Gladius Shape Variation in Coleoid Cephalopod Trachyteuthis from the Upper Jurassic Nusplingen and Solnhofen Plattenkalks

Total Page:16

File Type:pdf, Size:1020Kb

Gladius Shape Variation in Coleoid Cephalopod Trachyteuthis from the Upper Jurassic Nusplingen and Solnhofen Plattenkalks Gladius shape variation in coleoid cephalopod Trachyteuthis from the Upper Jurassic Nusplingen and Solnhofen Plattenkalks DIRK FUCHS, THEO ENGESER, and HELMUT KEUPP Fuchs, D., Engeser, T., and Keupp, H. 2007. Gladius shape variation in coleoid cephalopod Trachyteuthis from the Upper Jurassic Nusplingen and Solnhofen Plattenkalks. Acta Palaeontologica Polonica 52 (3): 575–589. Although the fossil record of coleoid cephalopods is generally poor, the Upper Jurassic Nusplingen and Solnhofen Plattenkalks have provided numerous well−preserved coleoids. Trachyteuthis hastiformis, a comparatively large vam− pyropod coleoid, was previously known to represent the sole species of its genus in Nusplingen and Solnhofen. However, morphological comparisons based on 50 specimens from different museum collections revealed two additional species: T. nusplingensis sp. nov. and T. teudopsiformis sp. nov. Both species lack the distinct spindle−shaped elevation on the gladius median field typical for T. hastiformis. T. nusplingensis sp. nov. is clearly characterised by a smooth median field and a more or less regular granulation on the dorsal gladius surface, whereas T. teudopsiformis sp. nov. can be easily dis− tinguished by the presence of a Teudopsis−like median keel and an extremely narrow granulation. Morphometric analyses have shown that length−width indices are ambiguous characters to differentiate between the three species. Phylogeneti− cally, the keeled and anteriorly pointed T. teudopsiformis sp. nov. can be linked with the Early Jurassic genus Teudopsis and the Late Cretaceous genus Glyphiteuthis. Key words: Cephalopoda, Coleoidea, Vampyropoda, Trachyteuthis, gladius, Kimmeridgian, Tithonian. Dirk Fuchs [[email protected]−berlin.de], Theo Engeser [[email protected]−berlin.de], and Helmut Keupp [keupp@ zedat.fu−berlin.de], Freie Universität Berlin, Institut für Geologische Wissenschaften, Fachrichtung Paläontologie, Malteserstr. 74−100, D−12249 Berlin, Germany. Introduction BMNH, Natural History Museum London, UK; PIMUZ, Paläontologisches Institut und Museum, Universität Zürich, Trachyteuthis is an extinct genus of vampyropod coleoid with Switzerland; SMF, Senkenberg Museum, Frankfurt/Main, a stratigraphic occurrence from the Callovian (Middle Juras− Germany; SMNS, Staatliches Museum für Naturkunde, sic) to the Cenomanian (Late Cretaceous). The morphological Stuttgart, Germany; SOS, Jura Museum, Eichstätt, Germany. knowledge of Trachyteuthis is based mainly on specimens from the Kimmeridgian Nusplingen and the Tithonian Soln− hofen Plattenkalks (both Upper Jurassic). Thanks to the ex− traordinary preservation found in the Nusplingen and Soln− Historical background hofen Plattenkalks, Tr. hastiformis (Rüppel, 1829) belongs to the best known fossil coleoids. Although Tr. hastiformis is Knorr (1773: pl. 22: 2) was the first to illustrate an example of generally considered to represent the only trachyteuthid in Trachyteuthis. He identified it as fish remains. Rüppell (1829: Nusplingen and Solnhofen, many additional species have 9) is credited with being the first to fully describe Sepia been proposed in the past two hundred years of research; and hastiformis from the Solnhofen area. Rüppell (1829) and indeed, gladii (singular gladius; the chitinous pen in the dorsal many subsequent palaeontologists considered the preserved mantle) seem to vary in shape and size. If we do not want to as− remnants to be a fossil cuttlebone of Sepia. Eight years later sume each state of preservation to be a separate species, it is Münster (1837) recognised eight species (S. hastiformis, S. urgently necessary to conduct a comparative morphological obscura, S. regularis, S. linguata, S. gracilis, S. venusta, S. study which might reveal whether one or more species existed. caudata,andS. antiqua) in the Solnhofen Plattenkalks but It was therefore the aim of the present study to examine the de− gave neither descriptions nor illustrations of these species. tailed gladius morphology of Trachyteuthis based on a high Count G.G. Münster was in poor health and provided his un− number of specimens. published drawings and descriptions to Alcide d’Orbigny who finally published them in a series of publications (Férrussac Institutional abbreviations.—G, Museum Bérger, Eichstätt, and d'Orbigny 1835–48, d'Orbigny 1845–46). Count Münster Germany; MARKA, Markgrafenmuseum, Ansbach, Ger− died in 1844 before he could complete his work, and Wilhelm many; MB.C, Museum für Naturkunde, Berlin, Germany; Dunker, the editor of the seventh volume of the “Beiträge zur Acta Palaeontol. Pol. 52 (3): 575–589, 2007 http://app.pan.pl/acta52/app52−575.pdf 576 ACTA PALAEONTOLOGICA POLONICA 52 (3), 2007 Petrefaktenkunde”, finally published again an incomplete ma− formis achieved general acceptance (Naef 1922; Jeletzky nuscript by Münster (Münster 1846). In Férrussac and d'Or− 1966; Donovan 1977; Bandel and Leich 1986; Engeser bigny (1835–48), d'Orbigny revised Münster's ideas and pre− 1988; Doyle et al. 1994; Haas 2002; Donovan et al. 2003). sented Sepia hastiformis, S. antiqua, S. caudata, S. lingulata, The systematic affiliation of Trachyteuthis was long under and S. venusta, although he mentioned that specific distinc− debate. Naef (1922) and Jeletzky (1966) put Trachyteuthis tions are mainly due to ontogenetic differences or preserva− along with so−called “fossil teuthids”, whereas Donovan tional artefacts. It is worth to note that d'Orbigny's knowledge (1977) assigned it to sepiids. Later on, Bandel and Leich was merely based on notes and drawings by Münster. He had (1986) introduced an alternative idea. Since Trachyteuthis and never investigated original material. other “fossil teuthids” such as Plesioteuthis and Leptotheuthis In the meantime, Meyer (1846) recognised the morpholog− never show more than eight arms, Bandel and Leich (1986) re− ical differences between fossil and living forms and erected garded them as early members of the Vampyromorpha. A dis− the genus Trachyteuthis. He disregarded older publications covery of two pairs of fins recently supported vampyropod af− and distinguished two species, T. ensiformis and T. oblonga filiations of Trachyteuthis (Donovan et al. 2003). from the Solnhofen Plattenkalks, but without giving detailed descriptions and illustrations. Almost ten years later Meyer (1855) provided an extensive description of T. ensiformis. Material and methods Owen (1855) was the first to report a “sepiid−like cuttle− bone” in the Kimmeridge Clay of England, Coccoteuthis Between 2002 and 2005 more than 20 different museum col− latipinnis Owen, 1855. He suggested that Coccoteuthis, lections were visited. A total number of 50 specimens from which is identical with Trachyteuthis, is intermediate be− the Upper Jurassic Plattenkalks of Nusplingen and Soln− tween Sepiidae and Loliginidae. hofen labelled as Trachyteuthis were investigated. The stud− Wagner (1860), who re−examined Münster's specimens, ied material included the type species of Trachyteuthis, discussed generic and specific names circulating in the litera− Trachyteuthis ensiformis Meyer, 1846 and the holotype of ture and concluded that each species is identical with S. Trachyteuthis hastiformis (Rüppell, 1829). Apart from these hastiformis. In the following years Trachyteuthis was vari− “German” specimens we had also the opportunity to investi− ously treated as a diverse genus or as monospecific. How− gate specimens of Trachyteuthis from the Callovian and ever, during the twentieth century only Trachyteuthis hasti− Kimmeridgian of England, the Oxfordian of Chile, the Table 1. Comparative measurements of type specimens of Trachyteuthis hastiformis, Trachyteuthis nusplingensis and Trachyteuthis teudopsi− formis. Note that not preserved indices are omitted. Abbreviations: Aia, angle of diverging inner asymptotes; Aga, angle of granulated area; GL, gladius length; GW1/2gl, gladius width at half way along the gladius length; GWhz, gladius width at the anterior limit of the hyperbolar zone; GWlf, gladius width at the anterior limit of the lateral field; GWmax, maximum gladius width; HZL, hyperbolar zone length; LFL, lateral field length. Trachyteuthis Trachyteuthis Trachyteuthis hastiformis (Rüppell, 1829) nusplingensis sp. nov. teudopsiformis sp. nov. Measurements MARKA1 SMF IX1328 SMNS 63596 G 130606 (original of SOS 5762 (holotype) (holotype) (holotype) Meyer 1846) GL 225 + x mm 295+ x mm 325 mm 280+3 mm (interpolated) 70+x mm (incomplete) HZL ? ? 125±2 mm 100+3 mm (interpolated) 30 mm LFL ? ? 109±2 mm 90 mm 26 mm GWhz ? ? 87±2 mm 77 mm 25 mm GWlf ? ? 108±2 mm 97 mm 33 mm GWmax ? ? 113±2 mm 109 mm 37 mm GW1/2gl ? ? 83±2 mm 75 mm ? Aia ??40° 40° 43° Aga \ \ \ 12° restricted to keel HZL/GL ? 0.39–0.42 0.39–0.4 0.36 ? LFL/GL ? ? 0.34–0.35 0.32 ? GWhz/GL ? ? 0.27–0.28 0.27 ? GWlf/GL ? ? 0.34–0.35 0.34 ? GWmax/GL ? ? 0.35–0.37 0.39 ? GW1/2gl/GL ? ? 0.26–0.27 0.27 ? GWmax/HZL ? ? 0.87–0.93 1.05 ? Granulation coarse, irregular coarse, irregular coarse, irregular fine, regular narrow Spindel−shaped elevation present present present absent absent FUCHS, ENGESER, AND KEUPP—GLADII OF VAMPYROPOD COLEOIDS 577 median median field field gladius length gladius length gladius width 1/2 gladius length inner hyperbolar zone length asymptote lateral field length gladius width outer end hyperbolar zone growth asymptote line gladius width hyperbolar zone length end lateral field maximum lateral field length gladius width hyperbolar zone lateral field apical angle inner asymptote Fig. 1. Morphology, terminology and measurements of a vampyropod
Recommended publications
  • CEPHALOPODS 688 Cephalopods
    click for previous page CEPHALOPODS 688 Cephalopods Introduction and GeneralINTRODUCTION Remarks AND GENERAL REMARKS by M.C. Dunning, M.D. Norman, and A.L. Reid iving cephalopods include nautiluses, bobtail and bottle squids, pygmy cuttlefishes, cuttlefishes, Lsquids, and octopuses. While they may not be as diverse a group as other molluscs or as the bony fishes in terms of number of species (about 600 cephalopod species described worldwide), they are very abundant and some reach large sizes. Hence they are of considerable ecological and commercial fisheries importance globally and in the Western Central Pacific. Remarks on MajorREMARKS Groups of CommercialON MAJOR Importance GROUPS OF COMMERCIAL IMPORTANCE Nautiluses (Family Nautilidae) Nautiluses are the only living cephalopods with an external shell throughout their life cycle. This shell is divided into chambers by a large number of septae and provides buoyancy to the animal. The animal is housed in the newest chamber. A muscular hood on the dorsal side helps close the aperture when the animal is withdrawn into the shell. Nautiluses have primitive eyes filled with seawater and without lenses. They have arms that are whip-like tentacles arranged in a double crown surrounding the mouth. Although they have no suckers on these arms, mucus associated with them is adherent. Nautiluses are restricted to deeper continental shelf and slope waters of the Indo-West Pacific and are caught by artisanal fishers using baited traps set on the bottom. The flesh is used for food and the shell for the souvenir trade. Specimens are also caught for live export for use in home aquaria and for research purposes.
    [Show full text]
  • PROGRAMME ABSTRACTS AGM Papers
    The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia, Spain PROGRAMME ABSTRACTS AGM papers Palaeontological Association 6 ANNUAL MEETING ANNUAL MEETING Palaeontological Association 1 The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia The programme and abstracts for the 63rd Annual Meeting of the Palaeontological Association are provided after the following information and summary of the meeting. An easy-to-navigate pocket guide to the Meeting is also available to delegates. Venue The Annual Meeting will take place in the faculties of Philosophy and Philology on the Blasco Ibañez Campus of the University of Valencia. The Symposium will take place in the Salon Actos Manuel Sanchis Guarner in the Faculty of Philology. The main meeting will take place in this and a nearby lecture theatre (Salon Actos, Faculty of Philosophy). There is a Metro stop just a few metres from the campus that connects with the centre of the city in 5-10 minutes (Line 3-Facultats). Alternatively, the campus is a 20-25 minute walk from the ‘old town’. Registration Registration will be possible before and during the Symposium at the entrance to the Salon Actos in the Faculty of Philosophy. During the main meeting the registration desk will continue to be available in the Faculty of Philosophy. Oral Presentations All speakers (apart from the symposium speakers) have been allocated 15 minutes. It is therefore expected that you prepare to speak for no more than 12 minutes to allow time for questions and switching between presenters. We have a number of parallel sessions in nearby lecture theatres so timing will be especially important.
    [Show full text]
  • First Record of Non-Mineralized Cephalopod Jaws and Arm Hooks
    Klug et al. Swiss J Palaeontol (2020) 139:9 https://doi.org/10.1186/s13358-020-00210-y Swiss Journal of Palaeontology RESEARCH ARTICLE Open Access First record of non-mineralized cephalopod jaws and arm hooks from the latest Cretaceous of Eurytania, Greece Christian Klug1* , Donald Davesne2,3, Dirk Fuchs4 and Thodoris Argyriou5 Abstract Due to the lower fossilization potential of chitin, non-mineralized cephalopod jaws and arm hooks are much more rarely preserved as fossils than the calcitic lower jaws of ammonites or the calcitized jaw apparatuses of nautilids. Here, we report such non-mineralized fossil jaws and arm hooks from pelagic marly limestones of continental Greece. Two of the specimens lie on the same slab and are assigned to the Ammonitina; they represent upper jaws of the aptychus type, which is corroborated by fnds of aptychi. Additionally, one intermediate type and one anaptychus type are documented here. The morphology of all ammonite jaws suggest a desmoceratoid afnity. The other jaws are identifed as coleoid jaws. They share the overall U-shape and proportions of the outer and inner lamellae with Jurassic lower jaws of Trachyteuthis (Teudopseina). We also document the frst belemnoid arm hooks from the Tethyan Maastrichtian. The fossils described here document the presence of a typical Mesozoic cephalopod assemblage until the end of the Cretaceous in the eastern Tethys. Keywords: Cephalopoda, Ammonoidea, Desmoceratoidea, Coleoidea, Maastrichtian, Taphonomy Introduction as jaws, arm hooks, and radulae are occasionally found Fossil cephalopods are mainly known from preserved (Matern 1931; Mapes 1987; Fuchs 2006a; Landman et al. mineralized parts such as aragonitic phragmocones 2010; Kruta et al.
    [Show full text]
  • First Record of Duvaliaex. Gr. Lata(Cephalopoda, Coleoidea) From
    First record of Duvalia ex. gr. lata (Cephalopoda, Coleiodea) from Mexico 527 BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA VOLUMEN 65, NÚM. 3, 2013, P. 527-531 D GEOL DA Ó E G I I C C O A S 1904 M 2004 . C EX . ICANA A C i e n A ñ o s First record of Duvalia ex. gr. lata (Cephalopoda, Coleoidea) from Mexico Patrick Zell1,*, Seija Beckmann1, Wolfgang Stinnesbeck1, José Flores-Ventura2 1 Institute for Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany. 2 Santa Engracia 257, Fracc. Santa Elena, Saltillo C.P. 25015, Coahuila, México. * [email protected] Abstract Here we present the first record of the belemniteDuvalia ex. gr. lata (Cephalopoda, Coleoidea) from Mexico. The unique individual, a well-preserved rostrum, was discovered in Early Cretaceous strata of the Sierra de Parras close to Viesca in southwestern Coahuila. Duvalia ex. gr. lata was previously known from the Mediterranean Tethys. Our report extends the paleogeographic distribution of Duvalia to the western hemisphere and supports the hypothesis that the Hispanic Corridor was open during the Early Cretaceous, allowing for marine faunal exchange and migration between the Gulf of Mexico and the European Tethys. Keywords: Duvalia, belemnite, Early Cretaceous, Mexico, Hispanic Corridor. Resumen Se reporta por primera vez el belemnite Duvalia ex. gr. lata (Cephalopoda, Coleoidea) en México. El único ejemplar, un rostro bien preservado, ha sido descubierto en capas del Cretácico Temprano de la Sierra de Parras,en las cercanías de Viesca, en el suroeste de Coahuila. Previamente, se conocía a Duvalia ex.
    [Show full text]
  • Xiphias Gladius Stomach Content Analysis Is an in Zones a and B, Fish Were Stored Linnaeus, 1758, Is a Mesopelagic Important Tool in Ecological and in Ice
    The diet of the swordfish tained from a longline vessel between 1 and 15th March 1991 by using Xiphias gbdius Linnaeus, mackerel, Scomber spp., as bait. 1 758, in the central east Atlantic, Zone C Gulf of Guinea (3O09'- 0°36'N and 26O27'-4O17'W). Fifteen with emphasis on the role of swordfish (standard length [SL] between 140-209 cm) were selected cephalopods on the basis of the presence of cephalopods in their stomachs. Vicente Hernández-García These were taken from catches Dpto de Biología, Facultad de Ciencias del Mar made by a longliner between May Univ. de Las Palmas de G. Canaria and July of 1991 by using mackerel C P 350 1 7, Canary Islands, Spain and squid, Illex sp., as bait. Stomach preservation and analysis The swordfish Xiphias gladius Stomach content analysis is an In zones A and B, fish were stored Linnaeus, 1758, is a mesopelagic important tool in ecological and in ice. After landing, fish were mea- teleost with a cosmopolitan distri- fisheries biology studies. Oceanic sured from the tip of the lower jaw bution between 45"N anci 45"s iati- vertebrates are often more efficient to the fork of the taii (S¿). During tude. It is an opportunistic preda- collectors of cephalopods than any commercial operations the internal tor feeding mainly on pelagic ver- available sampling gear (Bouxin organs were removed before the tebrates and invertebrates (Palko and Legendre, 1936; Clarke, 1966). fish were weighed. The stomach et al., 1981). The diet. of the sword- The p'irpose nf thir st11dy was to rnntents nf earh fish, incli~dingal1 fish has been studied mainly in the expand knowledge of the diet of the hard parts found in the stomach western Atlantic Ocean (Tibbo et swordfish from the central east At- wall folds (otoliths, very small al., 1961; Scott and Tibbo, 1968, lantic Ocean, with special emphasis beaks, and lenses), were weighed 1974; Toll and Hess, 1981; Stillwell on the role of cephalopod species.
    [Show full text]
  • Morphological Study on Radula of Nine Cephalopods in the Coastal Waters of China
    第 26 卷第 5 期 水 产 学 报 Vol .26, No.5 2002 年 10 月 JOURNAL OF FISHERIES OF CHINA Oct ., 2002 文章编号 :1000 -0615(2002)05 -0417 -06 Morphological study on radula of nine cephalopods in the coastal waters of China ZHENG Xiao-dong , WANG Ru-cai (The Key Lab of Mariculture Certificated by the Ministry of Education , Ocean University of Qingdao , Qingdao 266003 , China) Abstract :The radula of nine cephalopods are compared on the basis of scanning electron microscopic observation and morphological measurements .Results indicate that all of them consist of 7 longitudinal rows of teeth :a median tooth and the 1st , 2nd , and 3rd lateral or lateral , inner marginal , and outer marginal teeth .The formula of radula is 3·1·3 .Sepioidea (Sepia robsoni , S .esculenta , S .pharaonis , S .latimanus , S .aculeata , Sepiella maindroni , Euprymna berryi)has only one cusp in the median tooth , and a marginal plate is absent .The median tooth has 3 and/or 5 cusps and marginal plates are found in the two species of Octopus ocellatus and O .variabilis .Other differences in the radula structure among the nine species are illustrated in detail .The relationships of radula of the cuttlefishes , octopuses and squids are discussed .It is suggested that radula should be thought in the cuttlefish taxonomy . Key words:cephalopods ;cuttlefish ;radula ;morphology ;scanning electron microscope(SEM) CLC number :S917 ;Q954 Document code :A 1 Introduction Anatomical characters have traditionally been used in fisheries biology to describe geographic variation in some exploited species of cephalopods[ 1-4] .Unlike molecular genetic markers , it is obvious that phenotypic variation is influenced by environmental factors , and the genetic component of such variance is uncertain[ 5] .
    [Show full text]
  • A New Genus and Three New Species of Decapodiform Cephalopods (Mollusca: Cephalopoda)
    Rev Fish Biol Fisheries (2007) 17:353-365 DOI 10.1007/S11160-007-9044-Z .ORIGINAL PAPER A new genus and three new species of decapodiform cephalopods (Mollusca: Cephalopoda) R. E. Young • M. Vecchione • C. F, E, Roper Received: 10 February 2006 / Accepted: 19 December 2006 / Pubhshed online: 30 March 2007 © Springer Science+Business Media B.V. 2007 Abstract We describe here two new species of Introduction oegopsid squids. The first is an Asperoteuthis (Chiroteuthidae), and it is based on 18 specimens. We describe three new species of cephalopods This new species has sucker dentition and a from three different families in two different funnel-mantle locking apparatus that are unique orders that have little in common except they are within the genus. The second new species is a from unusual and poorly known groups. The Promachoteuthis (Promachoteuthidae), and is unique nature of these cephalopods has been based on a unique specimen. This new species known for over 30 years but they were not has tentacle ornamentation which is unique within described because (1) with two species we waited the genus. We also describe a new genus and a new for the collection of more or better material species of sepioid squid in the subfamily Hetero- which never materialized and (2) with one species teuthinae (Sepiolidae) and it is based on four the type material was misplaced, virtually forgot- specimens. This new genus and species exhibits ten and only recently rediscovered. The 2006 unique modifications of the arms in males. CIAC symposium was the stimulus to finally publish these species which should have been Keywords Amphorateuthis alveatus • published in the first CIAC symposium in 1985.
    [Show full text]
  • Defensive Behaviors of Deep-Sea Squids: Ink Release, Body Patterning, and Arm Autotomy
    Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Roy L. Caldwell, Chair Professor David R. Lindberg Professor George K. Roderick Dr. Bruce H. Robison Fall, 2009 Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy © 2009 by Stephanie Lynn Bush ABSTRACT Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair The deep sea is the largest habitat on Earth and holds the majority of its’ animal biomass. Due to the limitations of observing, capturing and studying these diverse and numerous organisms, little is known about them. The majority of deep-sea species are known only from net-caught specimens, therefore behavioral ecology and functional morphology were assumed. The advent of human operated vehicles (HOVs) and remotely operated vehicles (ROVs) have allowed scientists to make one-of-a-kind observations and test hypotheses about deep-sea organismal biology. Cephalopods are large, soft-bodied molluscs whose defenses center on crypsis. Individuals can rapidly change coloration (for background matching, mimicry, and disruptive coloration), skin texture, body postures, locomotion, and release ink to avoid recognition as prey or escape when camouflage fails. Squids, octopuses, and cuttlefishes rely on these visual defenses in shallow-water environments, but deep-sea cephalopods were thought to perform only a limited number of these behaviors because of their extremely low light surroundings.
    [Show full text]
  • Journal of Paleontology Gladius-Bearing Coleoids from The
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Gladius-bearing coleoids from the Upper Cretaceous Lebanese Lagerstätten: diversity, morphology, and phylogenetic implications Jattiot, Romain ; Brayard, Arnaud ; Fara, Emmanuel ; Charbonnier, Sylvain DOI: https://doi.org/10.1017/jpa.2014.13 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-109764 Journal Article Published Version Originally published at: Jattiot, Romain; Brayard, Arnaud; Fara, Emmanuel; Charbonnier, Sylvain (2015). Gladius-bearing coleoids from the Upper Cretaceous Lebanese Lagerstätten: diversity, morphology, and phylogenetic implications. Journal of Paleontology, 89(01):148-167. DOI: https://doi.org/10.1017/jpa.2014.13 Journal of Paleontology http://journals.cambridge.org/JPA Additional services for Journal of Paleontology: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Gladius-bearing coleoids from the Upper Cretaceous Lebanese Lagerstätten: diversity, morphology, and phylogenetic implications Romain Jattiot, Arnaud Brayard, Emmanuel Fara and Sylvain Charbonnier Journal of Paleontology / Volume 89 / Issue 01 / January 2015, pp 148 - 167 DOI: 10.1017/jpa.2014.13, Published online: 09 March 2015 Link to this article: http://journals.cambridge.org/abstract_S0022336014000134 How to cite this article: Romain Jattiot, Arnaud Brayard, Emmanuel Fara and Sylvain Charbonnier (2015). Gladius-bearing coleoids from the Upper Cretaceous Lebanese Lagerstätten: diversity, morphology, and phylogenetic implications. Journal of Paleontology, 89, pp 148-167 doi:10.1017/jpa.2014.13 Request Permissions : Click here Downloaded from http://journals.cambridge.org/JPA, IP address: 46.127.66.96 on 10 Mar 2015 Journal of Paleontology, 89(1), 2015, p.
    [Show full text]
  • An Inventory of Belemnites Documented in Six Us National Parks in Alaska
    Lucas, S. G., Hunt, A. P. & Lichtig, A. J., 2021, Fossil Record 7. New Mexico Museum of Natural History and Science Bulletin 82. 357 AN INVENTORY OF BELEMNITES DOCUMENTED IN SIX US NATIONAL PARKS IN ALASKA CYNTHIA D. SCHRAER1, DAVID J. SCHRAER2, JUSTIN S. TWEET3, ROBERT B. BLODGETT4, and VINCENT L. SANTUCCI5 15001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 25001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 3National Park Service, Geologic Resources Division, 1201 Eye Street, Washington, D.C. 20005; -email: justin_tweet@ nps.gov; 42821 Kingfisher Drive, Anchorage, AK 99502; -email: [email protected];5 National Park Service, Geologic Resources Division, 1849 “C” Street, Washington, D.C. 20240; -email: [email protected] Abstract—Belemnites (order Belemnitida) are an extinct group of coleoid cephalopods, known from the Jurassic and Cretaceous periods. We compiled detailed information on 252 occurrences of belemnites in six National Park Service (NPS) areas in Alaska. This information was based on published literature and maps, unpublished U.S. Geological Survey internal fossil reports (“Examination and Report on Referred Fossils” or E&Rs), the U.S. Geological Survey Mesozoic locality register, the Alaska Paleontological Database, the NPS Paleontology Archives and our own records of belemnites found in museum collections. Few specimens have been identified and many consist of fragments. However, even these suboptimal specimens provide evidence that belemnites are present in given formations and provide direction for future research. Two especially interesting avenues for research concern the time range of belemnites in Alaska. Belemnites are known to have originated in what is now Europe in the Early Jurassic Hettangian and to have a well-documented world-wide distribution in the Early Jurassic Toarcian.
    [Show full text]
  • First Evidence of Mastigophora (Cephalopoda: Coleoidea) from the Early Callovian of La Voulte-Sur-Rhône (France)
    First evidence of Mastigophora (Cephalopoda: Coleoidea) from the early Callovian of La Voulte-sur-Rhône (France) Dirk Fuchs1 1Freie Universität Berlin, Institut für Geologische Wissenschaften (Fachrichtung Paläontologie), Malteser-Str. 74-100, Haus D, 12249 Berlin, Germany; Email: [email protected] 77: 21-27, 3 figs. 2014 A 3-dimensionally preserved coleoid cephalopod from the Lower Callovian La Voulte-sur-Rhône lagerstätte is described. The comparison with Mastigophora brevipinnis from the Upper Callovian Oxford Clay of Christian Malford (U.K.) re- vealed remarkable similarities in their soft part morphologies. The shared presence of conspicuously short arms, one pair of near-terminal and ear-shaped fins, and an unusual thickening of the anterior mantle margin led the author to de- termine the specimen under investigation as Mastigophora aff. brevipinnis. The presence of uniserial and ringless suckers in Mastigophora aff. brevipinnis support a phylogenetic relationship with the Vampyropoda rather than with the Decabrachia. The previously discussed presence or non-presence of tentacles in Mastigophora is re-evaluated. Received: 06 February 2013 Subject Areas: Palaeontology, Zoology Accepted: 01 August 2013 Keywords: Cephalopoda, Coleoidea, Jurassic, Callovian, France, Ardèche, fossil lagerstätte, systematics, phy- logeny Introduction Besides the Nusplingen (Upper Kimmeridgian), Solnho- part preservation of Mastigophora, a gladius-bearing coleoid fen (Lower Tithonian) and Hakel (Cenomanian) Platten- previously known only from the Oxford Clay (Owen kalks, other fossil lagerstätten such as the Oxford Clay of 1856; Donovan 1983; Wilby et al. 2008). Based on its Christian Malford (Upper Callovian) and the La Voulte- unique gladius morphology, Engeser & Reitner (1985) es- sur-Rhône lagerstätte (Lower Callovian) belong to the most tablished the family Mastigophoridae.
    [Show full text]
  • Newsletter Number 69
    The Palaeontology Newsletter Contents 69 Association Business 2 Association Meetings 9 Progressive Palaeontology 12 News 13 From our correspondents Here be dragons 17 For a very specialized audience only 23 PalaeoMath 101: Size & shape coords 26 Meeting Reports 37 Mystery Fossils 14 & 15 (and 13) 64 Future meetings of other bodies 67 Reporter: Reviewing peer review 71 Sylvester-Bradley Reports 77 Soapbox: On the mathematics of life 83 Book Reviews 88 Special Papers 79 & 80 104–107 Palaeontology vol 51 parts 5 & 6 108–110 Reminder: The deadline for copy for Issue no 70 is 23rd February 2009. On the Web: <http://www.palass.org/> ISSN: 0954-9900 Newsletter 69 2 Association Business Annual Meeting Notification is given of the 53rd Annual General Meeting and Annual Address This will be held at the University of Glasgow on 20th December 2008, following the scientific sessions. Please note that following the October Council meeting, an additional item has been added to the agenda published in Newsletter 68. Agenda 1. Apologies for absence 2. Minutes of the 52nd AGM, University of Uppsala 3. Annual Report for 2007 (published in Newsletter 68) 4. Accounts and Balance Sheet for 2007 (published in Newsletter 68) 5. Increase in annual subscriptions 6. Election of Council and vote of thanks to retiring members 7. Palaeontological Association Awards 8. Annual address H. A. Armstrong Secretary DRAFT AGM MINUTES 2007 Minutes of the Annual General Meeting held on Monday, 17th December 2007 at the University of Uppsala. 1. Apologies for absence: Prof. Batten; Prof. J. C. W. Cope; Dr P.
    [Show full text]