Wigner Quantization and Lie Superalgebra Representations

Total Page:16

File Type:pdf, Size:1020Kb

Wigner Quantization and Lie Superalgebra Representations Wigner quantization and Lie superalgebra representations Wigner kwantisatie en representaties van Lie superalgebra’s Gilles Regniers Proefschrift ingediend tot het behalen van de graad van Doctor in de Wetenschappen: Wiskunde. Promotor: Prof. dr. Joris Van der Jeugt December 2011 Faculteit Wetenschappen Vakgroep Toegepaste Wiskunde en Informatica Contents Dankwoord 7 Preface 11 Samenvatting 15 1 Partitions and Schur functions 21 1.1 Partitions and generating functions .................. 21 1.1.1 Partitions and diagrams .................... 21 1.1.2 Generating functions ..................... 24 1.2 Symmetric polynomials ........................ 26 1.3 Schur functions ............................ 28 2 Lie superalgebras and their representations 35 2.1 Lie algebras .............................. 35 2.1.1 Theoretical overview ..................... 37 2.1.2 An example involving traceless matrices ........... 40 2.2 Lie superalgebras ........................... 43 2.3 Some notes on representation theory ................. 48 2.3.1 Lie algebra representations .................. 48 2.3.2 Character theory ........................ 53 2.4 Classification of osp(1 2) representations ............... 55 | 2.4.1 The Lie superalgebra osp(1 2) and -representations . 56 | ∗ 2.4.2 Construction of the representation space ........... 57 2.4.3 Extension to -representations ................ 61 ∗ 3 The harmonic oscillator in canonical and Wigner quantization 65 3.1 The one-dimensional canonical harmonic oscillator .......... 65 3.1.1 Quantum mechanics in a nutshell ............... 66 3.1.2 Solving the 1D canonical harmonic oscillator ......... 76 3.2 Special functions and orthogonal polynomials ............ 80 3.2.1 Hermite polynomials ..................... 82 3.2.2 Laguerre polynomials ..................... 82 3.2.3 Generalized Hermite polynomials ............... 83 3.2.4 Meixner-Pollaczek polynomials ................ 84 3 CONTENTS 3.2.5 Other orthogonal polynomials ................. 86 3.3 The 1D Wigner harmonic oscillator .................. 87 3.3.1 Wigner quantization ...................... 88 3.3.2 Solving the 1D Wigner harmonic oscillator .......... 89 3.3.3 Conclusion ........................... 93 4 Harmonic oscillators coupled by an interaction matrix 95 4.1 Introduction .............................. 96 4.1.1 Historical context ....................... 97 4.1.2 Nearest-neighbour interaction ................. 98 4.1.3 Wigner quantization ......................101 4.2 General method ............................101 4.3 Krawtchouk interaction ........................104 4.3.1 Krawtchouk polynomials ...................105 4.3.2 Hamiltonian with Krawtchouk interaction .......... 107 4.3.3 Remark ............................108 4.4 Hahn interaction ............................109 4.4.1 Hahn polynomials .......................109 4.4.2 Hamiltonian with Hahn interaction ..............111 4.5 q-Krawtchouk interaction .......................113 4.5.1 The dual q-Krawtchouk polynomials .............113 4.5.2 Hamiltonian with dual q-Krawtchouk interaction . 115 4.6 Some properties of the spectra ....................116 4.7 The Wigner quantization procedure ..................118 4.8 Lie superalgebra solutions .......................122 4.8.1 The gl(1 n) solution .....................122 | 4.8.2 The osp(1 2n) solution ....................126 | 4.9 The spectrum of Hˆ in a class of representations ...........127 4.9.1 The gl(1 n) representations V(p) ..............127 | 4.9.2 The osp(1 2n) representations V(p) .............129 | 4.10 Relation to canonical quantization ..................133 4.11 Summary ................................134 5 The n-dimensional Wigner harmonic oscillator 137 5.1 Introducing the system ........................138 5.2 The osp(1 2n) solution ........................139 | 5.3 Angular momentum content for osp(1 2n) ..............142 | 4 CONTENTS 5.3.1 Angular momentum ......................143 5.3.2 Decomposing the osp(1 6N) representation V(p) . 144 | 5.4 Generating functions for osp(1 6) and osp(1 12) ...........149 | | 5.4.1 Generating functions for osp(1 6) so(3) u(1) . 149 | ⊃ ⊕ 5.4.2 Generating functions for osp(1 12) so(3) u(1) . 152 | ⊃ ⊕ 5.5 The gl(1 n) solution ..........................155 | 5.6 Angular momentum decomposition of gl(1 n) ............157 | 5.6.1 Angular momentum ......................157 5.6.2 Decomposing the gl(1 3N) representation V ........ 158 | λ 5.7 Generating functions for gl(1 3) and gl(1 6) .............159 | | 5.7.1 Generating functions for gl(1 3) so(3) ...........161 | ⊃ 5.7.2 Generating functions for gl(1 6) so(3) ...........163 | ⊃ 5.8 Conclusions ..............................166 5.A The function H(J, A1, A2) ......................167 6 Wigner quantization of one-dimensional Hamiltonians 169 6.1 The Berry-Keating-Connes Hamiltonian ...............170 6.1.1 Wigner quantization and osp(1 2) solutions ......... 170 | 6.1.2 Spectrum of the operators Hˆ b, xˆ and pˆ ...........173 6.1.3 Generalized wave functions ..................179 6.2 The Hamiltonian of the free particle .................185 6.2.1 Relation with the osp(1 2) Lie superalgebra ......... 185 | 6.2.2 Energy spectrum of the free particle .............187 6.2.3 Remaining inner products ...................189 6.2.4 Generalized wave function and the canonical case . 191 6.3 Conclusions ..............................193 Bibliography 195 Index 205 5 Dankwoord "Verwacht niet dat je binnen het eerste jaar zal begrijpen waar je mee bezig bent." Met deze woorden omschreef Prof. dr. Joris Van der Jeugt, mijn promotor, het leven van een doctoraatsstudent. Dat het uiteindelijk vier jaar zou duren om alles goed te snappen, zal alleszins niet aan hem gelegen hebben. Ik was altijd welkom om hem mijn lastigste onderzoeksproblemen voor te leggen, en zo’n bezoek aan zijn bureau was telkens weer fascinerend. Haast nooit moest hij spieken om de meest ingewikkelde formules neer te schrijven, en ook als ik het best geholpen was met een boek of paper vond hij die verbazend snel terug tussen de lange boekenrijen of stapels vergeelde papieren. Ondanks deze grote beschikbare hulp wachtte ik dik- wijls lang om de stap naar zijn bureau te zetten. Ik zat soms liever zelf dagenlang vruchteloos naar mijn blad papier te staren dan toe te geven dat ik misschien beter hulp zou vragen. Bedankt, Joris, om dat te begrijpen. Ook buiten de muren van S9 leerde ik veel bij van Joris. Zo weet ik sinds mijn trip naar Newcastle dat de Arteveldestad niet de enige plaats is waar je een ‘Gents toilet’ kan vinden. Dankzij de begeleiding van Joris werden conferenties ook op sociaal gebied aangename ervaringen. Ook mijn andere reisgezellen, Vera en Neli, speelden hier een grote rol in. Vera, bedankt voor de leuke gesprekken en de gouden sou- venirtip – ik scoor nog steeds punten met die theemuts. Neli, you made me forget that our research group was very small. I always enjoyed our many conversations, both on and off topic. Ik kon steeds op de steun van mijn familie rekenen, in het bijzonder van mijn ouders en van Pascal, Ann en oma. Bedankt voor jullie moedige pogingen om te weten te komen waarover mijn doctoraat ging. Het was niet altijd makkelijk om dat uit te leggen, maar het deed toch deugd om erover te kunnen praten. Tevens zou ik Jaydee willen bedanken. Zelfs al ben je mijn nonkel niet, toch heb je mij vele leuke tijden bezorgd. Hoewel alle collega’s van de vakgroep TWI bijdroegen aan de aangename werk- sfeer, zijn er toch enkele personen die ik bij naam wil noemen. Al vanaf mijn eerste kennismaking met de nogal treurige gangen van S9 stond Virginie aan mijn zijde. We legden eerder toevallig hetzelfde parcours af, van kandidatuur tot doctoraat. Virginie, het was een fijne rit en wie weet zetten we die na jouw verdediging gewoon weer verder! Ook met Nele klikte het vanaf het begin heel goed. Samen vonden we 7 DANKWOORD de ideale mix tussen werk en ontspanning, ik kon echt geen betere bureaugenoot treffen! Omdat we het beiden nogal druk hadden, was er niet veel tijd om elkaar het afgelopen jaar te zien. Daar moet nu dringend verandering in komen, want ik heb schrik dat er ondertussen weer enkele foute truien in uw kast geslopen zijn. Trouwens, zelf vind ik het ook soms moeilijk om in te schatten of iets er goed of slecht uitziet. Gelukkig was Heide er dan altijd om heel direct haar mening te geven. Heide, naast het feit dat je gewoon een heel plezante bent, heb ik die eerlijkheid altijd heel sterk weten te appreciëren. Ondertussen heb ik al vrede genomen met hoe mijn kaft eruitziet. Bedankt, Heide en Veerle, om opbouwende kritiek te geven over tientallen versies die nauwelijks van elkaar verschilden. Met Maarten en Bart, die samen door het leven gaan als het vlot bekkende folk/rock- duo Box, Cox and the seven bootstraps, was het altijd lachen geblazen. De grappige en absurde scenario’s die jullie wisten te verzinnen, hebben vele koffiepauzes bijzon- der vermakelijk gemaakt. Enkel Marjon vertelde soms verhalen van een vergelijkbaar surrealisme, al waren ze bij haar niet altijd fictief. Bedankt, Marjon, voor die ont- wapenende openheid. Binnen de categorie ‘opmerkelijke uitspraken’ moet ik zeker ook Bert vermelden. Met zijn controversiële standpunten of vreemde gedachte- experimenten slaagde hij er altijd weer in om een pikante laag kruiden aan de lunchgesprekken toe te voegen – altijd welkom in de resto! Om de een of andere reden kon ik het heel goed vinden met de hele fuzzy-groep. Een dikke merci aan Steven om van elk onderwerp een luchtige discussie te maken, aan Patricia om zo
Recommended publications
  • Discover Linear Algebra Incomplete Preliminary Draft
    Discover Linear Algebra Incomplete Preliminary Draft Date: November 28, 2017 L´aszl´oBabai in collaboration with Noah Halford All rights reserved. Approved for instructional use only. Commercial distribution prohibited. c 2016 L´aszl´oBabai. Last updated: November 10, 2016 Preface TO BE WRITTEN. Babai: Discover Linear Algebra. ii This chapter last updated August 21, 2016 c 2016 L´aszl´oBabai. Contents Notation ix I Matrix Theory 1 Introduction to Part I 2 1 (F, R) Column Vectors 3 1.1 (F) Column vector basics . 3 1.1.1 The domain of scalars . 3 1.2 (F) Subspaces and span . 6 1.3 (F) Linear independence and the First Miracle of Linear Algebra . 8 1.4 (F) Dot product . 12 1.5 (R) Dot product over R ................................. 14 1.6 (F) Additional exercises . 14 2 (F) Matrices 15 2.1 Matrix basics . 15 2.2 Matrix multiplication . 18 2.3 Arithmetic of diagonal and triangular matrices . 22 2.4 Permutation Matrices . 24 2.5 Additional exercises . 26 3 (F) Matrix Rank 28 3.1 Column and row rank . 28 iii iv CONTENTS 3.2 Elementary operations and Gaussian elimination . 29 3.3 Invariance of column and row rank, the Second Miracle of Linear Algebra . 31 3.4 Matrix rank and invertibility . 33 3.5 Codimension (optional) . 34 3.6 Additional exercises . 35 4 (F) Theory of Systems of Linear Equations I: Qualitative Theory 38 4.1 Homogeneous systems of linear equations . 38 4.2 General systems of linear equations . 40 5 (F, R) Affine and Convex Combinations (optional) 42 5.1 (F) Affine combinations .
    [Show full text]
  • Download Special Issue
    Scientific Programming Scientific Programming Techniques and Algorithms for Data-Intensive Engineering Environments Lead Guest Editor: Giner Alor-Hernandez Guest Editors: Jezreel Mejia-Miranda and José María Álvarez-Rodríguez Scientific Programming Techniques and Algorithms for Data-Intensive Engineering Environments Scientific Programming Scientific Programming Techniques and Algorithms for Data-Intensive Engineering Environments Lead Guest Editor: Giner Alor-Hernández Guest Editors: Jezreel Mejia-Miranda and José María Álvarez-Rodríguez Copyright © 2018 Hindawi. All rights reserved. This is a special issue published in “Scientific Programming.” All articles are open access articles distributed under the Creative Com- mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board M. E. Acacio Sanchez, Spain Christoph Kessler, Sweden Danilo Pianini, Italy Marco Aldinucci, Italy Harald Köstler, Germany Fabrizio Riguzzi, Italy Davide Ancona, Italy José E. Labra, Spain Michele Risi, Italy Ferruccio Damiani, Italy Thomas Leich, Germany Damian Rouson, USA Sergio Di Martino, Italy Piotr Luszczek, USA Giuseppe Scanniello, Italy Basilio B. Fraguela, Spain Tomàs Margalef, Spain Ahmet Soylu, Norway Carmine Gravino, Italy Cristian Mateos, Argentina Emiliano Tramontana, Italy Gianluigi Greco, Italy Roberto Natella, Italy Autilia Vitiello, Italy Bormin Huang, USA Francisco Ortin, Spain Jan Weglarz, Poland Chin-Yu Huang, Taiwan Can Özturan, Turkey
    [Show full text]
  • Memory Capacity of Neural Turing Machines with Matrix Representation
    Memory Capacity of Neural Turing Machines with Matrix Representation Animesh Renanse * [email protected] Department of Electronics & Electrical Engineering Indian Institute of Technology Guwahati Assam, India Rohitash Chandra * [email protected] School of Mathematics and Statistics University of New South Wales Sydney, NSW 2052, Australia Alok Sharma [email protected] Laboratory for Medical Science Mathematics RIKEN Center for Integrative Medical Sciences Yokohama, Japan *Equal contributions Editor: Abstract It is well known that recurrent neural networks (RNNs) faced limitations in learning long- term dependencies that have been addressed by memory structures in long short-term memory (LSTM) networks. Matrix neural networks feature matrix representation which inherently preserves the spatial structure of data and has the potential to provide better memory structures when compared to canonical neural networks that use vector repre- sentation. Neural Turing machines (NTMs) are novel RNNs that implement notion of programmable computers with neural network controllers to feature algorithms that have copying, sorting, and associative recall tasks. In this paper, we study augmentation of mem- arXiv:2104.07454v1 [cs.LG] 11 Apr 2021 ory capacity with matrix representation of RNNs and NTMs (MatNTMs). We investigate if matrix representation has a better memory capacity than the vector representations in conventional neural networks. We use a probabilistic model of the memory capacity us- ing Fisher information and investigate how the memory capacity for matrix representation networks are limited under various constraints, and in general, without any constraints. In the case of memory capacity without any constraints, we found that the upper bound on memory capacity to be N 2 for an N ×N state matrix.
    [Show full text]
  • Noncommutative Spaces from Matrix Models Lei Lu Allen B Stern, Committee Chair Nobuchika Okada Benjamin Harms Gary Mankey Martyn
    NONCOMMUTATIVE SPACES FROM MATRIX MODELS by LEI LU ALLEN B STERN, COMMITTEE CHAIR NOBUCHIKA OKADA BENJAMIN HARMS GARY MANKEY MARTYN DIXON A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics and Astronomy in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2016 Copyright Lei Lu 2016 ALL RIGHTS RESERVED Abstract Noncommutative (NC) spaces commonly arise as solutions to matrix model equations of motion. They are natural generalizations of the ordinary commuta- tive spacetime. Such spaces may provide insights into physics close to the Planck scale, where quantum gravity becomes relevant. Although there has been much research in the literature, aspects of these NC spaces need further investigation. In this dissertation, we focus on properties of NC spaces in several different contexts. In particular, we study exact NC spaces which result from solutions to matrix model equations of motion. These spaces are associated with finite-dimensional Lie-algebras. More specifically, they are two-dimensional fuzzy spaces that arise from a three-dimensional Yang-Mills type matrix model, four-dimensional tensor- product fuzzy spaces from a tensorial matrix model, and Snyder algebra from a five-dimensional tensorial matrix model. In the first part of this dissertation, we study two-dimensional NC solutions to matrix equations of motion of extended IKKT-type matrix models in three- space-time dimensions. Perturbations around the NC solutions lead to NC field theories living on a two-dimensional space-time. The commutative limit of the solutions are smooth manifolds which can be associated with closed, open and static two-dimensional cosmologies.
    [Show full text]
  • Mathfest 2018
    Abstracts of Papers Presented at MathFest 2018 Denver, CO August 1 – 4, 2018 Published and Distributed by The Mathematical Association of America Contents Invited Addresses 1 Earle Raymond Hedrick Lecture Series by Gigliola Staffilani . 1 Nonlinear Dispersive Equations and the Beautiful Mathematics That Comes with Them Lecture 1: Thursday, August 2, 11:00–11:50 AM, Plaza Ballroom A, B, & C, Plaza Building Lecture 2: Friday, August 3, 10:30–11:20 AM, Plaza Ballroom A, B, & C, Plaza Building Lecture 3: Saturday, August 4, 10:00–10:50 AM, Plaza Ballroom A, B, & C, Plaza Building . 1 AMS-MAA Joint Invited Address . 1 Gravity’s Action on Light: A Mathematical Journey by Arlie Petters Thursday, August 2, 10:00–10:50 AM, Plaza Ballroom A, B, & C, Plaza Building . 1 MAA Invited Address . 1 Inclusion-exclusion in Mathematics: Who Stays in, Who Falls out, Why It Happens, and What We Should Do About It by Eugenia Cheng Friday, August 3, 11:30–12:20 AM, Plaza Ballroom A, B, & C, Plaza Building . 1 Snow Business: Scientific Computing in the Movies and Beyond by Joseph Teran Saturday, August 4, 11:00–11:50 AM, Plaza Ballroom A, B, & C, Plaza Building . 1 Mathematical Medicine: Modeling Disease and Treatment by Lisette de Pillis Thursday, August 2, 9:00–9:50 AM, Plaza Ballroom A, B, & C, Plaza Building . 2 MAA James R.C. Leitzel Lecture . 2 The Relationship between Culture and the Learning of Mathematics by Talitha Washington Saturday, August 4, 9:00–9:50 AM, Plaza Ballroom A, B, & C, Plaza Building .
    [Show full text]
  • Equivariant Reduction of Matrix Gauge Theories and Emergent Chaotic Dynamics a Thesis Submitted to the Graduate School of Natura
    EQUIVARIANT REDUCTION OF MATRIX GAUGE THEORIES AND EMERGENT CHAOTIC DYNAMICS A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY GÖKSU CAN TOGA˘ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN PHYSICS JULY 2018 Approval of the thesis: EQUIVARIANT REDUCTION OF MATRIX GAUGE THEORIES AND EMERGENT CHAOTIC DYNAMICS submitted by GÖKSU CAN TOGA˘ in partial fulfillment of the requirements for the degree of Master of Science in Physics Department, Middle East Technical Uni- versity by, Prof. Dr. Halil Kalıpçılar Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Altug˘ Özpineci Head of Department, Physics Prof. Dr. Seçkin Kürkçüoglu˘ Supervisor, Physics Department, METU Examining Committee Members: Prof. Dr. Ali Ulvi Yılmazer Physics Engineering Department, Ankara University Prof. Dr. Seçkin Kürkçüoglu˘ Physics Department, METU Assoc. Prof. Dr. Yusuf Ipeko˙ glu˘ Physics Department, METU Prof. Dr. Ismail˙ Turan Physics Department, METU Prof. Dr. Sadi Turgut Physics Department, METU Date: I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last Name: GÖKSU CAN TOGA˘ Signature : iv ABSTRACT EQUIVARIANT REDUCTION OF MATRIX GAUGE THEORIES AND EMERGENT CHAOTIC DYNAMICS Toga,˘ Göksu Can M.S., Department of Physics Supervisor : Prof. Dr. Seçkin Kürkçüoglu˘ July 2018, 74 pages In this thesis we focus on a massive deformation of a Yang-Mills matrix gauge the- ory.
    [Show full text]
  • Pattern Classification and Associative Recall by Neural Networks
    PATTERN CLASSIFICATION AND ASSOCIATIVE RECALL BY NEURAL NETWORKS Thesis by Tzi-Dar Chiueh In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1989 (Submitted May 24, 1989) -u- To MY BELOVED PARENTS A D MY DEAREST VVIFE -iii- Acknowledgements The author would like to express his gratitude to Professor Rodney M. Goodman for his guidance and interest in this work. Many helpful a.nd stimulating discussions with Amir Atiya a.nd John Miller are a.lso acknowledged. Tha.nks are a.lso due to Patrick Smythe, Sean Coffey, Kathleen Kramer, and Chi-Cha.o Cha.o. The author acknowledges fina.ncia.l support of two teaching assistantships a.nd various research assistantships from the Institute. Last, but not least, the author wishes to gratefully acknowledge his parents Mr. C. M. Chiueh a.nd Ms. Y. J . W. Chiueh, a.nd his wife Jill J . H. Wang for their encouragement and support during his period of residence at the Institute. -IV- Abstract The first part of this dissertation discusses a new classifier based on a multilayer feed-forward network architecture. The main idea is to map irregularly-distributed pro­ totypes in a classification problem to codewords that are organized in some way. Then the pattern classification problem is transformed into a threshold decoding problem, which is easily solved using simple hard-limiter neurons. At first we propose the new model and introduce two families of good "internal representation" codes. Then some analyses and software simulation concerning the storage capacity of this new model are done.
    [Show full text]
  • Discover Linear Algebra Incomplete Preliminary Draft
    Discover Linear Algebra Incomplete Preliminary Draft Date: November 28, 2017 L´aszl´oBabai in collaboration with Noah Halford All rights reserved. Approved for instructional use only. Commercial distribution prohibited. c 2016 L´aszl´oBabai. Last updated: November 10, 2016 Preface TO BE WRITTEN. Babai: Discover Linear Algebra. ii This chapter last updated August 21, 2016 c 2016 L´aszl´oBabai. Contents Notation ix I Matrix Theory 1 Introduction to Part I 2 1 (F, R) Column Vectors 3 1.1 (F) Column vector basics . 3 1.1.1 The domain of scalars . 4 1.2 (F) Subspaces and span . 8 1.3 (F) Linear independence and the First Miracle of Linear Algebra . 11 1.4 (F) Dot product . 16 1.5 (R) Dot product over R ................................. 18 1.6 (F) Additional exercises . 19 2 (F) Matrices 20 2.1 Matrix basics . 20 2.2 Matrix multiplication . 24 2.3 Arithmetic of diagonal and triangular matrices . 31 2.4 Permutation Matrices . 33 2.5 Additional exercises . 36 3 (F) Matrix Rank 39 3.1 Column and row rank . 39 iii iv CONTENTS 3.2 Elementary operations and Gaussian elimination . 40 3.3 Invariance of column and row rank, the Second Miracle of Linear Algebra . 43 3.4 Matrix rank and invertibility . 45 3.5 Codimension (optional) . 47 3.6 Additional exercises . 48 4 (F) Theory of Systems of Linear Equations I: Qualitative Theory 51 4.1 Homogeneous systems of linear equations . 51 4.2 General systems of linear equations . 54 5 (F, R) Affine and Convex Combinations (optional) 56 5.1 (F) Affine combinations .
    [Show full text]
  • On Equivalence of Matrices
    On Equivalence of Matrices ⋆ Daizhan Cheng Key Laboratory of Systems and Control, AMSS, Chinese Academy of Sciences, Beijing 100190, P.R.China Abstract A new matrix product, called the semi-tensor product (STP), is briefly reviewed. The STP extends the classical matrix product to two arbitrary matrices. Under STP the set of matrices becomes a monoid (semi-group with identity). Some related structures and properties are investigated. Then the generalized matrix addition is also introduced, which extends the classical matrix addition to a class of two matrices with different dimensions. Motivated by STP of matrices, two kinds of equivalences of matrices (including vectors) are introduced, which are called matrix equivalence (M-equivalence) and vector equivalence (V-equivalence) respectively. The lattice structure has been es- tablished for each equivalence. Under each equivalence, the corresponding quotient space becomes a vector space. Under M- equivalence, many algebraic, geometric, and analytic structures have been posed to the quotient space, which include (i) lattice structure; (ii) inner product and norm (distance); (iii) topology; (iv) a fiber bundle structure, called the discrete bundle; (v) bundled differential manifold; (vi) bundled Lie group and Lie algebra. Under V-equivalence, vectors of different dimensions form a vector space V, and a matrix A of arbitrary dimension is considered as an operator (linear mapping) on V. When A is a bounded operator (not necessarily square but includes square matrices as a special case), the generalized characteristic function, eigenvalue and eigenvector etc. are defined. In one word, this new matrix theory overcomes the dimensional barrier in certain sense. It provides much more freedom for using matrix approach to practical problems.
    [Show full text]
  • Synthesis of Hopfield Type Associative Memories
    On the EXISTENCE OF HOPFIELD NEURAL NETWORKS: SYNTHESIS OF HOPFIELD TYPE ASSOCIATIVE MEMORIES: Garimella Rama Murthy* and Moncef Gabbouj** *International Institute of Information Technology, Hyderabad, India **Tampere University of Technology, Tampere, Finland ABSTRACT In this research paper, the problem of existence of the associative memory synthesized by Hopfield is addressed and solved. Using Hadamard matrix of suitable dimension, an algorithm to synthesize real valued Hopfield neural network is discussed. The problem of existence and synthesis of a certain complex Hopfield neural network is addressed and solved. Also, synthesis of real and complex Hopfield type associative memories is discussed. Novel Complex Hadamard matrices are defined and studied. Using such matrices Novel Complex Hadamard transform is proposed. Also complex Walsh functions are proposed. Certain interesting distance measures are defined. 1. INTRODUCTION : In the progress of Science and Technology, homosapiens attempted mathematical model of natural ( physical / chemical / biological ) systems. Specifically, there were attempts to model the biological neural network. McCulloch and Pitts proposed a model of artificial neuron. Using that model of neuron and its variations, researchers comprehensively built the theory of Artificial Neural Networks (ANNs). In this theory, some important milestones were Single Layer Perceptron (SLP) and Multi Layer Perceptron (MLP). Multi Layer Perceptron is an example of feedforward neural network that received considerable attention and many applications continue to utilize such a neural network. Researchers were naturally motivated to investigate feedback neural networks. Hopfield effectively succeeded in proposing a feedback neural network model that acts as an associative memory. Hopfield neural network model led to intense research activity on various types of associative memories such as the Bi-directional Associative Memory (BAM ).
    [Show full text]
  • On Multimatrix Models Motivated by Random Noncommutative Geometry Ii: a Yang-Mills–Higgs Matrix Model
    ON MULTIMATRIX MODELS MOTIVATED BY RANDOM NONCOMMUTATIVE GEOMETRY II: A YANG-MILLS–HIGGS MATRIX MODEL CARLOS I. PEREZ-SANCHEZ Abstract. We continue the study of fuzzy geometries inside Connes’ spectral formalism and their relation to multimatrix models. In this companion paper to [arXiv:2007:10914, Ann. Henri Poincaré, 2021] we propose a gauge theory setting based on noncommuta- tive geometry, which—just as the traditional formulation in terms of almost-commutative manifolds—has the ability to also accommodate a Higgs field. However, in contrast to ‘almost-commutative manifolds’, the present framework employs only finite dimensional algebras. In a path-integral quantization approach to the Spectral Action, this allows to state Yang-Mills–Higgs theory (on four-dimensional Euclidean fuzzy space) as an explicit random multimatrix model obtained here, whose matrix fields exactly mirror those of the Yang-Mills–Higgs theory on a smooth manifold. 1. Introduction The approximation of smooth manifolds by finite geometries (or geometries de- scribed by finite dimensional algebras) has been treated in noncommutative ge- ometry (NCG) some time ago [LLS01] and often experiences a regain of interest; in [DLM14, CvS20], for instance, these arise from truncations of space to a finite resolution. In an ideologically similar vein but from a technically different view- point, this paper addresses gauge theories derived from the Spectral Formalism of NCG, using exclusively finite-dimensional algebras, also for the description of the space(time). This allows one to make precise sense of path integrals over noncom- mutative geometries. Although this formulation is valid at the moment only for a small class of geometries, the present method might shed light on the general problem of quantization of NCG, already tackled using von Neumann’s information theoretic entropy in [CCvS19] and [DKvS19], by fermionic and bosonic-fermionic second quantization, respectively.
    [Show full text]
  • Deep Quantum Geometry of Matrices
    Deep Quantum Geometry of Matrices Xizhi Han and Sean A. Hartnoll Department of Physics, Stanford University, Stanford, CA 94305-4060, USA Abstract We employ machine learning techniques to provide accurate variational wavefunc- tions for matrix quantum mechanics, with multiple bosonic and fermionic matrices. Variational quantum Monte Carlo is implemented with deep generative flows to search for gauge invariant low energy states. The ground state, and also long-lived metastable states, of an SU(N) matrix quantum mechanics with three bosonic matrices, as well as its supersymmetric ‘mini-BMN’ extension, are studied as a function of coupling and N. Known semiclassical fuzzy sphere states are recovered, and the collapse of these geome- tries in more strongly quantum regimes is probed using the variational wavefunction. We then describe a factorization of the quantum mechanical Hilbert space that corre- sponds to a spatial partition of the emergent geometry. Under this partition, the fuzzy sphere states show a boundary-law entanglement entropy in the large N limit. arXiv:1906.08781v2 [hep-th] 5 Jan 2020 1 Contents 1 Introduction3 2 The mini-BMN model5 2.1 Representation of the fermion wavefunction...................6 2.2 Gauge invariance and gauge fixing........................7 3 Architecture design for matrix quantum mechanics8 3.1 Parametrizing and sampling the gauge invariant wavefunction.........9 3.2 Benchmarking the architecture.......................... 10 4 The emergence of geometry 13 4.1 Numerical results, bosonic sector......................... 13 4.2 Semiclassical analysis of the fuzzy sphere..................... 15 4.3 Numerical results, supersymmetric sector..................... 18 5 Entanglement on the fuzzy sphere 21 5.1 Free field with an angular momentum cutoff..................
    [Show full text]