Redalyc.BIOSYSTEMATIC STUDIES in the BRAZILIAN ENDEMIC

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.BIOSYSTEMATIC STUDIES in the BRAZILIAN ENDEMIC Lankesteriana International Journal on Orchidology ISSN: 1409-3871 [email protected] Universidad de Costa Rica Costa Rica FRANCO VEROLA, CHRISTIANO; SEMIR, JOÃO; ANTONELLI, ALEXANDRE; KOCH, INGRID BIOSYSTEMATIC STUDIES IN THE BRAZILIAN ENDEMIC GENUS HOFFMANNSEGGELLA H. G. JONES (ORCHIDACEAE:LAELIINAE): A MULTIPLE APPROACH APPLIED TO CONSERVATION Lankesteriana International Journal on Orchidology, vol. 7, núm. 1-2, marzo, 2007, pp. 419-422 Universidad de Costa Rica Cartago, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44339813085 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative LANKESTERIANA 7(1-2): 419-422. 2007. BIOSYSTEMATIC STUDIES IN THE BRAZILIAN ENDEMIC GENUS HOFFMANNSEGGELLA H. G. JONES (ORCHIDACEAE:LAELIINAE): A MULTIPLE APPROACH APPLIED TO CONSERVATION 1,5 2 3 CHRISTIANO FRANCO VEROLA , JOÃO SEMIR , ALEXANDRE ANTONELLI 4 & INGRID KOCH 1 Universidade Estadual de Campinas, Instituto de Biologia, Programa de Pós-graduação em Ecologia, Campinas, São Paulo, Caixa Postal 6109, CEP 13083-970, Brazil. 2 Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Botânica, Campinas, São Paulo, Caixa Postal 6109, CEP 13083-970, Brazil. 3 Göteborg University, Department of Plant and Environmental Sciences, Göteborg, P.O.Box 461 SE-405 30, Sweden. 4 Universidade Federal de São Carlos, Centro de Ciências Biológicas e da Saúde, Av. Darci Carvalho Dafferner, 200, Sorocaba, São Paulo, CEP 18043-970, Brazil. 5 Author for correspondence: [email protected] KEY WORDS: Biosystematics, Hoffmannseggella, Laeliinae, endemic species, Campos Rupestres Vegetation, Conservation Introduction oration and morphology, and the occurrence of natural In recent molecular studies, the orchid genus Laelia hybrids (Blumenschein 1960a, 1960b, Brieger 1960, Lindl. was segregated in two main groups: Laelia (a Barros 1990). This study aims at investigating the ecol- Mexican/Central American group), and Sophronitis ogy and evolution of Hoffmannseggella, in order to pro- Lindl. (a South American group) (van den Berg et al. vide the grounds for a more natural classification of the 2000, van den Berg & Chase 2000). Later, other studies genus, and increase the knowledge necessary for the argued the legitimacy of this classification, suggesting management and conservation of its species. the segregation of the South American group Material and methods (Sophronitis sensu van den Berg et al. 2000) in four genera: Hadrolaelia (Schltr.) Chiron & V.P. Castro, A multidisciplinary survey with emphasis on floral Hoffmannseggella H.G. Jones, Dungsia Chiron & biology, breeding systems, pollination ecology, phy- V.P.Castro, and Microlaelia (Schltr) Chiron & logeny, biogeography, and divergence times of 13 V.P.Castro (Chiron & Castro 2002). species of Hoffmannseggella is being conducted Hoffmannseggella is one of the most ornamental based on a varying number of populations. genus of subtribus Laeliinae and has been shown to be monophyletic (van den Berg et al. 2000). It comprises Results and discussion exclusively rupicolous species and has a scattered dis- The majority of Hoffmannseggella species in this tribution confined to the High Altitude Rocky study does not normally produce nectar or floral odors, Complexes (Brazilian Campos Rupestres and Campos but this can vary among populations with fewer than de Altitude) (Semir 1991, but see discussion in Benites 0.05% of the individuals in some populations with nec- 2003) of Minas Gerais, Rio de Janeiro, Espírito Santo, tar and/or floral odor production). Generally, each and Bahia states. Chiron & Castro (2002) recognized 32 flower lasts seven days on average and the anthesis is species in the genus, but the number has now increased sequential racemose with about 3-7 available flowers to 42 (Castro & Chiron 2003, Chiron & Castro 2005, at the same time. The species recorded so far are polli- Lacerda & Castro 2005, Miranda & Lacerda 2003, nated by small and inconstant Hymenoptera (belonging Mota et al. 2003, Campacci 2005, Miranda 2005, predominantly to families Apidae or Halichitidae), Verola & Semir in press). Species delimitation is prob- through deceit mechanisms. Bee pollination in lematic, due to a great polymorphism in floral col- Hoffmannseggella contradicts previous suggestions RD 420 3 IOCC PROCEEDINGS (Brieger 1960a, Dressler 1981) which attribute a viability than in cross-pollination experiments. This ornithophilous (in this case hummingbird) syndrome to corroborates the hybridization hypothesis proposed by these plants, but is in accordance with general trends in Blumenschein (1960a, 1960b) and Brieger (1960). Laeliinae, where about 60% of species are pollinated Hybridization between synchronopatric species, poly- by Hymenoptera (van der Pijl & Dodson 1966). The ploidy (Blumenschein 1960a, 1960b, Brieger 1960, pollination by small bees in Hoffmannseggella can be Barros 1990), and disploidy (see Costa 2006 for a dis- interpreted as an evolutionary innovation in the sub- cussion on the same species and populations included tribe, whereas pollination by large bees represents a in this work) seem to be the main mechanisms trigger- plesiomorphic condition (Borba & Braga 2003, Smidt ing radiation in the genus. et al. 2006). This shift in pollinator type, accompanied Estimates of divergence times in Hoffmannseggella, by reduction in floral size and change in coloration pat- based on molecular sequence variation, indicate a terns, was suggested to have occurred in response to recent diversification event. The crown age of the genus the colonization of a new habitat, the Campos is placed in the Latest Miocene, and the short ages of Rupestres (Blumeschein 1960a, Brieger 1960, 1961, several species imply that speciation is still occurring at 1966). Pollinators generally visit a single flower per a high rate (Verola et al. unpubl. data). A high specia- inflorescence and the pollination mechanism observed tion rate seems correlated with the climate oscillation fits the “gullet type” described by Dressler (1981). that characterized the Pliocene and Pleistocene, causing Visits are sporadic and diurnal, and although they may the expansion and retraction of open vegetation types occur at any time they seem more frequent during (Ledru 2002, Safford 1999). These events promoted warmer periods. Despite population isolation and polli- high allopatric speciation by vicariance during wet peri- nator scarcity, many species developed (or retained) ods, when populations became isolated in the few spontaneous self-pollination mechanisms (Luer 1971, patches of open vegetation confined to mountain tops. Cattling 1987, Knuth & Loew 1906) as a way to guar- As climate became drier, the expansion of open habitats antee sexual reproduction in adverse situations (Catling and establishment of migratory corridors promoted con- 1990). The proportion of individuals with these mecha- tact between previously isolated species and thus facili- nisms vary, with the highest number being found in tated sympatric speciation (mainly hybridization and small and isolated populations. polyploidy) (Verola et al. unpubl. data). A similar spe- None of the species studied produced fruits through ciation mechanism has been proposed by other authors, agamospermy, and fructification rate was generally such as Alves & Kolbek (1994), Pirani et al. (1994), low. A low rate of fruit formation has been observed and Semir (1991). in other deceptive orchids (Montalvo & Ackerman Threats and conservation status 1987, Ackerman 1989, Zimerman & Aide 1989) and can be an adaptation to limited resources (Schemske Similarly to many other plant groups occurring in 1980, Montalvo & Ackerman 1987, Zimerman & the Brazilian campos rupestres (Giullieti et al. 2005), Aide 1989). In these latter studies, species’ survivor the current status of conservation of the species in could only be assured by fruit formation with a high Hoffmannseggella is precarious. The majority of its number of seeds (Dressler 1981, 1993). species seem to be endangered, as they grow outside Breeding systems were observed to vary from self- protected areas and are thus subjected to grazing, incompatibility to self-compatibility, depending on the fires, illegal collecting, and habitat destruction. As species and population. Fructification and seed viabili- many as 47% of the species are micro-endemic (with ty can vary considerably among populations of the only one natural population known), and some are same species. Grant (1975) and Lloyd (1979) pointed known only from the type collection. out that a great number of species can show mixed The highest species diversity is found in the state of breeding systems, from exclusive selfing to outcross- Minas Gerais, in the proximities of Belo Horizonte city. ing, including variations of those systems (Barrett et al. The area is densely populated and comprises a large 2000, Lande & Schemscke 1985, Schemscke & Lande number of ore prospection fields. Considering the isola- 1985). High seed viability was observed in interspecif- tion of the area, its high level of endemicity, and poor ic crossings, sometimes reaching even higher levels of availability of pollinators, coupled with the great anthro- LANKESTERIANA 7(1-2), marzo 2007. © Universidad de Costa Rica, 2007. VEROLA et al.- Hoffmannseggella conservation
Recommended publications
  • Liliaceae S.L. (Lily Family)
    Liliaceae s.l. (Lily family) Photo: Ben Legler Photo: Hannah Marx Photo: Hannah Marx Lilium columbianum Xerophyllum tenax Trillium ovatum Liliaceae s.l. (Lily family) Photo: Yaowu Yuan Fritillaria lanceolata Ref.1 Textbook DVD KRR&DLN Erythronium americanum Allium vineale Liliaceae s.l. (Lily family) Herbs; Ref.2 Stems often modified as underground rhizomes, corms, or bulbs; Flowers actinomorphic; 3 sepals and 3 petals or 6 tepals, 6 stamens, 3 carpels, ovary superior (or inferior). Tulipa gesneriana Liliaceae s.l. (Lily family) “Liliaceae” s.l. (sensu lato: “in the broad sense”) - Lily family; 288 genera/4950 species, including Lilium, Allium, Trillium, Tulipa; This family is treated in a very broad sense in this class, as in the Flora of the Pacific Northwest. The “Liliaceae” s.l. taught in this class is not monophyletic. It is apparent now that the family should be treated in a narrower sense and some of the members should form their own families. Judd et al. recognize 15+ families: Agavaceae, Alliaceae, Amarylidaceae, Asparagaceae, Asphodelaceae, Colchicaceae, Dracaenaceae (Nolinaceae), Hyacinthaceae, Liliaceae, Melanthiaceae, Ruscaceae, Smilacaceae, Themidaceae, Trilliaceae, Uvulariaceae and more!!! (see web reading “Consider the Lilies”) Iridaceae (Iris family) Photo: Hannah Marx Photo: Hannah Marx Iris pseudacorus Iridaceae (Iris family) Photo: Yaowu Yuan Photo: Yaowu Yuan Sisyrinchium douglasii Sisyrinchium sp. Iridaceae (Iris family) Iridaceae - 78 genera/1750 species, Including Iris, Gladiolus, Sisyrinchium. Herbs, aquatic or terrestrial; Underground stems as rhizomes, bulbs, or corms; Leaves alternate, 2-ranked and equitant Ref.3 (oriented edgewise to the stem; Gladiolus italicus Flowers actinomorphic or zygomorphic; 3 sepals and 3 petals or 6 tepals; Stamens 3; Ovary of 3 fused carpels, inferior.
    [Show full text]
  • Floristic and Ecological Characterization of Habitat Types on an Inselberg in Minas Gerais, Southeastern Brazil
    Acta Botanica Brasilica - 31(2): 199-211. April-June 2017. doi: 10.1590/0102-33062016abb0409 Floristic and ecological characterization of habitat types on an inselberg in Minas Gerais, southeastern Brazil Luiza F. A. de Paula1*, Nara F. O. Mota2, Pedro L. Viana2 and João R. Stehmann3 Received: November 21, 2016 Accepted: March 2, 2017 . ABSTRACT Inselbergs are granitic or gneissic rock outcrops, distributed mainly in tropical and subtropical regions. Th ey are considered terrestrial islands because of their strong spatial and ecological isolation, thus harboring a set of distinct plant communities that diff er from the surrounding matrix. In Brazil, inselbergs scattered in the Atlantic Forest contain unusually high levels of plant species richness and endemism. Th is study aimed to inventory species of vascular plants and to describe the main habitat types found on an inselberg located in the state of Minas Gerais, in southeastern Brazil. A total of 89 species of vascular plants were recorded (belonging to 37 families), of which six were new to science. Th e richest family was Bromeliaceae (10 spp.), followed by Cyperaceae (seven spp.), Orchidaceae and Poaceae (six spp. each). Life forms were distributed in diff erent proportions between habitats, which suggested distinct microenvironments on the inselberg. In general, habitats under similar environmental stress shared common species and life-form proportions. We argue that fl oristic inventories are still necessary for the development of conservation strategies and management of the unique vegetation on inselbergs in Brazil. Keywords: endemism, granitic and gneissic rock outcrops, life forms, terrestrial islands, vascular plants occurring on rock outcrops within the Atlantic Forest Introduction domain, 416 are endemic to these formations (Stehmann et al.
    [Show full text]
  • Phylogenetic Relationships of Discyphus Scopulariae
    Phytotaxa 173 (2): 127–139 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.173.2.3 Phylogenetic relationships of Discyphus scopulariae (Orchidaceae, Cranichideae) inferred from plastid and nuclear DNA sequences: evidence supporting recognition of a new subtribe, Discyphinae GERARDO A. SALAZAR1, CÁSSIO VAN DEN BERG2 & ALEX POPOVKIN3 1Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-367, 04510 México, Distrito Federal, México; E-mail: [email protected] 2Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s.n., 44036-900, Feira de Santana, Bahia, Brazil 3Fazenda Rio do Negro, Entre Rios, Bahia, Brazil Abstract The monospecific genus Discyphus, previously considered a member of Spiranthinae (Orchidoideae: Cranichideae), displays both vegetative and floral morphological peculiarities that are out of place in that subtribe. These include a single, sessile, cordate leaf that clasps the base of the inflorescence and lies flat on the substrate, petals that are long-decurrent on the column, labellum margins free from sides of the column and a column provided with two separate, cup-shaped stigmatic areas. Because of its morphological uniqueness, the phylogenetic relationships of Discyphus have been considered obscure. In this study, we analyse nucleotide sequences of plastid and nuclear DNA under maximum parsimony
    [Show full text]
  • Nocturnal Pollination by Fungus Gnats of the Colombian Endemic Species, Pleurothallis Marthae (ORCHIDACEAE: PLEUROTHALLIDINAE)
    LANKESTERIANA 13(3): 407—417. 2014. NOCTURNAL POLLINATION BY FUNGUS GNATS OF THE COLOMBIAN ENDEMIC SPECIES, PLEUROTHALLIS MARTHAE (ORCHIDACEAE: PLEUROTHALLIDINAE) CAROL ANDREA DUQUE-BUITRAGO1, NÉSTOR FABIO ALZATE-QUINTERO1 & J. TUPAC OTERO2, 3, 4 1 Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Herbario FAUC, Universidad de Caldas, PO Box 275, Manizales, Colombia 2 Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira 3 Instituto de Estudios Ambientales IDEA, Universidad Nacional de Colombia, Sede Palmira 4 Author for correspondence: [email protected] ABSTRACT. Contemporary patterns of plant biodiversity result from the ecological and evolutionary processes generated by species interactions. Understanding these interactions is key for effective biodiversity conservation at the species and the ecosystem level. Orchid species often have highly specialised pollinator interactions, and the preservation of these is critical for in situ orchid conservation. The majority of orchid species occur in tropical regions, and information regarding their interactions is limited. We present data on pollinator identities, pollination mechanisms and flowering phenology of the Colombian endemic orchid, Pleurothallis marthae. We evaluated the mechanisms of attraction, the presence of osmophores, and the reproductive system of the species. Pleurothallis marthae is self-compatible with nocturnal anthesis pollinated by Mycetophila sp. (Mycetophilidae), probably attracted by a string fungus like smell liberated by the flower and Bradysia sp. (Sciaridae) that feed on nectar in the labellum. Osmophores and nectaries were detected in the epidermis of the sepals and petals. We present new evidence that the genus Pleurothallis is adapted to Diptera pollination. Our study indicates that the pollination mechanism of P.
    [Show full text]
  • The Structure and Robustness of an Epiphyte - Phorophyte Commensalistic
    1 The structure and robustness of an epiphyte - phorophyte commensalistic 2 network in a neotropical inselberg 3 4 Abstract 5 Ecological networks describe the interactions between species, the underlying structure of 6 communities, the function and stability of ecosystems. To date, network analyses have been 7 extensively applied to understand mutualistic and antagonistic interactions, but few have 8 examined commensal interactions, particularly in neotropical regions. The inselbergs of 9 southeastern Brazil are considered one of the three most important regions in the world in 10 terms of terrestrial species diversity and endemism but are poorly studied. In this study, we 11 constructed the first epiphyte-phorophyte commensalistic network in a Brazilian inselberg 12 and examined its structure and robustness to simulated species loss. A total of 138 13 phorophyte individuals belonging to eight species were observed in 20 2 m × 50 m transects, 14 interacting with 5,039 individuals of vascular epiphytes belonging to 85 species. The 15 epiphyte-phorophyte network structure exhibited a low degree of specilization (H2’), low 16 connectance and robustness; when the most connected phorophyte species were sequentially 17 removed the number of secondary extinctions was high, based on robustness metrics. One 18 generalist phorophyte, Pseudobombax sp. nov., was particularly important, hosting a high 19 number of epiphyte species. A single phorophyte individual of Pseudobombax supported 20 46% of the total richness of the epiphyte community studied. Our results demonstrate that the 21 richness and abundance of epiphytes were correlated with phorophyte size (as mensured by 22 the DBH, diameter at breast height), probably due to increased habitat area and the time 23 available for colonization.
    [Show full text]
  • Angiosperm Latin Name: Brassia Spp. Common Name: Spider Orchid Family: Orchidaceae Geographic Origin: Brazil Soil: Use Orchid Po
    Latin Name: Brassia spp. Common Name: Spider Orchid Family: Orchidaceae Geographic Origin: Brazil Soil: Use orchid potting mix. Temperature: Daytime temperatures should be between 75°-85°F and nighttime temperatures should be between 65°-75°F. Light: This plant prefers full sun with partial shade. Moisture: Soak plant in a bucket of water for one hour every week. Fertilization: This plant should be fertilized every other week, alternating between fish and seaweed fertilizers. Grooming: Repot every year or two. Seasonal Care: Reduce watering and fertilizing during winter months. Propagation: Propagate through division or plantlets. Pests and Diseases: Check for root rot, mealy bugs, and whitefly. Angiosperm Latin Name: Dendrobium kingianum Common Name: Pink Rock Orchid Family: Orchidaceae Geographic Origin: Australia Soil: Use orchid potting mix. Temperature: Daytime temperatures should be between 75°-85°F and nighttime temperatures should be between 65°-75°F. Light: This plant prefers full sun with partial shade. Moisture: Soak plant in a bucket of water for one hour every week. Fertilization: This plant should be fertilized every other week, alternating between fish and seaweed fertilizers. Grooming: Repot every year or two. Seasonal Care: Reduce watering and fertilizing during winter months. Propagation: Propagate through division or plantlets. Pests and diseases: Check for root rot, mealy bugs, and whitefly. Angiosperm Latin Name: Dendrobium ‘Wave King’ Common Name: Wave King Orchid Family: Orchidaceae Geographic Origin: South Asia Soil: Use orchid potting mix. Temperature: Daytime temperatures should be between 75°-85°F and nighttime temperatures should be between 65°-75°F. Light: This plant prefers full sun with partial shade.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • FINAL REPORT PSRA Vegetation Monitoring 2005-2006 PC P502173
    Rare Plants and Their Locations at Picayune Strand Restoration Area: Task 4a FINAL REPORT PSRA Vegetation Monitoring 2005-2006 PC P502173 Steven W. Woodmansee and Michael J. Barry [email protected] December 20, 2006 Submitted by The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, Florida 33170 George D. Gann, Executive Director Submitted to Mike Duever, Ph.D. Senior Environmental Scientist South Florida Water Management District Fort Myers Service Center 2301 McGregor Blvd. Fort Myers, Florida 33901 Table of Contents Introduction 03 Methods 03 Results and Discussion 05 Acknowledgements 38 Citations 39 Tables: Table 1: Rare plants recorded in the vicinity of the Vegetation Monitoring Transects 05 Table 2: The Vascular Plants of Picayune Strand State Forest 24 Figures: Figure 1: Picayune Strand Restoration Area 04 Figure 2: PSRA Rare Plants: Florida Panther NWR East 13 Figure 3: PSRA Rare Plants: Florida Panther NWR West 14 Figure 4: PSRA Rare Plants: PSSF Northeast 15 Figure 5: PSRA Rare Plants: PSSF Northwest 16 Figure 6: PSRA Rare Plants: FSPSP West 17 Figure 7: PSRA Rare Plants: PSSF Southeast 18 Figure 8: PSRA Rare Plants: PSSF Southwest 19 Figure 9: PSRA Rare Plants: FSPSP East 20 Figure 10: PSRA Rare Plants: TTINWR 21 Cover Photo: Bulbous adder’s tongue (Ophioglossum crotalophoroides), a species newly recorded for Collier County, and ranked as Critically Imperiled in South Florida by The Institute for Regional Conservation taken by the primary author. 2 Introduction The South Florida Water Management District (SFWMD) plans on restoring the hydrology at Picayune Strand Restoration Area (PSRA) see Figure 1.
    [Show full text]
  • Biosystematic Studies in the Genus Piperia (Orchidaceae)
    BIOSYSTEMATIC STUDIES IN THE GENUS PIPERIA (ORCHIDACEAE) by James D. Ackerman A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Arts June, 1976 BIOSYSTEMATIC STUDIES IN THE GENUS PIPERIA (ORCHIDACEAE) by James D. Ackerman Approved by the Master's Thesis Committee Chairman Approved by the Graduate Dean ACKNOWLEDGEMENTS Dennis E. Anderson's patience, guidance and support throughout this project is most gratefully acknowledged. I appreciate members of my committee, Richard L. Hurley, Robert A. Rasmussen, and Farris R. Meredith for lively discussions and reading the manuscript. I also thank William V. Allen for access to laboratory equipment, Jerry A. Powell for identifying the moths, Arlee M. Montalvo for aid through various aspects of this work, and the curators and staffs of those herbaria that provided specimens for study. TABLE OF CONTENTS Page Acknowledgements Introduction 1 Taxonomic History 7 Materials and Methods 12 Results and Discussion 22 Osmophors 22 Chromosomes 22 Chromatography 27 Interfertility 37 Field Studies 46 Morphology 49 Character analysis 49 Taxonomic concepts 60 Summary 66 Distribution 68 Conclusions 74 Taxonomy 79 Keys to Piperia taxa 79 Piperia 81 Piperia elegans 82 Piperia unalascensis 86 Piperia maritima 89 Piperia maritima var. multiflora 92 Piperia transversa 94 Piperia michaeli 96 iii Table of Contents. Continued. Page Appendices 98 Literature Cited 107 INTRODUCTION Piperia Rydberg is a polymorphic genus and presents complex taxonomic and nomenclatural problems. Variability exists in nearly all morphological aspects including the usually conservative features of the column. Many species have been proposed based on plants showing limited ranges of continuous characters; this has resulted in considerable confusion.
    [Show full text]
  • Taxonomic Revision of Pseudolaelia Porto & Brade (Laeliinae
    Acta Botanica Brasilica 27(2): 418-435. 2013. Taxonomic revision of Pseudolaelia Porto & Brade (Laeliinae, Orchidaceae)1 Luiz Menini Neto2,5, Rafaela Campostrini Forzza3 and Cassio van den Berg4 Submitted: 14 September, 2011. Accepted: 7 March, 2013 ABSTRACT Pseudolaelia is a genus endemic to eastern Brazil. The species are often epiphytes on Velloziaceae or are saxicolous, predominantly on granitic and gneissic outcrops (inselbergs) in the Atlantic Forest and, less often, in the campos rupestres (dry, rocky grasslands) of the cerrado (savanna) and caatinga (shrublands). The genus is characterized by homoblastic pseudobulbs, long rhizomes, long and usually slender inflorescences, racemes or panicles, bearing pink, yellow or whitish flowers, labellum often 3-lobed, with simple, fimbriate or erose margin, semi-cylindrical or claviform column, cuniculus present. Twelve species are recognized; seven binomials are placed in synonymy. Of those seven, three are considered illegitimate because, contrary to the International Code of Botanical Nomenclature guidelines, there are no corresponding type specimens deposited in a recognized herbarium, and those three were therefore lectotypified. We present descriptions of, illustrations of and a dichotomous key to Pseudolaelia species, as well as addressing their taxonomy, ecology, conservation and geographic distribution. Key words: Eastern Brazil, campo rupestre, conservation, inselberg, taxonomy Introduction Ruschi (1946) established the genus Renata, describing the species R. canaanensis Ruschi, and publishing, in the Pseudolaelia Porto & Brade is a member of the subfamily same decade, P. dutrae Ruschi (Ruschi 1949), both from Epidendroideae, tribe Epidendreae, subtribe Laeliinae, and the mountains of the state of Espírito Santo. Pabst (1967) was defined as a monophyletic genus by van den Berg et al.
    [Show full text]
  • Epilist 1.0: a Global Checklist of Vascular Epiphytes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong.
    [Show full text]
  • Inselbergs) As Centers of Diversity for Desiccation-Tolerant Vascular Plants
    Plant Ecology 151: 19–28, 2000. 19 © 2000 Kluwer Academic Publishers. Printed in the Netherlands. Dedicated to Prof. Dr Karl Eduard Linsenmair (Universität Würzburg) on the occasion of his 60th birthday. Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccation-tolerant vascular plants Stefan Porembski1 & Wilhelm Barthlott2 1Universität Rostock, Institut für Biodiversitätsforschung, Allgemeine und Spezielle Botanik, Rostock, Germany (E-mail: [email protected]); 2Botanisches Institut der Universität, Bonn, Germany (E-mail: [email protected]) Key words: Afrotrilepis, Borya, Desiccation tolerance, Granitic outcrops, Myrothamnus, Poikilohydry, Resurrection plants, Velloziaceae, Water stress Abstract Although desiccation tolerance is common in non-vascular plants, this adaptive trait is very rare in vascular plants. Desiccation-tolerant vascular plants occur particularly on rock outcrops in the tropics and to a lesser extent in temperate zones. They are found from sea level up to 2800 m. The diversity of desiccation-tolerant species as mea- sured by number of species is highest in East Africa, Madagascar and Brazil, where granitic and gneissic outcrops, or inselbergs, are their main habitat. Inselbergs frequently occur as isolated monoliths characterized by extreme environmental conditions (i.e., edaphic dryness, high degrees of insolation). On tropical inselbergs, desiccation- tolerant monocotyledons (i.e., Cyperaceae and Velloziaceae) dominate in mat-like communities which cover even steep slopes. Mat-forming desiccation-tolerant species may attain considerable age (hundreds of years) and size (several m in height, for pseudostemmed species). Both homoiochlorophyllous and poikilochlorophyllous species occur. In their natural habitats, both groups survive dry periods of several months and regain their photosynthetic activity within a few days after rainfall.
    [Show full text]