Turtle Extinctions Working Group 2015 (Fossil Checklist 000E.V1)

Total Page:16

File Type:pdf, Size:1020Kb

Turtle Extinctions Working Group 2015 (Fossil Checklist 000E.V1) Conservation Biology of Freshwater Turtles and Tortoises: ExtinctA Compilation Pleistocene Project of and the IUCN/SSCHolocene Tortoise Turtles and of Freshwater the World Turtle Checklist Specialist – Group2015 000e.1 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, J.B. Iverson, and R.A. Mittermeier, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.000e.fossil.checklist.v1.2015 © 2015 by Chelonian Research Foundation • Published 16 April 2015 Turtles and Tortoises of the World During the Rise and Global Spread of Humanity: First Checklist and Review of Extinct Pleistocene and Holocene Chelonians TURTLE EXTINCTIONS WORKING GROUP* *Authorship of this article is by this joint Working Group of the IUCN SSC Tortoise and Freshwater Turtle Specialist Group and specialists in Chelonian Paleontology, which for the purposes of this document consisted of the following contributors: ANDERS G.J. RHODIN1, SCOTT THOMSON2, GEORGIOS L. GEORGALIS3,4, HANS-VOLKER KARL5, IGOR G. DANILOV6, AKIO TAKAHASHI7, MARCELO S. DE LA FUENTE8, JASON R. BOURQUE9, MASSIMO DELFINO4,10, ROGER BOUR11, JOHN B. IVERSON12, H. BRADLEY SHAFFER13, AND PETER PAUL vaN DIJK14 1Chairman Emeritus, IUCN SSC Tortoise and Freshwater Turtle Specialist Group, Chelonian Research Foundation, 168 Goodrich St., Lunenburg, Massachusetts 01462 USA [[email protected]]; 2Museu de Zoologia da Universidade de São Paulo, Divisão de Vertebrados (Herpetologia), Ipiranga, 04263-000 São Paulo, Brazil [[email protected]]; 3Department of Geosciences, University of Fribourg/Freiburg, Chemin du Musée 6, 1700 Fribourg, Switzerland [[email protected]]; 4Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso 35, 10125 Torino, Italy [[email protected]]; 5Department of Prehistoric and Early Historic Archaeology, Friedrich-Schiller-University Jena, Löbdergraben 24a, 07743 Jena, Germany [[email protected]]; 6Department of Herpetology, Zoological Institute of the Russian Academy of Sciences, Universitetskaya Emb. 1, St. Petersburg, 199034, Russia [[email protected]]; 7Department of Zoology, Faculty of Science, Okayama University of Science, Ridaicho 1-1, Kitaku, Okayama 700-0005, Japan [[email protected]]; 8Departamento de Paleontología, Museo de Historia Natural de San Rafael, Parque Mariano Moreno s/n, (5600) San Rafael, Provincia de Mendoza, Argentina [[email protected]]; 9Division of Vertebrate Paleontology, Florida Museum of Natural History, Dickinson Hall, University of Florida, 1659 Museum Rd., Gainesville, Florida 32611 USA [[email protected]]; 10Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICP, Campus de la UAB s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain; 11Laboratoire des Reptiles et Amphibiens, Muséum National d’Histoire Naturelle, Paris, France [[email protected]]; 12Department of Biology, Earlham College, Richmond, Indiana 47374 USA [[email protected]]; 13Department of Ecology and Evolutionary Biology and Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095 USA [[email protected]]; 14Co-Chair, IUCN SSC Tortoise and Freshwater Turtle Specialist Group, Conservation International, 2011 Crystal Drive, Suite 500, Arlington, Virginia 22202 USA [[email protected]] ABSTRACT. – We provide a first checklist and review of all recognized taxa of the world’s extinct Pleistocene and Holocene (Quaternary) turtles and tortoises that existed during the early rise and global expansion of humanity, and most likely went extinct through a combination of earlier hominin (e.g., Homo erectus, H. neanderthalensis) and later human (H. sapiens) exploitation, as well as being affected by concurrent global or regional climatic and habitat changes. This check- list complements the broader listing of all modern and extant turtles and tortoises by the Turtle Taxonomy Working Group (2014). We provide a comprehensive listing of taxonomy, names, synonymies, and stratigraphic distribution of all chelonian taxa that have gone extinct from ap- proximately the boundary between the Late Pliocene and Early Pleistocene, ca. 2.6 million years ago, up through 1500 AD, at the beginning of modern times. We also provide details on modern turtle and tortoise taxa that have gone extinct since 1500 AD. This checklist currently includes 100 fossil turtle and tortoise taxa, including 84 named and apparently distinct species, and 16 ad- ditional taxa that appear to represent additional valid species, but are only identified to genus or family. Modern extinct turtles and tortoises include 8 species, 3 subspecies, and 1 unnamed taxon, for 12 taxa. Of the extinct fossil taxa, terrestrial tortoises of the family Testudinidae (including many large-bodied island forms) are the most numerous, with 60 taxa. When the numbers for fossil tortoises are combined with the 61 modern (living and extinct) species of tortoises, of the 121 tortoise species that have existed at some point since the beginning of the Pleistocene, 69 (57.0%) have gone extinct. This likely reflects the high vulnerability of these large and slow terrestrial (often insular) species primarily to human exploitation. The other large-bodied terrestrial turtles, the 000e.2 Conservation Biology of Freshwater Turtles and Tortoises • Chelonian Research Monographs, No. 5 giant horned turtles of the family Meiolaniidae, with 7 taxa (also often insular), all went extinct by the Late Holocene while also exploited by humans. The total global diversity of turtles and tortoises that has existed during the history of hominin utilization of chelonians, and that are currently recognized as distinct and included on our two checklists, consists of 336 modern spe- cies and 100 extinct Pleistocene and Holocene taxa, for a total of 436 chelonian species. Of these, 109 species (25.0%) and 112 total taxa are estimated to have gone extinct since the beginning of the Pleistocene. The chelonian diversity and its patterns of extinctions during the Quaternary inform our understanding of the impacts of the history of human exploitation of turtles and the effects of climate change, and their relevance to current and future patterns. KEY WORDS. – Reptilia, Testudines, turtle, tortoise, chelonian, taxonomy, distribution, extinction, fossils, paleontology, archaeology, humanity, hominin, exploitation, chelonophagy, megafauna, island refugia, climate change, Pliocene, Pleistocene, Holocene, Anthropocene, Quaternary As an addition to the annual checklist of extant and A. grandidieri, that went extinct in about 1200 modern turtle taxa (Turtle Taxonomy Working Group AD and 884 AD, respectively, not long after humans [TTWG] 2014), we here present an annotated checklist reached Madagascar ca. 2000 years ago (Pedrono 2008). of extinct Pleistocene and Holocene turtle and tortoise Additionally, some large insular species of Chelonoidis species that existed in relatively recent times, prior to from the Bahamas region of the Caribbean West Indies 1500 AD, during the history of the rise and global spread were eaten into extinction by pre-Columbian natives as of humanity and concurrent global climatic and habitat late as ca. 1170–1400 AD (Carlson 1999; Franz et al. changes. These species, recorded from archaeological 2001; Hastings et al. 2014). and paleontological sites from the Pleistocene and Holo- Among the Meiolaniidae, we have the remarkable cene epochs (Quaternary period), approximately the last giant terrestrial horned turtle, Meiolania damelipi from 2.6 million years, are currently considered to be valid, Vanuatu in the southern Pacific Ocean, also eaten into and not synonymous with modern (post-1500 AD) taxa. extinction by humans by about 810 BC (White et al. These fossil species, including some unnamed taxa 2010), as well as an unnamed giant horned turtle from of indeterminate or undescribed generic or specific al- nearby New Caledonia, that went extinct as recently location, represent the majority of the chelonian diver- as about 531 AD (Gaffney et al. 1984). This unnamed sity that has gone extinct relatively recently. Many of and vanished species was apparently the last surviving these taxa were likely extirpated by anthropogenic ex- member of this most impressively distinct and ancient ploitation over the relatively long prehistory of earlier family of giant horned terrestrial turtles. Several recent hominin (e.g., Homo erectus, H. neanderthalensis, and phylogenies suggest that the Meiolaniidae branched others) and later human (H. sapiens) exploitation of tur- off as a separate clade of turtles before the Cryptodira– tles and tortoises. In addition, many were also likely af- Pleurodira split (e.g., Joyce 2007; Sterli and de la Fuente fected by global and regional climate change and cycles 2013), but others (e.g., Gaffney 1996; Gaffney et al. of warming and cooling and habitat alterations, such as 2007; Gaffney and Jenkins 2010) place them among the those associated with glacial and interglacial periods Cryptodira. In either case, their recent extinction was and sea level changes and aridification, or stochastic indeed major, not just for their disparate and bizarre events such as volcanism. As such, these recently ex- morphology, but also because had they persisted, tinct fossil species and taxa are eminently relevant to they would have been one of the most evolutionarily our understanding of distribution and extinction patterns and phylogenetically distinct lineages
Recommended publications
  • ABSTRACTS 44Th Annual Meeting and Symposium Tucson, Arizona February 21–23, 2019
    ABSTRACTS 44th Annual Meeting and Symposium Tucson, Arizona February 21–23, 2019 FORTY-FOURTH ANNUAL MEETING AND SYMPOSIUM THE DESERT TORTOISE COUNCIL TUCSON, AZ February 21–23, 2019 ABSTRACTS OF PAPERS AND POSTERS (Abstracts arranged alphabetically by last name of first author) *Speaker, if not the first author listed Long-term Data Collection and Trends of a 130-Acre High Desert Riparian and Upland Preserve in Northwestern Mohave County, Arizona Julie Alpert and Robert Faught Willow Creek Environmental Consulting, LLC, 15857 E. Silver Springs Road, Kingman, Arizona 86401, USA.Phone: 928-692-6501. Email: [email protected] The Willow Creek Riparian Preserve (Preserve) is a privately owned 130-acre site located 30 miles east of Kingman, Arizona. The Preserve was formally established in 2007 with the purchase of 10-acres and an agreement with the eastern adjoining private landowner to add an additional 120-acres. The Preserve location was unfenced and wholly accessible by livestock, off-road vehicle use, and hunting. In October of 2008 the Preserve was fenced with volunteer efforts from the local Rotary Club and Boy Scout Troop 66. Additional financial assistance came through a large discount in the cost of fencing materials from Kingman Ace Hardware. A total of 0.5-linear mile of new wildlife friendly fencing (barbless top wire and 18-inches above-ground bottom wire) was installed along the south and west sides and connected to existing Arizona State Lands cattle allotment fencing. Baseline and on-going studies and data collection have occurred since 2004. These have included small mammal live trapping; chiropteran surveys with the use of Anabat; migratory, breeding, and winter avian surveys; amphibian and reptile surveys; deployment of game cameras; animal track and sign identification and movement patterns; vegetation and plant surveys; and a wetland delineation.
    [Show full text]
  • Biostratigraphy and Paleoecology of Continental Tertiary Vertebrate Faunas in the Lower Rhine Embayment (NW-Germany)
    Netherlands Journal of Geosciences / Geologie en Mijnbouw 81 (2): 177-183 (2002) Biostratigraphy and paleoecology of continental Tertiary vertebrate faunas in the Lower Rhine Embayment (NW-Germany) Th. Mors Naturhistoriska Riksmuseet/Swedish Museum of Natural History, Department of Palaeozoology, P.O. Box 50007, SE-104 05 Stockholm, Sweden; e-mail: [email protected] Manuscript received: October 2000; accepted: January 2002 ^ Abstract This paper discusses the faunal content, the mammal biostratigraphy, and the environmental ecology of three important con­ tinental Tertiary vertebrate faunas from the Lower Rhine Embayment. The sites investigated are Rott (MP 30, Late Oligocene), Hambach 6C (MN 5, Middle Miocene), Frechen and Hambach 11 (both MN 16, Late Pliocene). Comparative analysis of the entire faunas shows the assemblages to exhibit many conformities in their general composition, presumably re­ sulting from their preference for wet lowlands. It appears that very similar environmental conditions for vertebrates reoc- curred during at least 20 Ma although the sites are located in a tectonically active region with high subsidence rates. Differ­ ences in the faunal composition are partly due to local differences in the depositional environment of the sites: lake deposits at the margin of the embayment (Rott), coal swamp and estuarine conditions in the centre of the embayment (Hambach 6C), and flood plain environments with small rivulets (Frechen and Hambach 1 l).The composition of the faunal assemblages (di­ versity and taxonomy) also documents faunal turnovers with extinctions and immigrations (Oligocene/Miocene and post- Middle Miocene), as a result of changing climate conditions. Additional vertebrate faunal data were retrieved from two new assemblages collected from younger strata at the Hambach mine (Hambach 11C and 14).
    [Show full text]
  • Body Condition Assessment – As a Welfare and Management Assessment Tool for Radiated Tortoises (Astrochelys Radiata)
    Body condition assessment – as a welfare and management assessment tool for radiated tortoises (Astrochelys radiata) Hullbedömning - som ett verktyg för utvärdering av välfärd och skötsel av strålsköldpadda (Astrochelys radiata) Linn Lagerström Independent project • 15 hp Swedish University of Agricultural Sciences, SLU Department of Animal Environment and Health Programme/Education Uppsala 2020 2 Body condition assessment – as a welfare and management tool for radiated tortoises (Astrochelys radiata) Hullbedömning - som ett verktyg för utvärdering av välfärd och skötsel av strålsköldpadda (Astrochelys radiata) Linn Lagerström Supervisor: Lisa Lundin, Swedish University of Agricultural Sciences, Department of Animal Environment and Health Examiner: Maria Andersson, Swedish University of Agricultural Sciences, Department of Animal Environment and Health Credits: 15 hp Level: First cycle, G2E Course title: Independent project Course code: EX0894 Programme/education: Course coordinating dept: Department of Aquatic Sciences and Assessment Place of publication: Uppsala Year of publication: 2020 Cover picture: Linn Lagerström Keywords: Tortoise, turtle, radiated tortoise, Astrochelys radiata, Geochelone radiata, body condition indices, body condition score, morphometrics Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Animal Environment and Health 3 Publishing and archiving Approved students’ theses at SLU are published electronically. As a student, you have the copyright to your own work and need to approve the electronic publishing. If you check the box for YES, the full text (pdf file) and metadata will be visible and searchable online. If you check the box for NO, only the metadata and the abstract will be visiable and searchable online. Nevertheless, when the document is uploaded it will still be archived as a digital file.
    [Show full text]
  • Phylogenetic Relationships of the Asian Box Turtles of the Genus Cuora Sensu Lato (Reptilia: Bataguridae) Inferred from Mitochondrial DNA Sequences
    ZOOLOGICAL SCIENCE 19: 1305–1312 (2002) 2002 Zoological Society of Japan Phylogenetic Relationships of the Asian Box Turtles of the Genus Cuora sensu lato (Reptilia: Bataguridae) Inferred from Mitochondrial DNA Sequences Masanao Honda1*†, Yuichirou Yasukawa1, Ren Hirayama2 and Hidetoshi Ota1 1Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan 2Faculty of Information, Teikyo Heisei University, Ichihara, Chiba 290-0193, Japan ABSTRACT—Phylogenetic relationships of the genus Cuora sensu lato (Cuora sensu stricto and Cisto- clemmys) and other testudinoid genera were inferred from variations in 882 base positions of mitochondrial 12S and 16S rRNA genes. Results yielded a robust support to the monophyly of a group (Cuora group) consisting of Cuora sensu lato and the monotypic Pyxidea. Within the Cuora group, the continental Cuora (sensu stricto) and the two subspecies of Ci. flavomarginata constituted two well-supported monophyletic groups. Distinctly small interspecific genetic distances in the former groups suggested that in the continent speciations in Cuora took place much later than the primary divergences in the Cuora group, or speciations in other related genera, such as Mauremys. Our analyses failed to provide a substantial support to the monophyly of any other combinations of taxa within the Cuora group, including Cuora in broad and strict senses, and Cistoclemmys as consisting of Ci. galbinifrons and Ci. flavomarginata. Besides these, our results also suggested the non-monophyly for the Batagurinae and the Geoemydinae, and sister relation- ships of the Bataguridae with Testudinidae rather than with the Emydidae. Key words: Bataguridae, Geoemydinae, Cuora, Cistoclemmys, Pyxidea Cu. amboinensis), Cyclemys Bell, 1834 (type species: Cy.
    [Show full text]
  • Chelonian Perivitelline Membrane-Bound Sperm Detection: a New Breeding Management Tool
    Zoo Biology 35: 95–103 (2016) RESEARCH ARTICLE Chelonian Perivitelline Membrane-Bound Sperm Detection: A New Breeding Management Tool Kaitlin Croyle,1,2 Paul Gibbons,3 Christine Light,3 Eric Goode,3 Barbara Durrant,1 and Thomas Jensen1* 1San Diego Zoo Institute for Conservation Research, Escondido, California 2Department of Biological Sciences, California State University San Marcos, San Marcos, California 3Turtle Conservancy, New York, New York Perivitelline membrane (PVM)-bound sperm detection has recently been incorporated into avian breeding programs to assess egg fertility, confirm successful copulation, and to evaluate male reproductive status and pair compatibility. Due to the similarities between avian and chelonian egg structure and development, and because fertility determination in chelonian eggs lacking embryonic growth is equally challenging, PVM-bound sperm detection may also be a promising tool for the reproductive management of turtles and tortoises. This study is the first to successfully demonstrate the use of PVM-bound sperm detection in chelonian eggs. Recovered membranes were stained with Hoechst 33342 and examined for sperm presence using fluorescence microscopy. Sperm were positively identified for up to 206 days post-oviposition, following storage, diapause, and/or incubation, in 52 opportunistically collected eggs representing 12 species. However, advanced microbial infection frequently hindered the ability to detect membrane-bound sperm. Fertile Centrochelys sulcata, Manouria emys,andStigmochelys pardalis eggs were used to evaluate the impact of incubation and storage on the ability to detect sperm. Storage at À20°C or in formalin were found to be the best methods for egg preservation prior to sperm detection. Additionally, sperm-derived mtDNA was isolated and PCR amplified from Astrochelys radiata, C.
    [Show full text]
  • Stegodon Florensis Insularis
    Trends of body size evolution in the fossil record of insular Southeast Asia Alexandra van der Geer, George Lyras, Hara Drinia SAGE 2013 University of Athens 11.03.2013 Aim of our project Isolario: morphological changes in insular endemics the impact of humans on endemic island species (and vice versa) Study especially episodes IV to VI Applied to South East Asia First of all, which fossil, pre-Holocene faunas are known from this area? Note: fossil faunas are often incomplete (fossilization is a rare process), and taxonomy of fossil species is necessarily less diverse because morphological distinctions based on coat color and pattern, tail tuft, vocalizations, genetic composition etc do not play a role © Hoe dieren op eilanden evolueren; Veen Magazines, 2009 Java Unbalanced fauna (typical island fauna Java, Early Pleistocene with hippos, deer and elephants), ‘swampy’ (pollen studies) Faunal level: Satir (Bumiayu area) Only endemics (on the species level) Fossils: Mastodon (Sinomastodon bumiajuensis) Dwarf hippo (small Hexaprotodon sivajavanicus, aka H. simplex) Deer (indet) Giant tortoise (Colossochelys) ? Tree-mouse? (Chiropodomys) Sinomastodon bumiajuensis ?pygmy stegodont? (isolated, Hexaprotodon sivajavanicus (= H simplex) scattered findings: Sambungmacan, Cirebon, Carian, Jetis), Stegodon hypsilophus of Hooijer 1954 Maybe also Stegoloxodon indonesicus from Ci Panggloseran (Bumiayu area) Progressively more balanced, marginally Java, Middle Pleistocene impovered (‘filtered’) faunas (mainland- like), Homo erectus – Stegodon faunas, Faunal levels: Ci Saat - Trinil HK– Kedung Brubus “dry, open woodland” – Ngandong Endemics on (sub)species level, strongly related to ‘Siwaliks’ fauna of India Fossils: Homo erectus, large and small herbivores (Bubalus, Bibos, Axis, Muntiacus, Tapirus, Duboisia santeng Duboisia, Elephas, Stegodon, Rhinoceros 2x), large and small carnivores (Pachycrocuta, Axis lydekkeri Panthera 2x, Mececyon, Lutrogale 2x), pigs (Sus 2x), Macaca, rodents (Hystrix Elephas hysudrindicus brachyura, Maxomys, five (!) native Rattus species), birds (e.g.
    [Show full text]
  • Manual for the Differentiation of Captive-Produced and Wild-Caught Turtles and Tortoises (Testudines)
    Image: Peter Paul van Dijk Image:Henrik Bringsøe Image: Henrik Bringsøe Image: Andrei Daniel Mihalca Image: Beate Pfau MANUAL F O R T H E DIFFERENTIATION OF CAPTIVE-PRODUCED AND WILD-CAUGHT TURTLES AND TORTOISES (TESTUDINES) PREPARED BY SPECIES360 UNDER CONTRACT FOR THE CITES SECRETARIAT Manual for the differentiation of captive-produced and wild-caught turtles and tortoises (Testudines) This document was prepared by Species360 under contract for the CITES Secretariat. Principal Investigators: Prof. Dalia A. Conde, Ph.D. and Johanna Staerk, Ph.D., Species360 Conservation Science Alliance, https://www.species360.orG Authors: Johanna Staerk1,2, A. Rita da Silva1,2, Lionel Jouvet 1,2, Peter Paul van Dijk3,4,5, Beate Pfau5, Ioanna Alexiadou1,2 and Dalia A. Conde 1,2 Affiliations: 1 Species360 Conservation Science Alliance, www.species360.orG,2 Center on Population Dynamics (CPop), Department of Biology, University of Southern Denmark, Denmark, 3 The Turtle Conservancy, www.turtleconservancy.orG , 4 Global Wildlife Conservation, globalwildlife.orG , 5 IUCN SSC Tortoise & Freshwater Turtle Specialist Group, www.iucn-tftsG.org. 6 Deutsche Gesellschaft für HerpetoloGie und Terrarienkunde (DGHT) Images (title page): First row, left: Mixed species shipment (imaGe taken by Peter Paul van Dijk) First row, riGht: Wild Testudo marginata from Greece with damaGe of the plastron (imaGe taken by Henrik BrinGsøe) Second row, left: Wild Testudo marginata from Greece with minor damaGe of the carapace (imaGe taken by Henrik BrinGsøe) Second row, middle: Ticks on tortoise shell (Amblyomma sp. in Geochelone pardalis) (imaGe taken by Andrei Daniel Mihalca) Second row, riGht: Testudo graeca with doG bite marks (imaGe taken by Beate Pfau) Acknowledgements: The development of this manual would not have been possible without the help, support and guidance of many people.
    [Show full text]
  • Vorläufige Mitteilungen Zur Bearbeitung Der Fossilen Schildkröten Der Fundstelle Höwenegg
    ©Staatl. Mus. f. Naturkde Karlsruhe & Naturwiss. Ver. Karlsruhe e.V.; download unter www.zobodat.at carolinea, 44:47-50, 2 Abb.; Karlsruhe, 29. 12. 1986 47 H a n s H e r m a n n S c h l e ic h Vorläufige Mitteilungen zur Bearbeitung der fossilen Schildkröten der Fundstelle Höwenegg Kurzfassung arbeiteten Sumpfschildkröte ( Em ydidae ind.) liegen lei­ Die Fundstelle Höwenegg (Hegau, Südwestdeutschland) liefer­ der nur fünf fragmentäre Peripheralia vor. te eine überraschend artenreiche Schildkrötenfauna. Ihre Bear­ Bezüglich des stratigraphisch jungen Alters der Fund­ beitung wird unsere Kenntnisse der stratigraphischen Reich­ stelle verwundert das Faunenspektrum, bzw. das ge­ weite und der Ökologie einzelner Arten bedeutend erweitern. meinsame Vorkommen der erwähnten Schildkrötenta­ Abstract xa. Dabei konnten bislang folgende Formen vorläufig The Höwenegg locality (Hegau, SW-Germany) yielded a turtle bestimmt werden: ?Testudo, Cheirogaster, Chelydrop­ fauna surprisingly rich in species. Scrutinous research work sis, Trionyx und Em ydidae indet. Bezüglich der Gattun­ which is still to be done will result in a substantial contribution to gen ?Testudo, Trionyx und Chelydropsis erscheint de­ the knowledge of the ecology and stratigraphic range of those ren Vorkommen mit diesem, bislang stratigraphisch species. jüngsten Nachweis für Süddeutschland, noch nahelie­ gend, sind doch alle drei Gattungen zusammen noch bis Autor MN 8 nachweisbar (s. Schleich , 1985). Überraschend Dr. H. H. Schleich , Institut für Paläontologie und historische Geologie
    [Show full text]
  • Catalogue Palaeontology Vertebrates (Updated July 2020)
    Hermann L. Strack Livres Anciens - Antiquarian Bookdealer - Antiquariaat Histoire Naturelle - Sciences - Médecine - Voyages Sciences - Natural History - Medicine - Travel Wetenschappen - Natuurlijke Historie - Medisch - Reizen Porzh Hervé - 22780 Loguivy Plougras - Bretagne - France Tel.: +33-(0)679439230 - email: [email protected] site: www.strackbooks.nl Dear friends and customers, I am pleased to present my new catalogue. Most of my book stock contains many rare and seldom offered items. I hope you will find something of interest in this catalogue, otherwise I am in the position to search any book you find difficult to obtain. Please send me your want list. I am always interested in buying books, journals or even whole libraries on all fields of science (zoology, botany, geology, medicine, archaeology, physics etc.). Please offer me your duplicates. Terms of sale and delivery: We accept orders by mail, telephone or e-mail. All items are offered subject to prior sale. Please do not forget to mention the unique item number when ordering books. Prices are in Euro. Postage, handling and bank costs are charged extra. Books are sent by surface mail (unless we are instructed otherwise) upon receipt of payment. Confirmed orders are reserved for 30 days. If payment is not received within that period, we are in liberty to sell those items to other customers. Return policy: Books may be returned within 14 days, provided we are notified in advance and that the books are well packed and still in good condition. Catalogue Palaeontology Vertebrates (Updated July 2020) Archaeology AE11189 ROSSI, M.S. DE, 1867. € 80,00 Rapporto sugli studi e sulle scoperte paleoetnologiche nel bacino della campagna romana del Cav.
    [Show full text]
  • The Conservation Biology of Tortoises
    The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1.
    [Show full text]
  • The Use of Extant Non-Indigenous Tortoises As a Restoration Tool to Replace Extinct Ecosystem Engineers
    OPINION ARTICLE The Use of Extant Non-Indigenous Tortoises as a Restoration Tool to Replace Extinct Ecosystem Engineers Christine J. Griffiths,1,2,3,4 Carl G. Jones,3,5 Dennis M. Hansen,6 Manikchand Puttoo,7 Rabindra V. Tatayah,3 Christine B. Muller,¨ 2,∗ andStephenHarris1 Abstract prevent the extinction and further degradation of Round We argue that the introduction of non-native extant tor- Island’s threatened flora and fauna. In the long term, the toises as ecological replacements for extinct giant tortoises introduction of tortoises to Round Island will lead to valu- is a realistic restoration management scheme, which is able management and restoration insights for subsequent easy to implement. We discuss how the recent extinctions larger-scale mainland restoration projects. This case study of endemic giant Cylindraspis tortoises on the Mascarene further highlights the feasibility, versatility and low-risk Islands have left a legacy of ecosystem dysfunction threat- nature of using tortoises in restoration programs, with par- ening the remnants of native biota, focusing on the island ticular reference to their introduction to island ecosystems. of Mauritius because this is where most has been inferred Overall, the use of extant tortoises as replacements for about plant–tortoise interactions. There is a pressing need extinct ones is a good example of how conservation and to restore and preserve several Mauritian habitats and restoration biology concepts applied at a smaller scale can plant communities that suffer from ecosystem dysfunction. be microcosms for more grandiose schemes and addresses We discuss ongoing restoration efforts on the Mauritian more immediate conservation priorities than large-scale offshore Round Island, which provide a case study high- ecosystem rewilding projects.
    [Show full text]
  • Can Unwanted Suburban Tortoises Rescue Native Hawaiian Plants?
    CAN UNWANTED SUBURBAN TORTOISES RESCUE NATIVE HAWAIIAN PLANTS? by David A. Burney, James O. Juvik, Lida Pigott Burney, and Tomas Diagne 104 THE TORTOISE ・ 2012 hrough a series of coincidences, surplus pet tortoises in Hawaii may end up offering a partial solution to the seemingly insurmountable challenge posed by invasive plants in the Makauwahi Cave Reserve Ton Kaua`i. This has come about through a serendipitous intersection of events in Africa, the Mascarene Islands, North America, and Hawaii. The remote Hawaiian Islands were beyond the reach of naturally dispersing island tortoises, but the niches were apparently still there. Giant flightless ducks and geese evolved on these islands with tortoise-like beaks and other adaptations as terrestrial “meso-herbivores.” Dating of these remarkable fossil remains shows that they went extinct soon after the arrival of Polynesians at the beginning of the last millennium leaving the niches for large native herbivores entirely empty. Other native birds, including important plant pollinators, and some plant species have also suffered extinction in recent centuries. This trend accelerated after European settlement ecosystem services and a complex mix of often with the introduction of many invasive alien plants conflicting stakeholder interests clearly requires and the establishment of feral ungulate populations new paradigms and new tools. such as sheep, goats, cattle, and European swine, as Lacking any native mammalian herbivores, the well as other insidious invasives such as deer, rats, majority of the over 1,000 native Hawaiian plant mongoose, feral house cats, and even mosquitoes, species on the islands have been widely regarded which transmit avian malaria to a poorly resistant in the literature as singularly lacking in defensive native avifauna.
    [Show full text]