<<

NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atiantic T I LFisheries Organization

Serial No. N516 NAFO SCR Doc. 82/VI/28

SCIENTIFIC COU CIL MEETING - JUNE 1982

Allometry o uid Inex illecebrosus

by

T. Amaratunga and F. Budden Fisheries and Oceans Canada, Fisheries Research Branch P. 0. Box 550, Halifax, N.S. B3J 2S7

Intoduction

Voss (1977) illustrated th difficulties involved in

determining the reliability o what have often been considered

strong taxonomic characters i nomenclature. He

points out that cephalopod lierature lacks the comparative anatomical study that has bee valuable in vertebrate systems, and that critical studies of dentifying features are needed to

further clarify present class fications. Descriptions of species ar sometimes made from measurements

on few representative samples and leave alone a wide range of

sizes. Complete morphometric analysis of a large number of is obviously desirable, and is more valuable to describe these measurements for the entire ze range, from earliest juvenile

stage to maturity, for a spec es,

Aside from the traditional morphometric analysis (Voss, 1977),

other methods for enumerating and describing cephalopod species

have been attempted. For exa ple, comparisons of length, width,

weight, and shape of spermato phores of various species have been

carried out; however, these I. ndices are extremely variable

through their developmental tages and their relevance is

questionable (Voss, 1977).

Examination of hard parts which do not undergo distortion

during preservation are valua ble in squid taxonomy. The use of

the beak as a taxonomic chara cter is common (Clarke, 1962);

however, difficulties in its use were noted when the range of

variation within any one spec ies was found to be sometimes

greater than between some species (Voss, 1977). Other structures and characters such as sucker dentition and funnel organs, and radulae have been examined. The diagnostic value of these characters cannot be determined until their variation at the

individual, population, and specific levels can be ascertained.

The statolith is perhaps the most extensively used hard part

for distinctive descriptions (Clark, 1978). Clark (1978) described general features as well as specific characteristics of the teuthoid statolith. Similarly he described distinctive

features of statoliths of the orders Sepiodea and Octopoda. When using this as a taxonomic tool, it is necessry to be aware of the morphological changes that occur in them as the animal progresses

through the life stages. Thus the statolith structure studied through the entire size range of Illex is thought to be a valuable taxonomic tool.

The internal shell of the teuthoid , the gladius, has gained attention in recent years as a possible taxonomic character (Toll, 1981). The shape of the gladius aided Roper et al., (1969) in identifying a new species of Illex - Illex oxygonius. Comparison of shapes of gladii of living species with

fossil remains have contributed to differentiation between the

line of origin of various cephalopod groups (Donovan, 1977). The gladius of adult Illex illecebrosus has been described in great detail by Verrill (1879). However, to date an examination of gladii from a wide range of size classes of Illex illecebrosus has not been completed.

In our sampling program for Illex illecebrosus established in

1977, a large number of specimens have been accumulated from all

stages of its life cycle. These range from egg and larval stages

from tank experiments (O v Dor et al., 1980) and very early

Rhynchoteuthion stages to mature animals in the field

(Amaratunga, 1980). In this report morphometric measurements of

I. illecebrosus ranging from the earliest juvenile stage

(post-Rhynchoteuthion stage) to maturity are studied.

Characteristic features of the gladius and statolith from

representative size classes are also presented. - 3

Materials and Methods

The study consisted of three sections: 1) a detailed morphological analysis of Illex illecebrosus samples over the entire size range; 2) examina ion of the features of the statolith of I. illecebrosus; and 3) examination of gladii from representative size classes of I. illecebrosus.

A representative sample of each size class of I. illecebrosus analysed for morphometrics wa removed for statolith studies. One hundred and eight pairs o statolith were extracted from the juveniles ranging up to 120 m ML and 36 pairs from the larger squid. The extraction was by one of two methods: 1) by dissecting the head (Clarke, 978) by slicing skin and cartilage horizontally between the post rior ends of the eyes and thereby exposing the . Sta oliths were removed with fine forceps and washed gently wit distilled water. 2) This technique involved dissolving the cartilaginous skull and connective tissue while prese ving the statolith. A solution consisting of one part satura ed Borax, two parts distilled water, and one teaspoon tryps n per half litre of solution was used Heads were left in the solution until the skull dissolved away. Statoliths for this st dy were chosen randomly with no preference for left or right. One statolith from each squid was sampled. Lipinski (1980) tested the mean lengths of the left and right statoliths at the 0.05 level of significance and found no significant difference in len th. The principle axes of the statoliths were measured using a

Zeiss M7A stereomicroscope with a 12 mm ocular micrometer. The axes measured were total anterior-posterior length, lateral dome length, and maximum width (Fig. 1). Mean for each axis was calculated for each 10 mm length size class of animal.

The mean ratios of dome lengt :total length and dome width:total length were also calculated f r each 10 mm size class. Relationships between statolith axes and mantle length were tested using regression analysis. An attempt was also made t examine the internal microstructure of the statolith. A statolith from a squid of

230 mm DML was fractured by tapping it gently with a small metal rod and examined using a Stereoscan 250 scanning electron microscope.

Upon completion of morphometric studies, gladii from three

representative mantle length sizes of squid were removed and

examined for variation through growth® By cutting the mantle

ventrally the gladius could be seen along the dorsal side of the

mantle and could be easily removed by pulling it gently with

forceps from the of the tail fin. Gladii were removed from

squid of DML 80, 180, and 210 mm® They were then washed in

distilled water and dried with absorbent tissue. Cross-sections

were taken at four points along the length of each gladius ® at

distances 10%, 25%, and 60% of the total length from the anterior

end and the fourth section was taken at the narrowest point on

the gladius (Fig. 2). The four sections were mounted in

plasticene and the series was photographed.

Juvenile Illex illecebrosus ranging from post-Rhynchoteuthion

stage to 100 mm mantle length were collected during research

cruises between January and June of 1978 and 1979 in areas

outside the Scotian Shelf break extending through the Gulf Stream

and into the Sargasso Sea. Animals of mantle lengths greater

than 100 mm were obtained inshore and offshore in NAFO Subarea 4

between May and August of 1980. Detailed morphometric

examination was conducted on 2,271 Illex by taking measurements

on 15 parameters as listed in Table 1 and shown in Figure 9.

Juvenile Illex were measured using calipers while larger animals

were measured with a ruler. All measurements were recorded to

the nearest millimeter, with the exception of fin angle which was

recorded to the nearest degree.

Means and ranges were calculated for all parameters measured.

Relationships between fin length and mantle length; fin angle and

mantle length; and head length and mantle length were

determinined by regression analysis. Results Statol ith

The general external feat res of the teuthoid statolith as described by Clarke (1978) aret shown in Figure 1. The basic configuration consists of four main parts: the dorsal dome, the lateral dome, the rostrum, and the wing. The wing is often softer than the rest of the statolith and may become detached from the statolith very easily. Thus it may often not be available for examination (Clarke, 1978).

The I. illecebrosus stato ith conforms with the general features of the teuthoid stTlith. Figures 3a, b, and c illustrate the four main parts of statolith described above, in both adult and juvenile statolith forms. The features, however, were distinct in animals of mantle lengths greater than 100 mm (Figs. 3a and 3b) while in tie smaller squid the distinction between specific parts was less defined (Fig. 3c).

A photograph of a Longoo aplei statolith is presented as a basis for comparison of statolith form between species (Fig. 4).

These observable changes in features were further examined by measuring the principle axes (Fig. 3a) of the statoliths, in relation to the size of the animal. The mean statolith dimensions for each 10 mm mantle length class is given (Table 2)

for animals ranging from 21 mm to 270 mm. Dimensions of the main axes when tested against eaCh other through growth show linear

relationships. Regression of dome length on statolith length,

dome width on statolith len• th, and dome length on dome width yielded regression coefficients of 0.94, 0.96, and 0.90

respectively. Thus, although the features of the juvenile

statolith were distinctly different from the adults, it is apparent the basic configuration of the four main parts retain proportionality through growth. All three of the statolith dimensions plotted against mantle length show similar linear relationships. Regression of statolith length, lateral dome

length, and dome width on mantle length yielded regression

coefficients of 0493, 0.93, and 0.91 respectively. The

relationships between statolith dimensions and mantle length are expressed by the equations:

DOME WIDTH = 0.0020 DML + 0.1655

DOME LENGTH = 0.0025 DML + 0.2220

TOTAL STATOLITH LTH = 0.0032 DML + 0.3987

Figures 5a, b, and c are scanning electron micrographs of

internal surfaces of an I. illecebrosus statolith. The microstructure of the teuthoid statolith is one of aragonite calcium carbonate crystals arranged in radiating. needles

(Kristensen, 1980). According to Clarke (1978) the crystals of the statolith radiate from a centre but depending on the order of cephalopod being examined their configuration may have different effects on the surficial appearance of the statolith. The crystalline subunits of the statolith, the statoconia, may be

irregularly arranged or stacked with their long axes parallel.

It appears in I. illecebrosus that the latter is true (Figs. 5a,

b, and c).

Gladius Verrill (1879) described the gross-morpholgy of the

I. illecebrosus gladius. Subsequent description of the gladius

of this species is extremely limited. Figures 6, 7, and 8 are

photographs of cross-sections of gladii from animals of DML

80 mm, 180 mm, and 210 mm respectively. The basic features of

the gladius can be seen in these figures. Figures 6a, 7a, and 8a are cross-sections of the anterior end of the gladii. The midrib, or rachis, can be seen at the centre of each section and

shows little variation with size of squid. The flattened portion

on either side of the midrib, the vane, appears to display no

obvious variation in the three figures. However, variation between animals of different DML is apparent in the structure of

the lateral ribs which lie along the outer margins of the vane.

In smaller squid (Fig. 8a) two well-defined grooves are visible

along the ventral side of the lateral ribs. The lateral ribs appear to be composed of three ribs united on each side. As the •

-7-. squid increase in size the ventral grooves are less defined and the lateral ribs appear more compressed (Figs.. 6a and 7a). The lateral ribs appear thicker and stronger in larger animals, perhaps adding strength as th e squid grow. As the cross-sections become more narrow (Figs. 6b 7b, 8b, 6c, 7c, and 8c) variation between the structures becom s less distinct. Cross-sections of

the narrowest point of the g adii are shown in Figures 6d, 7d,

and 8d. Very little variati o n is seen in these sections. The gladius at this point consis s of the midrib and the united

lateral ribs. Ventrally the edges of the lateral ribs form a tip

which is not as obvious in t e smaller squid (Fig. 8d).

Morphometrics Table 3 presents the mean • and ranges for 10 mm DML size class of morphometric parameters m asured during the study. Means and

range of characters measured are listed for all 10 mm size

classes sampled (Table 3). hanges in the gross morphology of

the squid are reflected by c anges in relationships between

various morphometric paramet rs through growth. As dorsal mantle length increases the dorsal antle length:fin length ratio

decreases. Conversely, dors 1 mantle length:head length ratio

increases with growth. At m ntle lengths below 40 mm mean fin

angles were high, ranging fr m 36° to 66°; however, at greater

DMLs no observable changes fin angle through growth were

seen. Fin angles were withi the 40-50° range at DML greater

than 40 mm.

D scussion

Statolith The cephalopod statoliths lie in two paired cavities, the

statocysts, within the carti age of the skull. Statocysts are

the best developed equilibri m organs found among invertebrates,

Their structure is elaborate and they are able to detect both linear and angular accelerat on (Budelmann, 1977). Statoliths

are usually less than 2 mm i length and consist of calcium

carbonate in the aragonite f rm (Clarke, 1978). Cephalopod 8-

statoliths have been frequently used in identifying fossil

cephalopods and identifying stomach contents of cephalopod eaters

(Clarke, 1978).

A statolith may change slightly in form during growth; however, the adult form is considered to be characteristic of the

species. Both the size and shape of the statolith may be used as

tools of identification. For example, the greatest distinction between statoliths of Illex illecebrosus and Lo1192 pealei may be made on the basis of the shape of the lateral dome. In

I. illecebrosus the lateral dome is smooth and rounded while in

L. pealei the statolith is wedge-shaped with an angulated margin.

Statoliths of L. pealei are usually larger for a given mantle

length, reaching lengths of greater than 2 mm while

I. illecebrosus statoliths are rarely greater than 2 mm in

length.

The statolith of I. illecebrosus may be characterized by a

number of features. The lateral dome is relatively smooth and

the margin almost circular (Fig. 3a). In some species the

lateral dome may have distinct lobes named according to their position (Clarke, 1978). However, in I. illecebrosus the only obvious lobe is the inferior lobe (Fig. 3a). Along the ventral edge of the inferior lobe of the lateral dome is the posterior dome groove. This structure is variable in occurrence in different species but in I. illecebrosus it separates the lateral

dome from the dorsal end of the rostrum and the wing on the

posterior side. Although the rostrum may bear small lobes none

are apparent in I. illecebrosus, The rostrum and lateral dome meet at the rostral angle which may be obtuse, acute, or in some

species indistinct (Clarke, 1978). In I. illecebrosus this angle

is obtuse.

Another feature which is variable in occurrence is the

posterior indentation. In I. illecebrosus the posterior

indentation is easily recognized between the dorsal dome and wing

on the posterior side.

All the characteristics previously mentioned are evident in

adult forms of the statoliths and to a lesser degree in - 9 - juveniles. Figure 3b is a s atolith from a squid of DML 130 mm.

A number of features examine in Figure 3a can be recognized in

Figure 3b. However, in Figu 3c (DML 60 mm) these features are difficult to detect. In thi juvenile statolith the characteristics are rudiment ry and description of the statolith is confined mainly to the la eral dome, the rostrum, and dorsal dome.

The internal microstructu of the I. illecebrosus statolith is one of aragonite crystals arranged with their long axes parallel (Figs. 5a, b, and According to Dilly (1976) the crystalline structure may va y considerably in different regions

of the same statolith. He suggests that the variation in size

and shape of crystals is in part positional, with larger crystals

being found centrally and th smaller crystals peripherally.

This was not evident in this study (Figs. 5a and b); however,

further examination of stat liths is needed to determine if this is true.

Dilly (1976) states that statoliths from large animals are larger than those from smal er animals, but any direct

correlation with size is ob cure. This is contrary to results we

obtained in our study of I. illecebrosus. The correlation

between statolith dimension and mantle length is high. All regression coefficients are greater than 0.90 and thus are

indicative of the high degr of linearity of these relationships. Likewise re ationships between statolith

dimensions through growth a linear.

Glad ius

Toll (1981) showed that ephalopod gladii could be used to

identify species. By takingsections at 60%, 25%, and 10% of total length from the anter or end and at the narrowest point of

the gladius he attempted to compare morphology of gladii from 17

species in ten genera. By erforming the same procedure on

various-size I. illecebrosu our study has indicated that variation in the structure f the gladius does occur through - 10 growth. As the squid grows, changes occur, most notably in the lateral ribs (Figs. 6, 7, and 8) which become thicker and more

consolidated. The ventral grooves described by Verrill (1879)

become less apparent as mantle length increases.

Morphometrics

Allometric descriptions of morphometric characters is

essential if any of these characters are to be used in

identification. To simply study morphometric characters in adult

squid would be misleading. Means and ranges of these characters

through growth is a more accurate representation of the species.

As can be seem from Table 3 the relationships between these

characters is not always constant through growth. The trends in

these relationships as previously described must be applied when

identifying I. illecebrosus throughout its growth stages.

References

Amaratunga, T. 1980. Growth and maturation patterns of the

short-finned squid (Illex illecebrosus) on the Scotian Shelf.

NAFO SCR Doc. 80/11/30. Budelmann, B.U. 1977. Structure and function of the angular

acceleration receptor systems in the statocysts of

cephalopods. Symp. Zool. Soc. London. No. 38: 309-324.

Clarke, M.R. 1962. The identifications of cephalopod "beaks" and

the relationship between beak size and total body weight. Bull. Br. Mus. nat. Hist. (Zool.) 8: 421-480.

Clarke, M.R. 1978. The cephalopod statolith - an introduction

to its form. J. Mar. biol. Ass. U.K. 58: 701-712.

Dilly, P.N. 1976. The structure of same cephalopod statoliths.

Cell and Tissue Research, 175: 147- 163.

Donovan, D.T. 1977. Evolution of the dibranchiate cephalopoda. Symp. Zool. Soc. Lond. No. 38: 15-48. Kristensen, T.K. 1980. Periodical growth rings in cephalopod

statoliths. Dana. Vol. 1: 39-51. Lipinski, M. 1980. Prelimin ry studies on age of the from

their statoliths. NAFO S R Doc. 80/11/22, Ser. No NO54.

O g Dor, R.K., E. Vessey and T Amaratunga. 1980. Factors

affecting fecundity and 1 rval distribution in the squid,

Illex illecebrosus. NAFO SCR DOC. 80/11/39.

Roper, C.F.E., C.C. Lu, and Mangold. 1969. A new species of

Illex from the western Atlantic and distributional aspects of

other Illex species (Ceph lopods:Oegopsida). 82: 295-322.

Toll, R.B. 1981. Comparativ morphology of gladius

cross-sections in the fam i ly (Cephalopoda:

Teuthoidea). Abstract. -ull. of the Amer. Malog. Union.

Verrill, A.E. 1879. The cep alopods of the northeastern coast of America. Trans. of the C nnecticut Academy. 23-446, 27 p.

Voss, G.L. 1977. Present st tus and new trends in cephalopod

systematics. Symp. Zool. Soc. Land. No. 38: 49-60.

- 12

Table 1. Parameters observed in detailed morphometric study of Illex illecebrosus.

DORSAL MANTLE LENGTH HEAD WIDTH 1 FIN LENGTH HEAD WIDTH 2 FIN WIDTH ARM LENGTH 1 FIN ANGLE ARM LENGTH 2 MANTLE DEPTH ARM LENGTH 3 MANTLE WIDTH 1 ARM LENGTH 4 MANTLE WIDTH 2 SEX ® 1 = MALE MANTLE WIDTH 3 2 = FEMALE HEAD LENGTH 3 = UNSEXED

Table 2. Mean statolith dimensions for 10 mm DML size classes.

MANTLE STATOLITH DOME DOME DOME LENGTH: DOME WIDTH: LENGTH LENGTH LENGTH WIDTH STATOLITH STATOLITH LENGTH LENGTH RATIO RATIO

21-30 .3226 .2581 .1613 .800 .500 31-40 .4108 .2581 .1785 .628 .435 41-50 .5081 .3333 .2527 .656 .497 51-60 .5708 .3505 .2949 .614 .482 61-70 .6185 .3954 .2986 .639 .483 71-80 .6332 .4065 .3161 .642 .500 81-90 .7419 .4516 .3548 .609 .478 101-119 .8602 .4839 .4731 .562 .550 111-120 .8387 .5161 .4677 .615 .549 121-130 .8802 .4783 .4700 .544 .534 131-140 .8249 .4839 .4608 .587 .559 141-150 .7419 .5540 .5355 .748 .723 151-160 .9677 .5806 .5161 .600 .533 201-210 1.0645 .6452 .5484 .606 .515 211-220 1.0913 .7339 .5968 .673 .547 221-230 1.1254 .7193 .6839 .639 .608 231-240 ,.9355 .7473 .6237 .799 .667 241-250 1.1398 .7635 .6236 .669 .547 251-260 1.1694 .7871 .8452 .673 .723 261-270 1.1290 .7259 .5968 .643 .529

▪ ▪

- 13 -

CD Un c • ,t ko ,... CO CO LO sv c\I cn r... ,t. cn .,/- O CO 0) •st ,= co cn cn r- r- r-. r- r- r-- C, C, r-- (V (V r••• NNC \ I ,I C \I NJ C I I I / 1 I 1 I I I I I I I I I I I I I 11 I I I 1 I I 1 -C ro 00 ,• ,r 01 u0 uD 141 CO 111 N 0 01 CD r- 0 fY) 01 .71. LID •Ct. 0 0 ,..I. C4 r..... r- r-- r•-• r-. r•-• r-. ra• CNI NI C\J

CJ r- 4, C (C) CD QD U1 01 r- r- CM co oo on 00 U3 0,1 up ,- 0.1 r- 00 ,t r- MO CD (U CD CO ,r Cn 00 uD cm cn co op uo on CO UD CO 01 01 cn co on CD CD • • •• •• • • • I I ,t ,r ,r VO UD UD 03: co co r- CD 01 01 01 Un Un ,f 0, r", L1D CN CO r- ,t P. P.F.. PP P.rr r 0.1 0.1 0.1

r•-• CJ N., CV 01 cf ,t cn ul cn CN cn r- r° on cn CD CO co VD ct N CO CI 01 ,T ,7 r- r- „T r7,- Oy r- 0.1 r- I I I I i 1 I I I N I I I I I 7 r75 Oy 01 01 00 01 01 U.) U, UD M. CO N. cn ,- CD 0.! 0,1 VD UD 00 r•-••• 1.° 7.•

U)0CD 0)cn up,co cn un up ,r op co ,r u P c on 0,1 01 CD h CD co rtr . u1 Nul 00 C, ,t 0,1 0.1 on cn N ,r 0,1 cf 01 /-• CO UD QD cf.CD ro • • • • • • I • I on on ,r ul un un CD cn r- r- 01 01 on up up on N VD 00 CO r- r-

UD CJ r- CD C..1 CD P. P. CD co P, VD c0o0 co00 CM cm cn r- r- VD r7 . 4-- P.. C: 1 I 1 „ u tt? 01 0y 01 0.1 r- 01 0y 00 0,1 01 uD 01 01 cn CD r

C: CD 00 u- ul ,• up oo cp ,r 0O CD up c) o5 01 N CD m 61 ul UP CD O 0 CD U)n uD CD 1 I t • • . • • t 0,1 0,1 01 01 C0. ,cr Lc; LC) Ul CD Ul WDUD VD VD CM CM C)

QD c• CD 00 r- up 00 OQ 00 Un 00 r- CM LIP cn up CD IC) cn ,- r.... un r- 1/4n CO N IN CO N. 00 up u:3 (JD LLD lal )- Lo Lc") VD LC) ct Li) ,.1. Cr. on ! I I 1 I 1 . i I I i I I I I i I I I i 4 I 1 1 LC) CDup OM NO1 0O un I\ uD r- CD UD cn 00 UD U1 01 01 ,r ,-. uD ,f ul 0, ,- r- OU 0,1 0, 01 r--r ig) r- 0,I MM 01

CD CD ,f CO O,tM C, 0.1 ,c1. COLD NJ (.0 N. ..I. ...I" N r- (VI CD in O CD 01 on r- co ,r QD ,r 01 LC, CD N. sr r- r- t.0 I.-. ct r- CD r.... O 1 rt- 1 • • • . • . s • . i I • I CJ uD 0, N . un cm CD CD ,- 0, r- C C, r- r ,, C, LC) 00 • 01 CM r- LO ,o LC VD W1 Un Ul 0, 01 ,f 01 01 un 01 01 cf MM ,.." Co)

-C + J -C

C 0 (1) Z a) 4, C) CD ,t. ,1 Ul VO NCI Cdr O N ul co N N CV 01 - r-I Ul VD CO I. CD CD N Un r-I N VD N N CD Ul .-1 O 01 r- • • • o • 0 • • • • • 0 • • . • 01 CV 01 Cr) °IT .,r ‘41 44. Ln Ln in In LC) l.0 LI) VD 1".•• lD (.0

C) C)

0,1 CV 01 u1 ,r C) ,..-1 CD r-I 01 r-I Ul r• r-I .c3. 01 e-I CO UP pH N N rH r-I 1--1 4-) C- CV 01 C.... ,AD N r-I rH CN 1--4 r-i rH r-I - r-1 r-I r-I P.-I r-4 r-I r-4 I I I I I I I. I I ty) c I I I I I I I I I I I I I I I I I I I I ,-.1 01 mH N vs vaC (V N 01 n1 0,01 el 01 Ul ul ul l0 V. CN r- N CM CN 00 CO rH r-I r4rA

C c", lin CD CN Ul 01 N V 01 on r- ,t, CD V. CN ,r C) N 0CD 00 CV CD CD 0 ("C$ 0 Lt) cf 00 r- r-4 rH CO (N CN CO Un cl. Un r- Lil ,-.1 cv N 0 01 r- CD Un C (1) (1) • • • • • 0 • • 0 • • • • • 0 • 0 • 0 0 rr I • .. I 1 • 1 c v, -4, ,r VD QD In r- r- r- co co co CN Ch CD ,...1 C 0 01 0,1 (N on .14

r-I r-I r-I r--I r-1 r-I o-I r-I r-I r--1 r-I r-I r-I H r-I • • • .0 00 so O. O. Oa 00 4. 0. 00, .0 OD .6 O. o. .. .. o. O. 60 •. •• 0 0 CD 4 N C) cv Nr 01 CD Un ko vi r-I ch ,r CD CA cq ,r N ,-.1 I (N CO I I CI I C) Ln 1.0 r-1 01 In LO Lf) (31 0 CO N N (0 Lf) V 0 (11 •.1. (N (N en r-i o 0 • • • • • • • 0 • • • • • • • • • • • • • • • ./ .1 V. V. ,r U 01 ,T on on r, rn on on on on on on MM MM (•••,

C)

CD rH CD rn N un Ul Cl Cl Cl oo VD CD 01 r1 VD CV oo co 0 a) Un VD rH Fn r-I CV N 01 01 N N cvm 01 I I I I I I I I I I I I I I I I I I I I I I I I I U) 4) r-I CV CV N Nr VD CO 00 CD 00 N VD N CD Ch CN N VD V0 L7, r-I rH r-I r-I C- on 7 3 Cl r-I C) r- r- r-4 VD C- 01 Cl N CD It) 0 4) 00 VD 00 r...1 00 Ch CN co Q.7, CO CO 4....-4 Cl r- CD CD co in u, C r- c., U) 00 OUCLD vo m CD CV • • . • • 0 • • • • • i • • / ! • I • • • • :0 • . • ,, r• N Ul Ul 00 Cl CN CN N 01 C.... N F., N 0/ 01 01 ul ul ul ch CN ..., ,, ,, ,, ,, ,, ,, rH r-4 CV 0,1 cv cq on 0

Un a) N r-I NO HNO CV CD N CD CV CD C) -4 Cq C) ,, CV CD r-4 N CD 0

0 co un ri C)1 CN CN CD N ul Cl VD N Ch Ch Cq u1 CL • . . . • • • • 0 r- VD r- lD vs vs vs vs Nr ul 01 r- ,r u1 0 F-4 r, (N (N vs• Ln ul VD UD r- r- 00 00 Ov C)

ID C) M F-1 cn Cl C11 Cl Ql Cl Cl Cl C1 ri (N rn un uo a) rj r- co ch _cp 0 CD 0 o 0 0 0 0 CD cy oc) CN

- 14 -

u) LC) U1 CV 01 CI" CM 00 Ul r 01 CM Ill co r- r- r- NCI r- r- IC) 04 VD 00 1 I I 1 I I 1 I 0,1 CV 0, 01 01 CV CV 0, 7 7 7 c■I " - 1 I I UD in ,r 1 I 1 1 I co cn co CD CD O, r- 0, 0, UD QD m- cn CT ,r on •••••• ►P.• op rrN r-- A 0 . Cy-) 0 01 44" 0 0300 Ce) 0 00 00 LO .O Mal LC) r- MO r- 01 N LO CD I . • ...CD cr CD 01 •;:1" 01 0.1 CD a e e e e e . LC1 OCDI, CV NI CD 01 01 01 1Di00 01 01r r- •-r-r r r MM LA 00 r r•-• r- CV CV NI CV CV LN.t

UD LC) Lt) CD 00 00 ,f Ul CD UD ul 0, CD CD ,r oo r.... 0, 0, r., .r- 5--. m- 0,1 r- r- (Si 0, 0, CV 0, 0, QD II. !It 01 01 CV 01 01 00 01 n0 It; III I i i.Iit 111 11 1 , I 1, C, 1, 15 C3 r- r- 00 01 ID ,...- un cn r- r- r- I, Lt) ,r. . ,r CV CT ,r) uD r- r- r- r- r- r- r-. r..... 0, ci 0,1 0,1 0.1 0)

CD P, 00 CM 01 CM Ul 01 UD CD Ul 00 CD CM CD ,r un CD Ul CD CD ,f r o0 01 L I WD ,r CD CM ul 0,1 CD r- CT CD ,, CD . • . • • • • • • 6 • . r-. CM cf. ct 0, uD LID ,, I • I rr rrr CD C, CD 00 01 cr 1.)0 r- CO Lc, r- r- r- Nr-N NN N 0,1 0, MN 01

CU VD CD Ul Cl 00 ,, r- r.... CO Ul in 0,I . Ch CM 0,1 r.• 0, ,- 0,1 0,1 ,, r- 0Q r- r-, r- ..... NN r- N 0, 0, 0, 0, CV q.t. 01 MM 01 11 I I I 11 t ilf. tti 1 i I f I I N. 00 lc ,• C) 00 CD 0,1 N U1 . 01 01 0, CM 00 CV 01 ,:f CO VD 0, r... e••••• r••••• r...• r.... r-• r-. N r•-• r•-•• N C\,1 or•-• N: NI re)

0 N11) 01CT1 CO N0 0000 r, Kt 0 CV LO I, CD CD 0 Cr. LO 111 r-• N 03 • r•• CV CD 04 CO, 0 LA CO LO I 1 I I • • 0 • • 0 • • e, I • 1 I • I CD cn on ,f 0,1 Ul un u) Ch cn CV 01 N 0, CO VD 010 0,1 r- r- - r- r- r-- r r-N N N N N N N

Kt S" NI CO LO CO c) cD ko ,r .d. 03 Cl 1s.00 CV cT, L...0 CO 0 C71 LO r-. r- t•-• r- r- T-.. N C\I r- N C\I r- 01 NI C\I .1. C\-1 NM CO I I 1 I t 1 III 111 1 1 1 :II III 111 I I I I I I rp LO co CO LC) CT Cn 00 00CV r-,N.10 10 10 0 0 01 r- • t. 0 r- r.-. r-.. r.-... r-.. r-.r- r- C\J CV r- NN 01

C cp co un CM r- 0,1 UD ON CD . CD r- CD CD I, CD CD CD c C) CD rp CD U0 U0 CO NV CD Sc- CD CD CM CD CT d• 0 r 0 MN CD C I I I I • • 1 • I L0 CTC NN0 01 01 Cr.N LO Kr 000 LC) t■ ••■•■ ••••••■ •••••■•• r-• r-•hJ NN NN NJ CV

UP CD CD r- V) 0, r- 0, 01 ci- ,• un 111 n 0-c r, UP CM 03 on CT CM r- CM r•-• I I I I r- co cn co 11 t I I I t I I / 1 I I 1 1 1 I I I I 1 I I r- r- r- m- r- r- 0,1 NI 0, 0, 0, 0,1 01 01 ,P cf ,r 0, sr co un UDID CO

01 CD CD Lt) uD uD CM ul 01 CM CD CD Lt) Ul ‹r on on r, r, cp N cn CD CD CD 0, CD Ul 01 01 01 CD cn r- oo cn cn uD QD 0, LID CO ct CV CV QD 00 00 CD 0, • • • • • • • 0 • • • 1 • 1 1 • I r- r- r- NNN 01 0, 01 000,01 ,t ,r un r, 101D00 • 00 00

O. r- 01 0, 0, ct ul r- P, cr CD CD u1 LC) CO cn r- r- r•-• CM rrr r•••• 1-•• t•-• r- N N tit III t. I t III I I 1 7 I CO CV CV CV MN cr. 01 Kt u Ul P, UD ,, 00 CD O CT CV ,r ,r r-

MOM01 CD 0, CD 111 00 LLD ,• r, on UP r- 0, N101,r, LO L) 01 00 0 01 Ul 00 O NOCD 00 r- 0,1 CT Oct- 0, 00 00 cn un 01 0 CO M 03 0 CV • • • i I 1 • I CO CV CV ,t cr Kt LC) Lt1 LC) LO LC CO 03 CO CM a; CC) MN 01 Cr r••••• r r".•

ul r- VD VD 01 r- Lt) C) VD 03 00 CD r- VD Ul 01 CD r- Ul 0, 0, Ul cn r- N LO 01 r- ....- 0,, 0, 0, 0, 0, 0, 01 01 01 01 LC) 01 ,f Ul ,P ,f cf -C C II I 11 III I 1 I I I I I 1 I I I I I I 1 1 I 1 t 1 r- 4, rp CQ 0.1 NMM ID NM01 CD CO ,, sr CD uP UP u1 r- Or ,, 0 CA N CO Ul r-- r- r-• r- r- r- C\J N0.1 0.4 NN r-- CO sr

CD CD ,, CD r- Ul 0,1 ,f ID CD VD co 000 ul <1. CD Oro01 r- CD CD CD r- C CD CD uD C1 MMon cn r, ,- sr un on r- r, 0, cr CD 0,1 ul CO NM CD CD L-. • • 1 • • I • r- 0, 01 Lt) l,0uP 0, CA 00 LID ^^ 111 CD CD r- Kt ,r Lc) CA CA CO ct Ul N CD rrr CV CV N N N NNN 01 01

M 01 CD 0, r- 0, cr cr r- UD 00 ,f Ul M cn 01 0,1 Ul un UD 00 UD 00 cn cn co r- r- cn I I r I I I I I i I I I I 7 7 7 7 7 7 7 I I ID 0, 0, r r- r r 0,1 CV 01/41 01 01 CO Ul Ul Ul ul up ciD 0,/ CD ti

010001 -C r,- Cl CO r. r, 0 CO re) cP.00 CD M N CO 01 C71 00 N. r•-•.4. 01 ‘13 cp CD CO • • • . 0 • • • I I CV NI N 00 CO C1 ,.r LO Lei LA I, V:, CO CO 0. 0 as 03 N 01 r••• r••• r.•• r-• e•-•t•••••

01 01 01 0 c Cr, c Ch r-i CN CO 01 CD C CD CD O O O CD CD CD r, C, 01 U1 VD N co 01 • .

- 15 -

N 0 01s VD If) N Ul N M In 01 V1 V) orTr OD VD LO VD VD V) In VD MD CO W r--1 111 N N z I I 1 1 1 11 1 1 1 1 I e I VD U1 r- Lo CN V) 1 1 1 1 I 1 1 1 1 In r- 01 CO 01 M01 ,V C9 00 CD 1 • 1 11 1 / I 1 on Tr V N ,V In ,r .41 V V Tr Ul U) U1 U1 LC) tr) ,14 VD ,71 CN OD CD 111 in VD Ul Ul In

CD CD CD 01 01 CD CD • CD CD CD MO r- CD M CD z CD CD CD 01 01 CD CD CD CD CD CD 1. 1 • 1 • CD CD MO l0 U1 ri rA CD CD CD CD • • • . •• I•. 1• • 1• CD CD Ul VD CD VD r- I • • N cs, In Ul CO N OD rA OD rA H VD U1 Ul I • • 1 • • 1 o • z M Tr N CD rn 4. .1 ,r .1 to In .1 VD VD C9 OD r- N CD r- VD Ul VD %JD VD VD ,r CD NN ON cr.N N CD CD cv") rA 0 CD Cr In 01 V .1:1. er 44 er VD un to 0 0 00 N 0 0 11 1 1 1 1 to 1.0 In 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 W L11 Lt1 1/40 ‘.0 40 In ,r r- VD Cl 04 1.0 LC/ LO in V N lD I I I I I I I I • 01 01 01 01 0 N M4 M CO V V V et.LO r- CD r- V. ,t. r- CM 11) V) V, 1f1 LO

CD CD CD r- r- CD CD • CD CD CD CD z CD r- 00 CD CD U) CD VD VD CO CD CD Ul In CD CD CD Ul rA CD CD CD CD CD CD I • I 1 • 1 • • • 1 • • 1 • s, 1 o • • • 1 o 1 CD CD U1 VD CD Tr CO 1 0 • e Ln ,T (3, r- ON • 01 ON Ch OD 1 s • I • • I o • N on on on on NN TrH Tr Tr Tr Tr TT Tr .1 In cV O r- r- 44 .1 ul Ill .1 .1 .1r- co.1

r-4 OD N N PA C... U1 rH CD 1...... C) ,r .1 O r` NO) 0,01 NN C.. rA OD ON 111 00 1 1 I 4. un .1 .1 .1 .1 4, .1 4. .1 4. In Tr un un Tr NV ,V Tr V Tr 1 . 1 1 1 1 1 1 1 1 1 1 1 1 ,1 VI N CV Ul CD I 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 Ul CD 44 01 Tr 01 Nr Ul N CV rA Ul CD CD 4, .1 4. VI Tr Tr Tr r- Pi Ch Ul CV z rn oi oi on . on Tr on Tr Tr on Tr Tr Tr Tr Tr Tr

z CD CD CD CD CD 0 Ul Ul 0 r- N 0 C N 0 CO CD 0 0 In CD 0 0 0 0 CD CD QD CD Ul VD CD 00 1.11 W 0 CO C 1• I I. 1 • • . 1 e. Is In 0 V Ln 4. CD 00 Tr o • 1 • • 1 .. • 1 • • 1 • . 1 • • 1 • • 1 • • ,r N 01 r, CM Ul N VD N N V un Tr Tr Tr ..a. N m in to in CO 1•1 1.11 In in in 4. ,r ,r Tr 4.Tr Tr v. ,r Nr Tr Tr Tr Tr Tr ,T Tr

r-1 H H H r-1 .--1 r•1 ?-1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 • • • • • • • • • • • I to I I H I CO OD Tr I O r- I N4 I 01 Ul I CD in I N 0 I CN N 1 ul oo 1 Tr in I .1 Tr C1 M rA Ul rA ri VD N 00 Cl 01 CD N on ri Ch CO MO OD rA 4N • • o • • o • 0 • • • • o • • o . . . lfl In r- VD r- VD r- VD QD Ul VD OD r- VD r- Ul VD V) l0 V) VD VD

Q) Cl en cy Ul CD VD Ul CD Ul I.nN NH r- CD OD CD ON Ul CD 00m ty, on cy cv on MN MN MM MM MM MM M4 MM 1 1 1 11 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 11 1 1 1 I 1 1 1 1 1 1 t 1 CP ID co N N N In 01 CO ko to r- r- CO N Ul OD CO U1 CD r- on ID N N H N N N N N N N N N N N 01 01 CO CO 01 01

V CD CD CD C) N CD CD ISO O N MO 000 111 CD 4r 0 CD CD CD CD Ul Ul CD CD VD N Ul VD CD VD 01 Ul r■ CD r- 01 H CD CD ,r un W W I 1 000 10. I 0 • I • • 1 •o fo• f• o I • J I • • 1 • • r- N H N r• r- 111 rH O N QC H CC, Ul rH un r- Tr co r- CV N N N N CV N CV N el N el N 01. N 01 01 01 01 on on on on

0 • 4., CO

0 H H PA r• H 1..1 r-1 rH r• rH rH H H H H r-I 0.0 0 00 00 00 •• 110 110 •• •• H 1J M I 1 cv 1 on cv v) i CV QD 1 CO el 1 cN Tr 1 CD ,M 1 NO 1 OH 1 OD CD I HIS i cy Tr C Ch In In N 1111D r- In 00 r- co Cl ,Jo co VD Ul Ul Ul r- VD 0 • • • • 0 • • • • • • • • • • • 0 • . • N r--IN (1) C.1 CN1 N N N N N N N N N N N N N N N N N N

4-1

CO N CD Ul N r- r- U1 U1 01 01 01 CD CD N U) Ul CD c) Ul VD 01 C70 Tr un l0 In In In In NlD NN NN O N CO CO 01 01 0101 CO Ch ID 1 I 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 i 1 1 1 1 1 I 1 I I CD 00 0 1/40 CO NN CV In 010 LO 0 00 MN ON 0 0 0 0, CD VD 111 Tr ill In 1/4.c. 1/4o In lD 1/4c) r- 1/4c) N N to N 01 ON 00 ON Z:51 U1 CD C) 01 CD CD CD C... CD CD CD 01 CD Cl CD CD CD a, C) CD CD CD CD r- co CD 01 C CD C VD CD OD 0 01 CD CO CD CD Ill N CD • U) 0 CD 4. 0 1 • 1 1 • 1 • • • I • 0 • • I 0 • I • • I • 0 I • • I • • I • • I • • In 0 00 In I-I CV %.0 1.() lr., 01 010 rlrl 010 M0 NN OlM ti Tr un In VD Ul In VD VD VD VD In In N r- r- co r- CO al a, Cl CO Ch

tfl

0 HN 0HN 0r-1 N 0 H N r-1N Or-iN Or-1N OHN 0 r-i N 01-1N Or-1N 01-1N () CT. 0 r-1 0 r- CD CD CD CD CD CD CD CD VD CD CD CD CD CD CD CD CD CD In 000 CD CD NO CD CD • Ul CD 00 CD CD 111 CV CD VD • • 0 • • • • 0 • • • • 0 • • 0 • 0 0 ,V UD CO OD .CV lt) Ul N H In N ,V N N In ,V Ul OI Ul N li0 N lO 4-; C I on 1 I Tr I II) Ul In 1 In In r- r- . co co 1 c., ct 1 0 0 I r-I r-{ I N N I ol cl I ,: ,r ri H H r• rH ri H r, H H 1-1 r-.1 r.-1 N N N N N N CV N N N 0 v rC CN CN CN Cl cA Ch CN Ch CN CN M ,r Ul In 00 Cl CD PA N 01 Tr .-4 H r.-.1 ,-1 H r, N N N N N a) (0 I I I I I 1 I I 1 I CD CD CD CD 0 CD 0 0 0 C) CD 0 V In QD 00 Cl.0 H N 01 V c0 M 1- H H r, ri ....i N N N N N

- 16 -

In Iss N 0 I CO N Ul Q0 r- in co N In Ul CA CV rA Ul N N CD rA ,r r-i CO N rA rA 01 01 ko r- oo co cm CO CA 00 rA rA CA -co 1 r- I I I I 1 1 r-4 rA rA rA rA I 1 1 1 f 1 1 1 1 1 I I I I I I I 03 0 N CO N rA 0 U.) Ul l0 in I I 11 er i...o is) r-- Lc r-- N 0 01 U1 O N CD CD U1 CD in 10 co r-- CON 01 CO CA rA rA rA rA rA rA U1 n CD r- 00 CD CD CD CD CD CD Ul r- CD CD CD CD CD CD CD CD CD N CD VD CI C Ul CD CD OD CD VD Ul Ul Ul 1 • I 1 • 1 • • 0 I I CD CV Ul CD Ul ,r . -• . • 1 0 0 I • I • . f • rA CO co r- r- 01 • o • i • • N CD CD O r dyer ,r rA er CA C h UN r, 10 VD r- r- r- 00 CA q01 rA 01 CO CA OD CD O\ CD rA CV CV rA rA

to O M Lt1 O In CD Ch CD CV N N OD NV cyN10 VD C4 VD CD NM NO 10 CD r- co cA cA co OD 01 c rA .14 CD rn on VD ,r I 1 1 rA %V rA rA r-I r-1 rA rA I I I I 1 1 I I I I I I I I I 1 rA ,A ,r 10 I 1 I I I I 1 I CO in 01 N 0 oo N 0 rs- co in a a r- I 1 I I I 1 ,r r- r- r- r- co r- cm OD 00 11) U1 CD CO CD 0r C) CD 0 0 r-4 CD 01 CV 01 r-1 1-1 1--1 r-1 r-i rA rA rA rA CD CD CD 01 r- CD CD CD CD O r CD CD 01 CD In 0 CD CD 01 VD %24 CD CD CD OD VD O O O 0 co 1 • 1 o CD CD 01 CD 0 0 U1 lO 1 • 1 • 0 I • • I • • 11 • • 1 • 0 0 0 0 .11 01 Ch • 0 • es 10. CO 10 01 %/4 00 rA N 00 r- 04 CA r, CD 01 Ln r- r- r- 00 00 00 00 CM 00 00 co in h h CD 00 0 0 r-4 N 0 r-I M ,V -1 ri rA r-4 r-I r-I r-4 r-1 r-1

rA CI N OD en U1 U1 Ul CD N00000 CD Ul %3. 00 OD 0 CO 00 CD 10 ,r r 0 rA 04 rA CD ,r OD r- CO CA rA CA cA cr, CA rA en 01 Ul I 1 1 1 I rA 01 rA rA r-1 1 1 I 1 I 1 1 1 1 1 1 1 I 1 1 ral rA rl E, r- CD N r- 10 I 1 1 1 1 I I I ,r N CD CO Nr .0 un co 0 01 CD O I I 1 1 CD co r- VD r- NCO N O V0 s CO 1/1 CD Ul r-- 01 00 c CD • r1 r--I z r---1 N N CI CD r--1 rA H 0 0 0 0 0 0 0 0 0 0 Ul 0 en N 0 r-i CD Cn 01 z 000 Vo il co o 10M l00 r-1 tfl 0 0 0 CD CD 1 0 1 I • I 0.• Ioo lee Ise. lop II° N 0 1.21 N 0 NV C4 In CD • • Ner d Ln r- N. V Mtnr, CD 1.0 CO ri • • z Ul 0) r- Is (0 OD N in CO cc 00 CA CO CO CD 00 CD CD N -4 N r1 er r- r-1 rA rA N 01 ul N r--I r-1 r-i 8-1 "-I rA

01 CO 1".• CA N Is 01 r- CD N r-1r-I 0 0 N r-1 O In 10 l0 N CO to CO N 00 r-i CA CO rA CD er ,T z 1 1 1 I I 1 I . 1 0 r--I r-I r-1 rA E, U1 1 1 1 1 I 1 1 1 I 1 I 1 1 1 CA 01 OD CD LC In OA tf) In 1 I I I 1 1 CD 10 10 CO N to 10 cA o Ul CD 10 in 10 in co In In 1.11 ID rr Is- CO z CA CD a co rA CD CD CD rn CD CD CD r- 0 CD CD CD CD CA CD f.n 0 Ul CD CD rn CD CD Ul VD CD Nr CD 0 0 1 00 In CD Ul 00 CD I . 1. 1 • e . fo• I• • I • 0 I o • o rA CD "Ul CO W. NV I . • C4 CD 01 CV VD 01 01 Ch rA %V CA CD 01 1 • 0 o z et 1.... VD VD VD 01 OD 10 01 00 o VD r- VD 00 VD VD r- 00 CO r- CO CA CD CD 0.1 rA rA

N 4.1 O In r•-• In In V) 01 V N In CO r-1 NV CI lf) 0\ M 0 r-1 N r-I rA N N N N N N M N rn N 01 CV I I I I I I I I I I I I I I I CV 01 I I I f I I I I I I I 1 1 I 11 1 1 I CD CD U1 CI .41 r I r-A M er Cn to r r In lD CO 10 I rA r-1 co en o a o s r--I r-1 r-1 r---1 N NN CV rA

CD CD O rrr- CD CD CD CD CD CD r 0 CD CD COO CD CD CD 10 VD NV CD rA CD 0 0 CD CD 0 CD NI, 0 VD U1 CD Ul 00 N r- CD tn 00 Ul ,r 1 • 1 I • I • . • 1 • • I • . 1 •(,. I• . I • • I • • 01 0 0 I • • 1 • CD Ul ,T ,V 01 00 VD ,r CD CA CD N CA CD rA rA un on z rA rA rA rA rA rl rA rA rA Nr ,r rA r- N rA N N -4 N N N N N N N CV N

rA In In CO 00 N CD CD CD 10 CD 111 01 CD Ch OD ,r 0-4 Nr r- rA CV ON N ri 04 01 MM ,r CV err Nr MM ,rd %V 01 Nr ,r ct. ,r z I I I I I 1 1 I 1 1 I 1 I I 1 1 1 1 1 I 1 1 1 I I 1 11 1 I I 1 1 1 I CD CO o o 0 00 01 VD r4 Ul CD Ul r- In ,r c) rA r,N Nr r- N N r-1 NNcycy NN MN MN NN MM cy 00 cy cy 01 CV 1-1 11-1 0 0 h M 0 0 M O O r 0 0 N O OD 0 CA CD CD CD CD CD L.C1 01001 10 010 LI1 C.4 in M IO 04 CD Ul CD Ul CO I • I I •I • • • I • • I • • I • • I • - • 1 • . I • • 1 . • Nr O 10 ,r N 1.11 r4 CO r- r- rA CO CO 111 N N N N N 01 N 01 CI 01 01 01 01 01 01 01 01 01 00 01 M

in co C) Ul CD CD U1 U1 el M CO CA fs- 0 VD rN co ,r co c) rA rA CV r4 04 Nr M N r--I •cr et r co CA 00 CA CA Ch CA r-1 rA rA r4 1--4 rA r-I r--I I I r-1 r-I E, 1 1 1 1 1 1 1 1 1 1 1 1 • I 1 I I I I I I 1 I I I I I U") In I I I CD OD N011n CD CD CD Nr N r- 111 CD Ul CD MO OM NN CO er r- co r- co cm CA Ch Ch r- oo CD CD CD CD rA CD N r-4 NN rA rA rA rA rA rA r-1 r1 0-1 r-i In O a m N.o o N 0 a cn CD co r- CD CD CD M CD 0 0 0 0 o m to N o ko o co co CD CD VD Ul Ul CD I 0 0 0 0 z in 1 0 • I • . • • Nr 1 • I • I • • 0 I • 0 I 0 0 I • • • I o ♦ 1 . . In 00 r U/ Ul N r4 CI Nr N VO CAUL MM O r CA 01 CD 1--1 CNi al CD r-I r-4 rq ri ,r r- co oo 00 CA Ch CA CA CA CM 04 04 01 01 01 01 ,...4 r. ,..1 ,..1 ,A r, 1-4 r-4 r-4 r--1 r-i r-i

r-A Cr h Co rn op on rA CD 01 Ul CD VD Nr ,r VD r■r N 00 V;) r-1 ,r ,r ,r on er N CV CI 01 01 on M on on on • Ul ,I. ul ,r ,r Nr er ul t I I I I I 1 I I I I I 1 1 I I I I I I 1 1 I I i I I I I e) rA rA I I I I I 1 CO VD VD r- .1 ,..-.! 01 01 CD CA CD u CV OM CD %V 01x0 ION CV N CV M 01 0.1 01 CV 01 01 M 01 01 01 01 01 NV MM 00 NV

CD CD Ul CD CD CD CD 01 CI CD CD CDO NCD r- %34 O CD CD CD CD CD CD CD CI CI NO CD VD CD QD CD CD ,V CDCVCO CD CD ON Ul NV Ul CD e I • • 1 • o I o • 1 • 1 t • 1 • . • I• e 1 • • 1 • • I • . I e . O1 r- VD 00 00 N Ul ,V ,V 00 CO OD .4. ,V 00 ,..1 r-f r- .-4 N cY cy cy MM 01 01 01 01 CY) 01 01 01 01 et .s/.. on ,r CP •crt.

4, 0 01 CA O1 Ch Ch Ch CA cn (11 c, 01 cm C) CA CD H N 01 NI, rn cr 00 r-1 ,.•..,, ,-.1 N N N N N r-I I I I ! I I C 1 I I 1 I 1 O c o o CD CD 0 --- CD O 0 CD CD z ,r r- co ci, c ---t ,N1 rn NV r-1 r-I r-1 H N N N CV N

18

inferior lobe 2 posterior dome groove 3 rostra! angle

4 posterior indentation

A.

B.

Figure 3.(a,b,c Photographs of statoliths of Illex illecebrosus. 3a - dorsal mangle length (DML) is 220 mm, 3b MIL is 130 run, 3c DML is 60 mm.

0 0 4-,

0

0

0

,170

4 8

0, ...... y....::...... i....:-.:-..,::::... .1....:

7tit,., •„,,...... :,..i.i.....,::.2:74 ...,.„..„,i: .. -......,.r.1 ••:„:••• •• .. - -,, ;:::...

.:,,,,,,•....,,,,,;:li.,,..3. ..-4. ,....4:"::.71::::!:1 . 7.7. ,,,,,.....4,„„IN"; ,,,,,...... ,..:::::.::„:„...... t..,..,..,:„.:7:::::i,,,,.::,.,..•:::, . ...... :::::::zi.slft ::...:1.,.....1.:1,:...4.... :,. . .. • ,... •••• ,,,,,,,•,,,,,•-;"• ...117:::::,7".„. ,- T...... 1,.:.::.... ..:0,...5i ,..., .....:,....,:m55 ...a.g.,::...,:.,:".;..,...... i4 ,.. ...... :::„....:::.,.....,.,„,::.:,,,,,,„.... .....„...„.,,,p.::::::,...... ::;:

..-...... .-17.i. .. ••••,.,....,•,-;,-....4 --T.. .,...„.„:„...• • .‘ ...../. .--". ,,,, •••••••••••••-••••• . ::::.....-- 7::14161-•,-,,,,.5f,.... :::::,,, .... .. -,,,,,,:::::::::,,..... ••:::• ...". „ ... .- ...... -..i...... :::..,...... :.,...,:„.:,..,,,...... ::.::.,.....„.,,.....,...... -- ...... ,".,.,:•:"...... ,.::::,,...-„, i-...... :,;:•::::,.,,...,. :..., .7111

o,m,::4..:..:,.,...,;,::;i72:.::...1:!,::.

-... ....-: ....:...... :...::. ..",,,yr,:.,...,,:.--..,...:-...-...... ,,,-...:,::::::::....:....55.

0

0

0 4-, r-- 0_ 4-, 0 cc)

0 r-- MI

Ca- 0 - 20

• E

cr)

0 C\I

0 CD,

E 00 LS (-)

CC;

CC

:3

CC

0, F.,

0 CO

0 CC or I C o E Co, sw, L.:, 4_ 21

DORSAL VIEW

VENTRAL VIEW

(Fig. 9 ) liorphometric .meas rements.

Mantle length Fin width Fin length Mantle width (1) Mantle width (2) Mantle width (3) Arm length Head length Head width (1) Head width (2) 11. Fin angle _

i