[ENTRY ARTIFICIAL INTELLIGENCE] Authors: Oliver Knill: March 2000 Literature

Total Page:16

File Type:pdf, Size:1020Kb

[ENTRY ARTIFICIAL INTELLIGENCE] Authors: Oliver Knill: March 2000 Literature ENTRY ARTIFICIAL INTELLIGENCE [ENTRY ARTIFICIAL INTELLIGENCE] Authors: Oliver Knill: March 2000 Literature: Peter Norvig, Paradigns of Artificial Intelligence Programming Daniel Juravsky and James Martin, Speech and Language Processing Adaptive Simulated Annealing [Adaptive Simulated Annealing] A language interface to a neural net simulator. artificial intelligence [artificial intelligence] (AI) is a field of computer science concerned with the concepts and methods of symbolic knowledge representation. AI attempts to model aspects of human thought on computers. Aspectrs of AI: • computer vision • language processing • pattern recognition • expert systems • problem solving • roboting • optical character recognition • artificial life • grammars • game theory Babelfish [Babelfish] Online translation system from Systran. Chomsky [Chomsky] Noam Chomsky is a pioneer in formal language theory. He is MIT Professor of Linguistics, Linguistic Theory, Syntax, Semantics and Philosophy of Language. Eliza [Eliza] One of the first programs to feature English output as well as input. It was developed by Joseph Weizenbaum at MIT. The paper appears in the January 1966 issue of the "Communications of the Association of Computing Machinery". Google [Google] A search engine emerging at the end of the 20'th century. It has AI features, allows not only to answer questions by pointing to relevant webpages but can also do simple tasks like doing arithmetic computations, convert units, read the news or find pictures with some content. GPS [GPS] General Problem Solver. A program developed in 1957 by Alan Newell and Herbert Simon. The aim was to write a single computer program which could solve any problem. One reason why GPS was destined to fail is now at the core of computer science. There are a large set of problems which are NP hard and where finding a solution becomes exponentially hard in dependence of the size of the problem. Nonetheless, GPS has been a useful tool for exploring AI programming. HAL [HAL] The HAL 9000 computer was the main character in Stanley Kurbrick's film 2001: a Space Odyssey. HAL is an AI agent capable to understand advanced language processing behavior as speaking and understanding language and even reading lips. Lisp [Lisp] Lisp is one of the oldest programming languages still in widespread use today. "Common Lisp" is the most widely accepted standard. Other dialects like "Franz Lisp" MacLisp, InterLisp, ZetaLisp or "Standard Lisp" are considered obsolete. Lisp is the most popular language for AI programming. Lisp programs are concise and are uncluttered by low-level detail. Loebner Prize [Loebner Prize] A competition attempted to put various computer programs to the Turing test. A consistent result over the years has been that even the crudest programs can fool some of the judges some of the time. MIT ai lab [MIT ai lab] Massachusetts Institute of Technology AI laboratory. neural network [neural network] Artificial neural networks try to simulate biological neural networks as found in the brain. Such a network consists of many simple processors called neurons, each possibly having some local memory. These neurons are connected and evolve depending to their local data and on the inputs they receive via the connections. A neural network can either be an algorithm, or be realized as actual hardware. Neural networks typically allow training. They learn by adjusting the weights of the connections on the basis of presented patterns. The individual neurons are elementary non-linear signal processors. Neural networks are distinguished from other computing devices by a high degree of interconnection allowing parallelism. There is no idle memory containing data and programs. Each neuron is pre-programmed and continuously active. pattern recognition [pattern recognition] A branch of artificial intelligence concerned with the classification or description of obser- vations. The classification uses either statistical, syntactic or neural aproches. pilot [pilot] Programmed Inquiry Learning Or Teaching. prolog [prolog] A popular AI programming language used in Europe and Japan. Prolog shares most of Lisp's advantages in terms of flexibility and conciseness. regular expression [regular expression] is a language for specifying text search strings. It is used in UNIX programs like vi, perl, emacs or grep. It is also used in Microsoft word or web search engines. scheme [scheme] A dialect of Lisp which is gaining popularity, primarily for teaching and experimenting with program- ming language design and techniques. Shrdlu [Shrdlu] Terry Winograd's SHRDLU system of 1972 simulated a robot embedded in a world of toy blocks. The program was able to accept natural language text commands. Student [Student] Student was an early language understanding program written by Daniel Bubrow in 1964. It was designed to read and solve the kind of word problems found in high school algebra books. Unlike Eliza, "Student" must process and understand a great deal of input as well as be able to solve algebraic equations. toy problem [toy problem] A deliberately oversimplified case of a challenging problem used to investigate, prototype, or test algorithms for a real problem. Turing test [Turing test] A test introduced in 1950 by Alan Turing. There are three participants. Two people and a computer. One person plays the role of an interrogator who has to find out, which of the two others is a machine. This interrogator is connected to the two other participants through teletype. The task of the machine is to fool the interrogator into believing it is a person. The task of the other participant is to convince the interrogator that he is human. Turing predicted that in 2000 a machine with 10 Gig memory would have a 30 percent change of fooling a human interrogator after 5 minutes of questioning. Weizenbaum [Weizenbaum] Joseph Weizenbaum was the principal developer of Eliza, one of the first programs to feature English output as well as input. This file is part of the Sofia project sponsored by the Provost's fund for teaching and learning at Harvard university. There are 22 entries in this file. Index Adaptive Simulated Annealing, 1 artificial intelligence, 1 Babelfish, 1 Chomsky, 1 Eliza, 1 Google, 2 GPS, 2 HAL, 2 Lisp, 2 Loebner Prize, 2 MIT ai lab, 2 neural network, 3 pattern recognition, 3 pilot, 3 prolog, 3 regular expression, 3 scheme, 3 Shrdlu, 3 Student, 4 toy problem, 4 Turing test, 4 Weizenbaum, 4 5 ENTRY ABSTRACT ALGEBRA [ENTRY ABSTRACT ALGEBRA] Authors: started Oliver Knill: September 2003 Literature: Lecture notes additive A function f : G H from a semigroup G to a semigroup H is [additive] if f(a + b) = f(a) + f(b). A group-valued function! on sets is additive if f(Y Z) = f(Y ) + f(Z) if Y and Z are disjoint. [ algebra An [algebra] over a field K is a ring with 1 which is also a vector space over K and whose multiplication is bilinear with respect to K. Examples: the complex numbers C is an algebra over the field of real numbers K = R. • The quaternion algebra H is an algebra over the field of complex numbers. • The matrix algebra M(n; R) is an algebra over the field R. • An algebraic number field [An algebraic number field] is a subfield of the complex numbers that arises as a finite degree algebraic extension field over the field of rationals. alternating group The [alternating group] G is the subgroup of the symmetric group of n objects given by the elements which can be written as a product of an even number of transpositions. Artinian module An [Artinian module] is a module which satisfies the descending chain condition. Every Artinian module is a Noetherian module but the integers for example are a Noetherian module which is not an Artinian module. Artinian ring An [Artinian ring] is a ring which when considered as a R-module is an Artinian module. Artinian ring Two elements of an integral domain that are unit-multipliers of each other are called [associate numbers]. Cayley's theorem [Cayley's theorem] assures that every finite group is isomorphic to a permutation group. center The [center] of a group (G; ) is the set of all elements g which satisfy gh = hg for all h in G. The center is a subgroup of G. ∗ commutator The [commutator] of two elements g; h in a group (G; ) is defined as [g; h] = g h g−1 h−1. ∗ ∗ ∗ ∗ commutator subgroup The [commutator subgroup] of a group (G; ) is the set of all commutators [g; h] in G. It is a subgroup of G. ∗ factor group A [factor group] G=N is defined when N is a normal subgroup of the group G. It is the group, where the elements are equivalent classes gN and operation (gN)(hN) = (gh)N which is defined because N was assumed to be normal. For example, if G is the group of additive integers and N = kN with an integer k, then G=N = Zk is finite group of integers modulo k. finite group A group is called a [finite group] if G is a set with finitely many elements. For example, the set of all permutations of a finite set form a finite group. The set of all operations on the Rubik cube form a finite group. group A [group] (X; +; 0) is a set X with a binary operation + and a zero element 0 (also called neutral element or identity) with the following properties (a + b) + c = a + (b + c) associativity a + 0 = a zero element a ba + b = 0 inverse 8 9 Examples: the real numbers form a group under addition 5 + 2:34 = 7:34; 3 3 = 0. • − the set GL(n; R) of real matrices with nonzero determinant form a group under matrix multiplication • the nonzero integers form a group under multiplication 4 7 = 28. • ∗ all the invertible linear transformations of the plane plane form a group under composition.
Recommended publications
  • Fast Tabulation of Challenge Pseudoprimes Andrew Shallue and Jonathan Webster
    THE OPEN BOOK SERIES 2 ANTS XIII Proceedings of the Thirteenth Algorithmic Number Theory Symposium Fast tabulation of challenge pseudoprimes Andrew Shallue and Jonathan Webster msp THE OPEN BOOK SERIES 2 (2019) Thirteenth Algorithmic Number Theory Symposium msp dx.doi.org/10.2140/obs.2019.2.411 Fast tabulation of challenge pseudoprimes Andrew Shallue and Jonathan Webster We provide a new algorithm for tabulating composite numbers which are pseudoprimes to both a Fermat test and a Lucas test. Our algorithm is optimized for parameter choices that minimize the occurrence of pseudoprimes, and for pseudoprimes with a fixed number of prime factors. Using this, we have confirmed that there are no PSW-challenge pseudoprimes with two or three prime factors up to 280. In the case where one is tabulating challenge pseudoprimes with a fixed number of prime factors, we prove our algorithm gives an unconditional asymptotic improvement over previous methods. 1. Introduction Pomerance, Selfridge, and Wagstaff famously offered $620 for a composite n that satisfies (1) 2n 1 1 .mod n/ so n is a base-2 Fermat pseudoprime, Á (2) .5 n/ 1 so n is not a square modulo 5, and j D (3) Fn 1 0 .mod n/ so n is a Fibonacci pseudoprime, C Á or to prove that no such n exists. We call composites that satisfy these conditions PSW-challenge pseudo- primes. In[PSW80] they credit R. Baillie with the discovery that combining a Fermat test with a Lucas test (with a certain specific parameter choice) makes for an especially effective primality test[BW80].
    [Show full text]
  • Commentary on the Kervaire–Milnor Correspondence 1958–1961
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 4, October 2015, Pages 603–609 http://dx.doi.org/10.1090/bull/1508 Article electronically published on July 1, 2015 COMMENTARY ON THE KERVAIRE–MILNOR CORRESPONDENCE 1958–1961 ANDREW RANICKI AND CLAUDE WEBER Abstract. The extant letters exchanged between Kervaire and Milnor during their collaboration from 1958–1961 concerned their work on the classification of exotic spheres, culminating in their 1963 Annals of Mathematics paper. Michel Kervaire died in 2007; for an account of his life, see the obituary by Shalom Eliahou, Pierre de la Harpe, Jean-Claude Hausmann, and Claude We- ber in the September 2008 issue of the Notices of the American Mathematical Society. The letters were made public at the 2009 Kervaire Memorial Confer- ence in Geneva. Their publication in this issue of the Bulletin of the American Mathematical Society is preceded by our commentary on these letters, provid- ing some historical background. Letter 1. From Milnor, 22 August 1958 Kervaire and Milnor both attended the International Congress of Mathemati- cians held in Edinburgh, 14–21 August 1958. Milnor gave an invited half-hour talk on Bernoulli numbers, homotopy groups, and a theorem of Rohlin,andKer- vaire gave a talk in the short communications section on Non-parallelizability of the n-sphere for n>7 (see [2]). In this letter written immediately after the Congress, Milnor invites Kervaire to join him in writing up the lecture he gave at the Con- gress. The joint paper appeared in the Proceedings of the ICM as [10]. Milnor’s name is listed first (contrary to the tradition in mathematics) since it was he who was invited to deliver a talk.
    [Show full text]
  • George W. Whitehead Jr
    George W. Whitehead Jr. 1918–2004 A Biographical Memoir by Haynes R. Miller ©2015 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. GEORGE WILLIAM WHITEHEAD JR. August 2, 1918–April 12 , 2004 Elected to the NAS, 1972 Life George William Whitehead, Jr., was born in Bloomington, Ill., on August 2, 1918. Little is known about his family or early life. Whitehead received a BA from the University of Chicago in 1937, and continued at Chicago as a graduate student. The Chicago Mathematics Department was somewhat ingrown at that time, dominated by L. E. Dickson and Gilbert Bliss and exhibiting “a certain narrowness of focus: the calculus of variations, projective differential geometry, algebra and number theory were the main topics of interest.”1 It is possible that Whitehead’s interest in topology was stimulated by Saunders Mac Lane, who By Haynes R. Miller spent the 1937–38 academic year at the University of Chicago and was then in the early stages of his shift of interest from logic and algebra to topology. Of greater importance for Whitehead was the appearance of Norman Steenrod in Chicago. Steenrod had been attracted to topology by Raymond Wilder at the University of Michigan, received a PhD under Solomon Lefschetz in 1936, and remained at Princeton as an Instructor for another three years. He then served as an Assistant Professor at the University of Chicago between 1939 and 1942 (at which point he moved to the University of Michigan).
    [Show full text]
  • Improving Point Cloud Quality for Mobile Laser Scanning
    School of Engineering and Science Dissertation for a Ph.D. in Computer Science Improving Point Cloud Quality for Mobile Laser Scanning Jan Elseberg November 2013 Supervisor: Prof. Dr. Andreas Nüchter Second Reviewer: Prof. Dr. Andreas Birk Third Reviewer: Prof. Dr. Joachim Hertzberg Fourth Reviewer: Prof. Dr. Rolf Lakämper Date of Defense: 13th of September 2013 Abstract This thesis deals with mobile laser scanning and the complex challenges that it poses to data processing, calibration and registration. New approaches to storing, searching and displaying point cloud data as well as algorithms for calibrating mobile laser scanners and registering laser scans are presented and discussed. Novel methods are tested on state of the art mobile laser scanning systems and are examined in detail. Irma3D, an autonomous mobile laser scanning platform has been developed for the purpose of experimentation. This work is the result of several years of research in robotics and laser scanning. It is the accumulation of many journal articles and conference papers that have been reviewed by peers in the field of computer science, robotics, artificial intelligence and surveying. Danksagung The work that goes into finishing a work like this is long and arduous, yet it can at times be pleasing, exciting and even fun. I would like to thank my advisor Prof. Dr. Andreas Nüchter for providing such joy during my experiences as a Ph.D. student. His infectious eagerness for the subject and his ability to teach are without equal. Prof. Dr. Joachim Hertzberg deserves many thanks for introducing me to robotics and for being such an insightful teacher of interesting subjects.
    [Show full text]
  • Mathematicians
    MATHEMATICIANS [MATHEMATICIANS] Authors: Oliver Knill: 2000 Literature: Started from a list of names with birthdates grabbed from mactutor in 2000. Abbe [Abbe] Abbe Ernst (1840-1909) Abel [Abel] Abel Niels Henrik (1802-1829) Norwegian mathematician. Significant contributions to algebra and anal- ysis, in particular the study of groups and series. Famous for proving the insolubility of the quintic equation at the age of 19. AbrahamMax [AbrahamMax] Abraham Max (1875-1922) Ackermann [Ackermann] Ackermann Wilhelm (1896-1962) AdamsFrank [AdamsFrank] Adams J Frank (1930-1989) Adams [Adams] Adams John Couch (1819-1892) Adelard [Adelard] Adelard of Bath (1075-1160) Adler [Adler] Adler August (1863-1923) Adrain [Adrain] Adrain Robert (1775-1843) Aepinus [Aepinus] Aepinus Franz (1724-1802) Agnesi [Agnesi] Agnesi Maria (1718-1799) Ahlfors [Ahlfors] Ahlfors Lars (1907-1996) Finnish mathematician working in complex analysis, was also professor at Harvard from 1946, retiring in 1977. Ahlfors won both the Fields medal in 1936 and the Wolf prize in 1981. Ahmes [Ahmes] Ahmes (1680BC-1620BC) Aida [Aida] Aida Yasuaki (1747-1817) Aiken [Aiken] Aiken Howard (1900-1973) Airy [Airy] Airy George (1801-1892) Aitken [Aitken] Aitken Alec (1895-1967) Ajima [Ajima] Ajima Naonobu (1732-1798) Akhiezer [Akhiezer] Akhiezer Naum Ilich (1901-1980) Albanese [Albanese] Albanese Giacomo (1890-1948) Albert [Albert] Albert of Saxony (1316-1390) AlbertAbraham [AlbertAbraham] Albert A Adrian (1905-1972) Alberti [Alberti] Alberti Leone (1404-1472) Albertus [Albertus] Albertus Magnus
    [Show full text]
  • The Walk of Life Vol
    THE WALK OF LIFE VOL. 03 EDITED BY AMIR A. ALIABADI The Walk of Life Biographical Essays in Science and Engineering Volume 3 Edited by Amir A. Aliabadi Authored by Zimeng Wan, Mamoon Syed, Yunxi Jin, Jamie Stone, Jacob Murphy, Greg Johnstone, Thomas Jackson, Michael MacGregor, Ketan Suresh, Taylr Cawte, Rebecca Beutel, Jocob Van Wassenaer, Ryan Fox, Nikolaos Veriotes, Matthew Tam, Victor Huong, Hashim Al-Hashmi, Sean Usher, Daquan Bar- row, Luc Carney, Kyle Friesen, Victoria Golebiowski, Jeffrey Horbatuk, Alex Nauta, Jacob Karl, Brett Clarke, Maria Bovtenko, Margaret Jasek, Allissa Bartlett, Morgen Menig-McDonald, Kate- lyn Sysiuk, Shauna Armstrong, Laura Bender, Hannah May, Elli Shanen, Alana Valle, Charlotte Stoesser, Jasmine Biasi, Keegan Cleghorn, Zofia Holland, Stephan Iskander, Michael Baldaro, Rosalee Calogero, Ye Eun Chai, and Samuel Descrochers 2018 c 2018 Amir A. Aliabadi Publications All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher. ISBN: 978-1-7751916-1-2 Atmospheric Innovations Research (AIR) Laboratory, Envi- ronmental Engineering, School of Engineering, RICH 2515, University of Guelph, Guelph, ON N1G 2W1, Canada It should be distinctly understood that this [quantum mechanics] cannot be a deduction in the mathematical sense of the word, since the equations to be obtained form themselves the postulates of the theory. Although they are made highly plausible by the following considerations, their ultimate justification lies in the agreement of their predictions with experiment. —Werner Heisenberg Dedication Jahangir Ansari Preface The essays in this volume result from the Fall 2018 offering of the course Control of Atmospheric Particulates (ENGG*4810) in the Environmental Engineering Program, University of Guelph, Canada.
    [Show full text]
  • Plato As "Architectof Science"
    Plato as "Architectof Science" LEONID ZHMUD ABSTRACT The figureof the cordialhost of the Academy,who invitedthe mostgifted math- ematiciansand cultivatedpure research, whose keen intellectwas able if not to solve the particularproblem then at least to show the methodfor its solution: this figureis quite familiarto studentsof Greekscience. But was the Academy as such a centerof scientificresearch, and did Plato really set for mathemati- cians and astronomersthe problemsthey shouldstudy and methodsthey should use? Oursources tell aboutPlato's friendship or at leastacquaintance with many brilliantmathematicians of his day (Theodorus,Archytas, Theaetetus), but they were neverhis pupils,rather vice versa- he learnedmuch from them and actively used this knowledgein developinghis philosophy.There is no reliableevidence that Eudoxus,Menaechmus, Dinostratus, Theudius, and others, whom many scholarsunite into the groupof so-called"Academic mathematicians," ever were his pupilsor close associates.Our analysis of therelevant passages (Eratosthenes' Platonicus, Sosigenes ap. Simplicius, Proclus' Catalogue of geometers, and Philodemus'History of the Academy,etc.) shows thatthe very tendencyof por- trayingPlato as the architectof sciencegoes back to the earlyAcademy and is bornout of interpretationsof his dialogues. I Plato's relationship to the exact sciences used to be one of the traditional problems in the history of ancient Greek science and philosophy.' From the nineteenth century on it was examined in various aspects, the most significant of which were the historical, philosophical and methodological. In the last century and at the beginning of this century attention was paid peredominantly, although not exclusively, to the first of these aspects, especially to the questions how great Plato's contribution to specific math- ematical research really was, and how reliable our sources are in ascrib- ing to him particular scientific discoveries.
    [Show full text]
  • FACTORING COMPOSITES TESTING PRIMES Amin Witno
    WON Series in Discrete Mathematics and Modern Algebra Volume 3 FACTORING COMPOSITES TESTING PRIMES Amin Witno Preface These notes were used for the lectures in Math 472 (Computational Number Theory) at Philadelphia University, Jordan.1 The module was aborted in 2012, and since then this last edition has been preserved and updated only for minor corrections. Outline notes are more like a revision. No student is expected to fully benefit from these notes unless they have regularly attended the lectures. 1 The RSA Cryptosystem Sensitive messages, when transferred over the internet, need to be encrypted, i.e., changed into a secret code in such a way that only the intended receiver who has the secret key is able to read it. It is common that alphabetical characters are converted to their numerical ASCII equivalents before they are encrypted, hence the coded message will look like integer strings. The RSA algorithm is an encryption-decryption process which is widely employed today. In practice, the encryption key can be made public, and doing so will not risk the security of the system. This feature is a characteristic of the so-called public-key cryptosystem. Ali selects two distinct primes p and q which are very large, over a hundred digits each. He computes n = pq, ϕ = (p − 1)(q − 1), and determines a rather small number e which will serve as the encryption key, making sure that e has no common factor with ϕ. He then chooses another integer d < n satisfying de % ϕ = 1; This d is his decryption key. When all is ready, Ali gives to Beth the pair (n; e) and keeps the rest secret.
    [Show full text]
  • A Study on the Contributions of Indian
    ISSN: 2456–4397 RNI No.UPBIL/2016/68067 Vol-5* Issue-8* November-2020 Anthology : The Research A Study on the Contributions of Indian Mathematicians in Modern Period Paper Submission: 16/11/2020, Date of Acceptance: 26/11/2020, Date of Publication: 27/11/2020 Abstract The purpose of this paper is to provide an overview of the contributions of Indian mathematicians to a claim about a Diophantine equation in modern times. Vedic literature has contributed to Indian mathematics. About 1000 B.C. and the year 1800 A.D. For the first time, Indian mathematicians have drawn up various mathematics treaties, defining zero, the numeral method, the methods of arithmetic and algorithm, the square root, and the cube root. Although, there is a distinct contribution from the sub-continent during readily available, reliable information. Keywords: Number theory, Diophantine equation, Indian Mathematicians, Shakuntala Devi, and Manjul Bhargava. Introduction The history of mathematics shows the great works, including the mathematical contents of the Vedas, of ancient Indian mathematicians.India seems to have in the history of mathematics, an important contribution to the simplification of inventions.[1] In addition to the Indians, the entire world is proud that ancient India has made great mathematical accomplishments. Thus, without the history of ancient Indian mathematics, the history of mathematics cannot be completed.In the early Ajeet kumar Singh stages, two major traditions emerged in mathematics (i) Arithmetical and Research Scholar, algebraic (ii) geometric (the invention of the functions of sine and cosine). Dept. of Mathematics, The position ofthe decimal number system was its most significant and Himalayan University, most influential contribution.
    [Show full text]
  • Discover Linear Algebra Incomplete Preliminary Draft
    Discover Linear Algebra Incomplete Preliminary Draft Date: November 28, 2017 L´aszl´oBabai in collaboration with Noah Halford All rights reserved. Approved for instructional use only. Commercial distribution prohibited. c 2016 L´aszl´oBabai. Last updated: November 10, 2016 Preface TO BE WRITTEN. Babai: Discover Linear Algebra. ii This chapter last updated August 21, 2016 c 2016 L´aszl´oBabai. Contents Notation ix I Matrix Theory 1 Introduction to Part I 2 1 (F, R) Column Vectors 3 1.1 (F) Column vector basics . 3 1.1.1 The domain of scalars . 3 1.2 (F) Subspaces and span . 6 1.3 (F) Linear independence and the First Miracle of Linear Algebra . 8 1.4 (F) Dot product . 12 1.5 (R) Dot product over R ................................. 14 1.6 (F) Additional exercises . 14 2 (F) Matrices 15 2.1 Matrix basics . 15 2.2 Matrix multiplication . 18 2.3 Arithmetic of diagonal and triangular matrices . 22 2.4 Permutation Matrices . 24 2.5 Additional exercises . 26 3 (F) Matrix Rank 28 3.1 Column and row rank . 28 iii iv CONTENTS 3.2 Elementary operations and Gaussian elimination . 29 3.3 Invariance of column and row rank, the Second Miracle of Linear Algebra . 31 3.4 Matrix rank and invertibility . 33 3.5 Codimension (optional) . 34 3.6 Additional exercises . 35 4 (F) Theory of Systems of Linear Equations I: Qualitative Theory 38 4.1 Homogeneous systems of linear equations . 38 4.2 General systems of linear equations . 40 5 (F, R) Affine and Convex Combinations (optional) 42 5.1 (F) Affine combinations .
    [Show full text]
  • Once Upon a Party - an Anecdotal Investigation
    Journal of Humanistic Mathematics Volume 11 | Issue 1 January 2021 Once Upon A Party - An Anecdotal Investigation Vijay Fafat Ariana Investment Management Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Arts and Humanities Commons, Other Mathematics Commons, and the Other Physics Commons Recommended Citation Fafat, V. "Once Upon A Party - An Anecdotal Investigation," Journal of Humanistic Mathematics, Volume 11 Issue 1 (January 2021), pages 485-492. DOI: 10.5642/jhummath.202101.30 . Available at: https://scholarship.claremont.edu/jhm/vol11/iss1/30 ©2021 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. The Party Problem: An Anecdotal Investigation Vijay Fafat SINGAPORE [email protected] Synopsis Mathematicians and physicists attending let-your-hair-down parties behave exactly like their own theories. They live by their theorems, they jive by their theorems. Life imi- tates their craft, and we must simply observe the deep truths hiding in their party-going behavior. Obligatory Preface It is a well-known maxim that revelries involving academics, intellectuals, and thought leaders are notoriously twisted affairs, a topologist's delight.
    [Show full text]
  • On the Standard Lengths of Angle Bisectors and the Angle Bisector Theorem
    Global Journal of Advanced Research on Classical and Modern Geometries ISSN: 2284-5569, pp.15-27 ON THE STANDARD LENGTHS OF ANGLE BISECTORS AND THE ANGLE BISECTOR THEOREM G.W INDIKA SHAMEERA AMARASINGHE ABSTRACT. In this paper the author unveils several alternative proofs for the standard lengths of Angle Bisectors and Angle Bisector Theorem in any triangle, along with some new useful derivatives of them. 2010 Mathematical Subject Classification: 97G40 Keywords and phrases: Angle Bisector theorem, Parallel lines, Pythagoras Theorem, Similar triangles. 1. INTRODUCTION In this paper the author introduces alternative proofs for the standard length of An- gle Bisectors and the Angle Bisector Theorem in classical Euclidean Plane Geometry, on a concise elementary format while promoting the significance of them by acquainting some prominent generalized side length ratios within any two distinct triangles existed with some certain correlations of their corresponding angles, as new lemmas. Within this paper 8 new alternative proofs are exposed by the author on the angle bisection, 3 new proofs each for the lengths of the Angle Bisectors by various perspectives with also 5 new proofs for the Angle Bisector Theorem. 1.1. The Standard Length of the Angle Bisector Date: 1 February 2012 . 15 G.W Indika Shameera Amarasinghe The length of the angle bisector of a standard triangle such as AD in figure 1.1 is AD2 = AB · AC − BD · DC, or AD2 = bc 1 − (a2/(b + c)2) according to the standard notation of a triangle as it was initially proved by an extension of the angle bisector up to the circumcircle of the triangle.
    [Show full text]