homo 195 Elephas falconeri faunal complex, Sicily 173 5, 176-7 polytypic phase, distributios 192 Elephas mnaidriensis faunal complex, Sicily 174, 175-9 Hungary Enspel, Oligocene lake, sediments 7-8, 11 climatic cycles see Miocene, Late, sedimentation environmental changes, vs climatic oscillations, Ter- (West Hungary) tiary plant assemblages 89-93 Late Glacial and Post-Glacial pollen records, Lake Equus-elephant event, Early Villafranchian time 1.68 Balaton and Great Hungarian Plain 121-32 European Palaeontological Congress (2rid) 1-2 vegetation types 123

Foraminifera, Pleistocene Holocene changes (Gaeta Italy, Quaternary stratigraphy 151 Bay, Tyrrhenian Sea) 97-9, 10(~1 Foraminiferida, distribution, Cretaceous 33-40 fossil lakes see lake sediments, lamination and primary Kimmeridgian time production bauxites, coals and evaporites 20 general circulation model (GCM) palaeoclimate simulations 18-24 Gaeta Bay, Tyrrhenian Sea, Pleistocene-Holocene mean temperature 19 changes 95-107 NPP and LAI, SDGVM solutions 22 Galerian mammal turnover pulse, arrival of Homo spp 161, 168 general circulation model (GCM) palaeoclimate simu- lake sediments, lamination and primary production lations, Mesozoic era 18 24 modern lake sediments 6-7 coupling with vegetation model 26 relationship to palaeoclimate in Carboniferous- , lake sediments, lamination and primary Permian transition 5-14 production 5-14 climatic models for Autunian age 12-13 Glacial see Late Glacial; Post-Glacial Lower Permian (Autunian) lakes 8 12 Global Atmospheric Modelling Program (UGAMP) Paleogene lake strata 7 8 18 Late Glacial global , rate 1 SE Austria 209 global terrestrial productivity, Mesozoic era 17-30 Sicily 180-1 CO2 effects see also Pleistocene implications for feedback between vegetation and Late Glacial and Post-Glacial pollen records, Lake climate 28-9 Balaton and Great Hungarian Plain 121 32 quantifying 25-8 Late Glacial data reconstruction (15-10 ka BP) 123 general circulation model (GCM) palaeoclimate 6 simulations for Mesozoic era 18-24 Allerod (II) 124-6 modelling productivity of terrestrial vegetation 24-5 B611ing + Dryas II (Ib, Ic) 123 SDGVM 25 Dryas I (Ia) 123 validating global predictions of vegetation function Dryas I1 (lc) 123-4 29 30 Dryas (III) 126 Globotruncana/Rotalipora lines, Foraminiferida 33-5 palynological data for reconstruction of Holocene Glyptostrobus (Tertiary flora) 89-90 palaeoclimate 126~31 Grazer Bergland see Austria, SE Atlantic (VI-VII) 128-9 gymnosperms, Maastrichtian 46 Boreal (V) 128 (IV) 126-8 (IX-X) 129 31 Holocene see Pleistocene-Holocene (VIII) 129 Holzmaar, Lake, sediments 8 latitudinal zones, five, Cretaceous planktonic Forami- hominid evolution and climate 185-96 niferida 33-40 Austrian cave deposits 209-10 leaf area index (LAI) chromosomal data 189-93 CO_, influence on predictions 23 dichotomic chromosomal model 192 SDGVM solutions 22, 25-30 trichotomic chromosomal model 189-92 Lithothamnion bornettii 118 climatic patterns through time 187-9 Lorca Basin (SE Spain) externalistic approach 186 diatoms 65-76, 67 Homo, arrival, Galerian mammal turnover pulse abundance changes 71, 72 161, 168 environmental changes 72-3 internalistic approach 193-5 geological setting 66-7 australopithicines, gorillas and chimpanzees 193, 194 common ancestor 191, 193 maar lakes 6 ontogenetic mechanism 186-7 Maastrichtian () climate, Northern present gorillas and chimpanzees 194, 195 Hemisphere 43-52 INDEX 217

climate leaf analysis multivariate program cyclicity of sediments and sedimentary environment (CLAMP) paleoclimatic inferences 46-8 84-6 floral assemblages 45, 46 methods 79-82 floral and dinosaur remains 44 calculation of 81 latitudinal temperature gradient 51-2 calculation of temperature 80 1 precipitation 50-1 magnetostratigraphical correlation 81-2 temperature 48 50 sedimentation 82-3 Macoma obliqua 115 Miocene, Transylvanian Depression, fossil record 55- mammalian diversity and turnover patterns, standing 62 richness 166 Early Miocene 55-8 mammals, large mammal turnover pulses, Mediterra- Late Miocene 62 nean region 161 8 Middle Miocene 58-62 Mediterranean region Miocene-Holocene, large mammal turnover pulses Boreal Guests (BGs) 113-17 161-8 large mammal turnover pulses 161-8 Miocene- transition 161 climate faunal change correlation 167 Modular Ocean Model Array (MOMA) 142 Equus-elephant event, Early Viltafranchian time Monte Pellegrino faunal complex, Sicily 173, 176-7 168 Moravian stage, Transylvania, Miocene 60 Galerian pulse, arrival of Homo spp 161, 168 mammalian diversity and turnover patterns 16(~7 Messinian Crisis 65 6, 161, 167, 168 Nemegt Formation 43 methodological approaches 162-6 Neogene glacial trends see Mediterranean region, large equal time intervals (ETI) 166 mammal turnover pulses unequal time intervals (UTI) 162-6 Neptunea contraria 115 Mediterranean Sea net primary productivity (NPP) isotopic records, locations 142 CO2 influence on predictions 23 Miocene depots, biostratigraphy 65 SDGVM solutions 22, 25-30 present-day 135 7 general circulation model (GCM) 139, 142-3 Mediterranean Intermediate 136 Odernheim, Lake 9 Western Mediterranean Deep Water 137 Oligocene, Late, Central Europe, Tertiary plant Mediterranean Sea, sapropel formation 135-49 assemblages 92 3 environment during sapropel deposition 137-40 ostracods, Pleistocene-Holocene changes (Gaeta Bay, general circulation model (GCM) Tyrrhenian Sea) 101 3 circulation reversal hypothesis 139-40 Ottnangian stage, Transylvania, Miocene 57 comparison with proxy data-based conceptual models 144-5 Early Holocene experiments, model results 144 Pacific surface fields defined 140-2 Antarctic, diatom abundances 71 sea surface salinity 141-2 Equatorial, diatom abundances 71 sea surface temperature 140-1 Palaeogene lake strata, Carboniferous-Permian transi- Meisenheim, Lake 10, 11 tion, lake sediments, lamination and primary Mesozoic production 7-8 global terrestrial productivity 17-30 Palaeozoic, temperature history 2 temperature history 2 Pannonian Basin, Miocene, West Hungary 79 87 Messel oil shale, Germany 7 Pannonian stage, Transylvania, Miocene 62 Messinian Salinity Crisis, Mediterranean Sea 65-6, Paratethys, Central, chronostratigraphy and biochro- 161, 167, 168 nology 57 Miocene, Early, flora, Bilina, climatic oscillations vs Permian environmental changes 90-2 Lower (Autunian) lakes, sediment lamination and Miocene, Late, pre-evaporitic diatoms, Lorca Basin primary production 8-12 (SE Spain) 65-76 palaeogeography, 13 diatom biostratigraphy 72 temperature history 2 environmental evolution 74-5 phytoplankton succession geological setting 66-7 Lake Constance 7 material/methods/results 67-72 Transylvania 55-62 abundance changes within diatom assemblages see also diatoms 71-2 Pianetti-Castello faunal complex, Sicily 174, 175, 179 abundance of siliceous microfossil groups 68-9 Picentini Massif, Italy 151 biostratigraphic results 69 71 Pleistocene shelf assemblages, SE Sicily, BGs, cooling palaeoecology and productivity 72-4 evidence 113-19 Miocene, Late, sedimentation (West Hungary) 79 87 materials and methods 114-15 changes of temperature and precipitation 83-4 results 115-18 correlation of sedimentation and climate cycles 86-7 section description 113-14 218 INDEX

Pleistocene-Holocene, Gaeta Bay, Tyrrhenian Sea 95- sapropels 107 defined 137 calcareous nannofossils 96-100 formation see Mediterranean Sea, sapropel forma- materials and methods 95-6 tion ostracods 101-3 Sarmatian stage, Transylvania, Miocene 61 palynology, pollen assemblages 103-6 sea-levels, rate of change 1 planktonic foraminiferans 97-9, 10(~1 Serrata Formation, Varied Member, Lorca Basin (SE Pleistocene-Holocene vertebrate dispersal events, Spain) Sicily 171 81,174 biostratigraphy 69, 71 dispersal routes and comparison with Italian penin- diatoms 65-76, 67, 70 sula assemblages 175-6 abundance changes 71, 72 ecological and environmental-climatologial charac- biogenic cycles 74 teristics of mammal assemblages 176-80 Serravalian stage, Transylvania, Miocene 61 Castello faunal complex 179 Sheffield see University of Sheffield Dynamic Global Elephas mnaidriensis faunal complex 177-9 Vegetation Model (SDGVM) Holocene 180 Sicily Monte Pellegrino and Elephas falconeri faunal Pleistocene shelf assemblages, BGs, cooling evidence complex 176-7 113 19 Pianetti-Castello complex 179 Pleistocene-Holocene vertebrate dispersal events taphonomic data 176 171-81,174 highstand coastline relationships 173-5 Uzzo cave 180 Elephas falconeri faunal complex 173-5 Spain, Lorca Basin, diatoms 65 76 Elephas mnaidriensis faunal complex 175 Spirorbis spp., BGs 116-17 Monte Pellegrino faunal complex 173 Spisula elliptica 115 Pianetti-Castello complex 175 Stephanian Autunian boundary Pleniglacial Alpine ice-shield and deglaciation, Austria 209 pollen analysis, Acerno Basin, S Italy, palaeo-lacus- temperature trine succession (Middle Pleistocene) 151-8 calculation methods, Miocene, Late, West Hungary climate and vegetation, present-day 152-5 80 data display 155-6 global history 2 description and interpretation of results 156-8 Maastrichtian diagram zonation 156-8 CLAMP predictions 48-50 Pinus role 158 latitudinal gradient 511-2 geography and geology 151-2 terrestrial productivity see global terrestrial productiv- materials and methods 155 ity pollen analysis, Austrian cave deposits 208-9 Tertiary plant assemblages, climatic oscillations vs pollen analysis, Gaeta Bay, Tyrrhenian Sea, Pleisto- environmental changes 8943 cene-Holocene changes 102-6 Tetraclinis (Tertiary flora) 89 precipitation Tortonian sediments, Serrata Formation 66 calculation methods, Miocene, Late, West Hungary Transylvanian Depression, Miocene, fossil record 55- 81 62 Maastrichtian, CLAMP predictions 50-1 Tyrrhenian Sea, Pleistocene-Holocene changes 95-107 Proterozoic, temperature history 2 Pseudamussium septemradiatum 115 UK universities Global Atmospheric Modelling Program (UGAMP) Quaternary see Pleistocene-Holocene 18 University of Sheffield Dynamic Global Vegetation Model (SDGVM) 18, 24-5 Recent lake sediments, lamination and primary NPP and LAI 22 production 6-7 shema 21 rhinoceros, Miocene, Transylvania 58 Uzzo cave, Sicily 180 Romania see Transylvanian Depression RuBisCo, 13CO2 values 29 Ruscinian mammal turnover pulse 161 Valto di Diano Basin 151, 152 Ruthweiter, Lake 9 vapour pressure deficits (VPDs) 30 Variscan orogenic belt-14 Saar-Nahe Basin, Germany 8-9, -14 cave deposits, SE Austria 199-211 Santonian, Late, Cretaceous planktonic Foraminifer- large mammal turnover pulses, Mediterranean ida 38-40, 39 region 161 8 Pleistocene-H olocene dispersal events, Sicily 171-81