<<

Appendix A , , Algebra,

The key word “algebra” is derived from the name and the work of the nineth-century scientist Mohammed ibn Mˆusˆa al-Khowˆarizmi who was born in what is now Uzbekistan and worked in Bagdad at the court of Harun al-Rashid’s son.“al-jabr” appears in the title of his book Kitab al-jabr wail muqabala where he discusses symbolic methods for the solution of equations, K. Vogel: Mohammed Ibn Musa Alchwarizmi’s Algorismus; Das forested Lehrbuch zum Rechnen mit indischen Ziffern, 1461, Otto Zeller Verlagsbuchhandlung, Aalen 1963). Accordingly what is an algebra and how is it tied to the notion of a ,atensor space, respectively? By an algebra we mean asetS of elements and a finite set M of operations. Each .opera/k is a single-valued function assigning to every finite ordered sequence .x1;:::;xn/ of n D n.k/ elements of S a value S .opera/k .x1;:::;xk / D xl in . In particular for .opera/k.x1;x2/ the operation is called binary,for.opera/k.x1;x2;x3/ ternary, in general for .opera/k.x1;:::;xn/n-ary. For a given set of operation symbols .opera/1, .opera/2;:::, .opera/k we define a word.Inlinear algebra the set M has basically two elements, namely two internal relations .opera/1 worded “addition” (including inverse addition: subtraction) and .opera/2 worded “multiplication” (including inverse multiplication: division). Here the elements of the set S are vectors over the field R of real numbers as long as we refer to linear algebra.Incontrast,in multilinear algebra the elements of the set S are over the field of real numbers R. Only later modules as generalizations of vectors of linear algebra are introduced in which the “scalars” are allowed to be from an arbitrary rather than the field R of real numbers. Let us assume that you as a potential reader are in some way familiar with the elementary notion of a threedimensional vector space X with elements called vectors x 2 R3, namely the intuitive space “ we locally live in”. Such an elementary vector space X is equipped with a metric to be referred to as threedimensional Euclidean.

E. Grafarend and J. Awange, Applications of Linear and Nonlinear Models, 571 Springer Geophysics, DOI 10.1007/978-3-642-22241-2, © Springer-Verlag Berlin Heidelberg 2012 572 A , Linear Algebra, Matrix Algebra, Multilinear Algebra

As a real threedimensional vector space we are going to give it a linear and multilinear algebraic structure. In the context of structure mathematics based upon (a) Order structure (b) Topological structure (c) Algebraic structure an algebra is constituted if at least two relations are established, namely one internal and one external. We start with multilinear algebra, in particular with the multilinearity of the before we go back to linear algebra, in particular to .

p A-1 Multilinear Functions and the Tensor Space Tq

Let X be a finite dimensional linear space, e.g. a vector space over the field R of real numbers, in addition denote by X its such that n D dim X D dim X. Complex, and octonian numbers C, H and O as well as rings will only be introduced later in the context. For p; q 2 ZC being an element of positive numbers we introduce

Tp X X q . ; / as the p-contravariant, q-covariant tensor space or space of multilinear functions

X X f W X ::: X X ::: X ! Rp dim q dim :

1 p If we assume x ;:::;x 2 X and x1;:::;xq 2 X,then § ¤ x1 ˝ :::˝ xp ˝ x ˝ :::˝ x 2 Tp.X; X/ ¦ 1 q q ¥ holds. Multilinearity is understood as linearity in each variable.“˝” identifies 1 p the tensor product, the Cartesian product of elements .x ;:::;x ; x1;:::;xq/. 9 6

Example A.1: Bilinearity of the tensor product x1 ˝ x2 For every x1; x2 2 X, x; y 2 X and r 2 R bilinearity implies

.x C y/ ˝ x2 D x ˝ x2 C y ˝ x2 .internal left-linearity/ x1 ˝ .x C y/ D x1 ˝ x C x1 ˝ y .internal right-linearity/ rx ˝ x2 D r.x ˝ x2/.external left-linearity/ x1 ˝ ry D r.x1 ˝ y/.external right-linearity/: | 8 7 p A-1 Multilinear Functions and the Tensor Space Tq 573

x x T0 The generalization of bilinearity of 1 ˝ 2 2 2 to multilinearity of x1 xp x x Tp ˝ :::˝ ˝ 1 ˝ :::˝ q 2 q is obvious.

Tp Definition A.1. (multilinearity of tensor space q ):

1 p For every x ;:::;x 2 X and x1;:::;xq 2 X as well as u; v 2 X , x; y 2 X and r 2 R multilinearity implies

2 p .u C v/ ˝ x ˝ :::˝ x ˝ x1 ˝ :::˝ xq 2 p 2 p D u ˝ x ˝ :::˝ x ˝ x1 ˝ :::˝ xq C v ˝ x ˝ :::˝ x ˝ x1

˝ :::˝ xq .internal left-linearity/ 1 p x ˝ :::˝ x ˝ .x C y/ ˝ x2 ˝ :::xq 1 p 1 p D x ˝ :::˝ x ˝ x ˝ x2 ˝ :::˝ xq C x ˝ :::˝ x ˝ y ˝ x2

˝ :::˝ xq .internal right-linearity/ 2 p ru ˝ x ˝ :::˝ x ˝ x1 ˝ :::˝ xq 2 p D r.u ˝ x ˝ :::˝ x ˝ x1 ˝ :::˝ xq/.external left-linearity/ 1 p x ˝ :::˝ x ˝ rx ˝ x2 ˝ :::˝ xq 1 p D r.x ˝ :::˝ x ˝ x ˝ x2 ˝ :::˝ xq /.external right-linearity/:

A possible way to visualize the different multilinear functions which span T0 T1 T0 T2 T1 T0 Tp f 0; 0; 1; 0; 1; 2;:::; q g is to construct a hierarchical diagram or a special tree as follows.

∈ 0 {0} 0S

x1 ∈ 1 x ∈ 0 0 1 1

x1⊗ x2∈ 2 x1 ⊗ x ∈ 1 x ⊗ x ∈ 0 0 1 1 1 2 2

x1 ⊗ x2 ⊗ x3∈ 3 x1 ⊗ x2 ⊗ x ∈ 2 x1 ⊗ x2 ⊗ x ∈ 2 x ⊗ x ⊗ x ∈ 0 0 ; 1 1 ; 1 1 ; 1 2 3 3 574 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

When we learnt first about the tensor product symbolised by “˝”aswellasits multilinearity we were left with the problem of developing an intuitive under- 1 2 1 standing of x ˝ x , x ˝ x1 and higher order tensor products. Perhaps it is helpful to represent ”the involved vectors” in a contravariant or in a covariant 1 1 2 3 1 2 3 . For instances, x D e x1 C e x2 C e x3 or x1 D e1x C e2x C e3x is 1 2 3 a left representation of a three-dimensional vector in a 3-left basis fe ; e ; e gl of contravariant type or in a 3-left basis fe1; e2; e3gl of covariant type. Think in terms of 1 x or x1 as a three-dimensional position vector with right coordinates fx1;x2;x3g or fx1;x2;x3g , respectively. Since the intuitive of vectors is commutative we 1 2 3 may also represent the three-dimensional vector in a in a 3-right basis fe ; e ; e gr of contravariant type or in a 3-right basis fe1; e2; e3gr of covariant type such that 1 1 2 3 1 2 3 x D x1e C x2e C x3e or x1 D x e1 C x e2 C x e3 is a right representation of a three-dimensional position vector which coincides with its left representation thanks to commutativity. Further on, the tensor product x ˝ y enjoys the left and right representations X3 X3 1 2 3 1 2 3 i j e x1 C e x2 C e x3 ˝ e y1 C e y2 C e y3 D e ˝ e xi yj iD1 j D1 and X3 X3 1 2 3 1 2 3 i j x1e C x2e C x3e ˝ y1e C y2e C y3e D xi yj e ˝ e iD1 j D1 which coincides again since we assumed a of vectors. The product of coordinates .xi yj /; i; j 2f1; 2; 3g is often called the dyadic product. Please do not miss the alternative covariant representation of the tensor product x ˝ y which we introduced so far in the contravariant basis, namely

X3 X3 1 2 3 1 2 3 i j e1x C e2x C e3x ˝ e1y C e2y C e3y D ei ˝ ej x y iD1 j D1 of left type and

X3 X3 1 2 3 1 2 3 i j x e1 C x e2 C x e3 ˝ y e1 C y e2 C y e3 D x y ei ˝ ej iD1 j D1 of right type. In a similar way we produce

3;3;3X 3;3;3X i j k i j k x ˝ y ˝ z D e ˝ e ˝ e xi yj zk D xi yj zk e ˝ e ˝ e i;j;kD1 i;j;kD1 of contravariant type and p A-1 Multilinear Functions and the Tensor Space Tq 575

3;3;3X 3;3;3X i j k i j k x ˝ y ˝ z D ei ˝ ej ˝ ekx y z D x y z ei ˝ ej ˝ ek i;j;kD1 i;j;kD1 of covariant type. “Mixed covariant-contravariant” representations of the tensor 1 product x1 ˝ y are

X3 X3 X3 X3 1 j i i j x1 ˝ y D ei ˝ e x yj D x yj ei ˝ e iD1 j D1 iD1 j D1 or X3 X3 X3 X3 1 i j j i x ˝ y1 D e ˝ ej xi y D xi y e ˝ ej : iD1 j D1 iD1 j D1

1 In addition, we have to explain the notion x 2 X ; x1 2 X: While the vector x1 is an element of the vector space X , x1 is an element of its dual space. What is a dual space? Indeed the dual space X is the space of linear functions over the elements of X. For instance, if the vector space X is equipped with inner product, namely hei je j iDgij ;i;j 2 f1; 2; 3g, with respect to the base vectors fe1; e2; e3g which span the vector space X,then

X3 j ij e D ei g iD1 transforms the covariant base vectors fe1; e2; e3g into the contravariant base vectors 1 2 3 ij 1 fe ; e ; e gDspan X by means of Œg D G , the inverse of the matrix Œgij D 33 G 2 R . Similarly the coordinates gij of the g are used for “raising” i or “lowering” the indices of the coordinates x ;xj , respectively, for instance

X3 X3 i ij j x D g xj ;xi D gij x : j D1 j D1

In a finite dimensional vector space, the power of a linear space X and its dual X? does not show up. In contrast, in an infinite dimensional vector space X the dual space X? is the space of linear functionals which play an important role in . While through the tensor product “˝” which operated on vectors, e.g. x ˝ y, we constructed the p-contravariant, q-covariant tensor space or Tp X X T2 T0 T1 space of multilinear functions q . ; / ,e.g. 0; 2; 1 , we shall generalise the p representation of the elements of Tq by means of

nDXdim X i1 ip Tp f D e ˝ :::˝ e fi1:::ip 2 0 i1;:::;ipD1 576 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

nDXdim X i1:::iq T0 f D ei1 ˝ :::˝ eiq f 2 q i1;:::;iq D1

nDXdim X nDXdim X i ;:::;i f D ei1 ˝ :::˝ eip ˝ e ˝ :::˝ e f 1 p 2 Tp j1 jq j1;:::;jq q i1;:::;ipD1 j1;:::;jqD1 for instance

X3 X3 i j i j T2 f D e ˝ e fij D fij e ˝ e 2 0 i;jD1 i;jD1 X3 X3 ij ij T0 f D ei ˝ ej f D f ei ˝ ej 2 2 i;jD1 i;jD1 X3 X3 i i i i T1 f D e ˝ ej fj D fj e ˝ ej 2 1 i;jD1 i;jD1

i ;:::;i We have to emphasize that the tensor coordinates f ;fi1;:::;iq , f 1 p are no i1;:::;ip j1;:::;jp longer of dyadic or product type. For instance, for § ¤ ¦(2,0)-tensor : bilinear functions: ¥

Xn Xn i j i j T2 f D e ˝ e fij D fij e ˝ e 2 0 i;jD1 i;jD1

fij ¤ fi fj § ¤ ¦(2,1)-tensor : trilinear functions: ¥

Xn Xn i j k k i j T2 f D e ˝ e ˝ ekfij D fij e ˝ e ˝ ek 2 1 i;j;kD1 i;jD1

k k fij ¤ fi fj f § ¤ ¦(3,1)-tensor : ternary functions: ¥

Xn Xn i j k l l i j k T3 f D e ˝ e ˝ e ˝ el fij k D fij k e ˝ e ˝ e ˝ el 2 1 i;j;k;lD1 i;jD1

l l fij k ¤ fi fj fkf p A-1 Multilinear Functions and the Tensor Space Tq 577 holds. Table A.1 is a list of .p; q/-tensors as they appear in various sciences. Of special importance is the decomposition of multilinear functions as elements p of the space Tq into their symmetric, antisymetric and residual constituents we are going to outline.

p Table A.1 Various examples of tensor spaces Tq (p & q W of T2 tensor) (2,0) tensor, tensor space 0 Metric tensor Differential Gauss curvature tensor tensor Gravity tensor Faraday tensor, Maxwell tensor of dielectric constant Tensor of permeability Strain tensor, tensor Energy momentum tensor Mechanics Second order multipole Gravitostatics tensor Magnetostatics Electrostatics Variance-covariance Mathematical matrix

p Table A.2 Various examples of tensor spaces Tq (p C q W rank of T2 tensor) (2,1) tensor, tensor space 1 Cartaan Differential Deometry Third order multipole Gravitostatics tensor Magnetostatics Electrostatics skewness tensor Mathematical Third momentum tensor Statistics of probability distribution Tensor of piezoelectric Coupling of stress constant and electrostatic field 578 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

p Table A.3 Various examples of tensor spaces Tq (p C q W rank of T3 T2 tensor) (3,1) tensor, (2,2) tensor, tensor space 1, 2 Fourth order multipole Gravitostatics tensor Magnetostatics Electrostatics Hooke tensor Stress-strain relation Constitutive equation Continuum mechanics Elasticity, viscosticity Curtosis tensor Mathematical Fourth moment tensor of Statistics a probability distribution

A-2 Decomposition of Multilinear Functions into Symmetric Multilinear Functions, Antisymmetric Multi-linear Functions and Residual Multilinear p p p p Functions TTq D Sq ˚ Aq ˚ Rq

Tp Tp Sp q as the space of multilinear functions follows the decomposition q D q ˚ p p p p Aq ˚ Rq into the subspace Sq of symmetric multilinear functions, the subspace Aq p of antisymmetric multilinear functions and the subspace Rq of residual multilinear functions:

Box A.2i. (Antisymmetry of the symbols fi1:::ip ):

fij Dfji

fij k Dfikj;fjki Dfjik;fkij Dfkj i

fij k l Dfij l k ;fjkli Dfjkil;fklij Dfklji;fkijk Dflikj

Box A.2ii. (Symmetry of the symbols fi1:::ip ):

fij D fji

fij k D fikj;fjki D fjik;fkij D fkj i

fij k l D fij l k ;fjkli D fjkil;fklij D fklji;fkijk D flikj A-2 Decomposition of Multilinear Functions into Symmetric Multilinear Functions 579

p Box A.2iii. (The interior product of bases, span S , n D dim X D dim X D 3):

1 S1 W ei 1Š 1 S2 W .ei ˝ ej C ej ˝ ei / 2Š DW ei _ ej ; ei _ ej DCej _ ei 1 S3 W .ei ˝ ej ˝ ek C ei ˝ ek ˝ ej C ej ˝ ek ˝ ei 3Š C ej ˝ ei ˝ ek C ek ˝ ei ˝ ej C ek ˝ ej ˝ ei / DW ei _ ej _ ek

ei _ ej _ ek D ei _ ek _ ej D ek _ ei _ ej D ek _ ej _ ei D ej _ ek _ ei D ej _ ei _ ek

p Box A.2iv. (The exterior product of bases, span A , n D dim X D dim X D 3):

1 A1 W ei 1Š 1 A2 W .ei ˝ ej ej ˝ ei / 2Š DW ei ^ ej ; ei ^ ej Dej ^ ei 1 A3 W .ei ˝ ej ˝ ek ei ˝ ek ˝ ej C ej ˝ ek ˝ ei 3Š ej ˝ ei ˝ ek C ek ˝ ei ˝ ej ek ˝ ej ˝ ei / DW ei ^ ej ^ ek

ei ^ ej ^ ek Dei ^ ek ^ ej DCek ^ ei ^ ej Dek ^ ej ^ ei D ej ^ ek ^ ei Dej ^ ei ^ ek 580 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

Box A.2v. (Sp, symmetric multilinear functions):

8 9

  n C p 1 2p 1 Corollary:dimSp D , in particular if nDp,thendimSp D .  p p 

Box A.2vi. (Ap, antisymmetric multilinear functions):

8 9

  n Corollary:dimAp D nŠ=.pŠ.n p/Š/D in particular if nDp,thendimApD1.  p 

Box A.2vii. (Aq, antisymmetric multilinear functions, exterior product Proposition):

(a) For every x1;:::;xi1; xiC1;:::;xq 2 X as well as x; y 2 X and r; s 2 R multilinearity implies

x1 ^ :::^ xi1 ^ .rx C sy/ ^ xiC1 ^ :::^ xq

D r.x1 ^ :::^ xi1 ^ x ^ xiC1 ^ :::^ xq

C s.x1 ^ :::^ xi1 ^ y ^ xiC1 ^ :::^ xq: 582 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

(b) For every permutation of f1;2;:::;qg we have x x x x x x 1 ^ 2 ^ :::^ q D sign ./ 1 ^ 2 ^ :::^ q:

(c) Let A 2 Aq .X/, B 2 As.X/;then

B ^ A D .1/qsA ^ B:

(d) For every q, 0 q n, the tensor space Aq of antisymmetric multilinear functions has n dim A D D nŠ=.qŠ.n q/Š/: q q

T1 T0 T2 T0 R2 R3 As detailed examples we like to decompose f 0; 1; 0; 2g in and , respectively, into symmetric and antisymmetric constituents.

Tp Sp p Rp Example A.2. ( q D q ˚ Aq ˚ q , decomposition of multilinear functions into symmetric and antisymmetric constituents):

As a first example of the decomposition of multilinear functions (tensor space) into symmetric and antisymmetric constituents we consider a linear space X (vector space) of dimension dim X D n D 2. Its dual space X,dimX D dim X D n D 2, is spanned by orthonormal contravariant base vectors fe1; e2g. Choose q D 0, p D 1 and p D 2.

1 2 X D span fe1; e2g versus X D span fe ; e g ( ) X2 T1 1 S1 ei e1 e2 X 0 D A D 3 f D fi D f1 C f2 2 iD1 T2 2 S2 0 D A ˚ 8 9 < X2 = T2 ei ej 0 3 f D : ˝ fij ; i;jD1 1 1 1 2 2 1 2 2 D e ˝ e f11 C e ˝ e f12 C e ˝ e f21 C e ˝ e f22 1 D e1 ˝ e1f C e2 ˝ e2f C .e1 ˝ e2 e2 ˝ e1/f 11 22 2 12 1 1 C .e1 ˝ e2 C e2 ˝ e1/f .e1 ˝ e2 e2 ˝ e1/f 2 12 2 21 1 C .e1 ˝ e2 C e2 ˝ e1/f 2 21 1 1 2 2 1 2 1 2 D e _ e f11 C e _ e f22 C e ^ e .f12 f21/=2 C e _ e .f12 C f21/=2 dim S2 D 3; dim A2 D 1: A-2 Decomposition of Multilinear Functions into Symmetric Multilinear Functions 583

As a second example of the decomposition of multilinear functions (tensor space) into symmetric and antisymmetric constituents we consider a linear space X (vector space) of dimension dim X D n D 3, spanned by orthonormal contravariant base vectors fe1; e2; e3g. Choose p D 0, q D 1 and 2. span X Dfe1; e2; e3g ( ) X3 T0 S e i e 1 e 2 e 3 X 1 D A1 D 1 3 f D i f D 1f C 2f C 3f 2 iD1 T0 D A ˚ S 2 82 2 9 < X3 = T0 e e ij 2 3 f D : i ˝ j f ; i;jD1 ( ) X3 X3 X3 i1 i2 i3 D ei ˝ e1f C ei ˝ e2f C ei ˝ e3f iD1 iD1 iD1 11 21 31 12 22 D e1 ˝ e1f C e2 ˝ e1f C e3 ˝ e1f C e1 ˝ e2f C e2 ˝ e2f 32 13 23 33 C e3 ˝ e2f C e1 ˝ e3f C e2 ˝ e3f C e3 ˝ e3f 1 1 C .e ˝ e e ˝ e /f 12 C .e ˝ e C e ˝ e /f 12 2 1 2 2 1 2 1 2 2 1 1 1 .e ˝ e e ˝ e /f 21 C .e ˝ e C e ˝ e /f 12 2 1 2 2 1 2 1 2 2 1 1 1 C .e ˝ e e ˝ e /f 23 C .e ˝ e C e ˝ e /f 23 2 2 3 3 2 2 2 3 3 2 1 1 .e ˝ e e ˝ e /f 32 C .e ˝ e C e ˝ e /f 32 2 2 3 3 2 2 2 3 3 2 1 1 C .e ˝ e e ˝ e /f 31 C .e ˝ e C e ˝ e /f 31 2 3 1 1 3 2 3 1 1 3 1 1 .e ˝ e e ˝ e /f 13 C .e ˝ e C e ˝ e /f 13 | 2 3 1 1 3 2 3 1 1 3

p p p p p p Since the subspaces Sq , Aq and Rq are independent, Sq ˚ Aq ˚ Rq denotes p p p p the direct sum of subspace Sq , Aq and Rq . Unfortunately Tq as the space of multilinear functions cannot be completely decomposed in the space of symmetric and antisymmetric multilinear functions: For instance, the dimension identities p p p nCp1 p n apply dim T D n ,dimS D . p /,dimA D .p/ with respect of a vector space X of dimension dim X D n, such that dim Rp D dim Tp dim Sp dim Ap D p nCpC1 n p n . p / .p/

A-3 Matrix Algebra, Array Algebra, Matrix Norm and Inner Product

Symmetry and antisymmetry of the symbols fi1:::ip can be visualized by the trees of Box A.2i and A.2ii. With respect to the symbols of the interior product “_”andtheexterior product “^”(“wedge product”) we are able to redefine symmetric and antisymmetric functions according to Box A.2iii–vi. Tp Note the of tensor algebra q and array algebra, namely of n (a) Œfi 2 R (onedimensional array, “column vector”, dim Œfi D n 1) nn (b) Œfij 2 R (twodimensional array, column-row array, “matrix”, dim Œfij D n n) nnn (c) Œfij k 2 R (threedimensional array, “indexed matrix”, dim Œfij k D n n n) etc. For the base space x 2 ˝ R3 to be threedimensional Euclidean we had answered the question how to measure the length of a vector (“norm”) and the angle between two vectors (“inner product”). The same question will finally been raised p Tp for tensors tq 2 q . The answer is constructively basedonthevectorization of the arrays Œfij , Œfij k , ::: Œfi1:::ip by taking advantage of the symmetry-antisymmetry structure of the arrays and later on applying the Euclidean norm and the Euclidean inner product to the vectorized array. For a 2-contravariant, 0-covariant tensor we shall outline the procedure.

(a) Firstly let F D Œfij be the quadratic matrix of dimension dim F D n n, T2 F an element of 0. Accordingly vec is the vector 2 3 fi1 6 7 6 fi2 7 6 7 F 6 : 7 F 2 vec D 6 : 7 ; dim vec D n 1 4 5 fin1

fin

which is generated by stacking the elements of the matrix F columnwise in a vector. The Euclidean norm and the Euclidean inner product of vec F ,vecG, respectively is   kvec F k2 WD .vec F /T .vec F / D tr F T F ; G F T G F T G hvec F jvec iWD.vec / vec D tr : 

(b) Secondly let F D Œfij D Œfji be the of dimension dim F D n n, an element of S 2. Accordingly vech F (read “vector half”) is A-3 Matrix Algebra, Array Algebra, Matrix Norm and Inner Product 585

the n.n C 1/=2 1 vector which is generated by stacking the elements on and under the main diagonal of the matrix F columnwise in a vector: 2 3 f11 6 7 6 : 7 6 7 6 f 7 6 n1 7 6 7 F F T F 6 f22 7 F D Œfij D Œfji D H) vech WD 6 7 ; dim vech D n.n C 1/=2 6 : 7 6 7 6 f2n 7 4 : 5

fnn

vech F D H vec F ; dim H D n.n C 1/=2 n2:

The Euclidean norm and the Euclidean inner product of vech F , vech G, respectively is # T F D Œfij D Œfji D F H) T G D Œgij D Œgji D G   kvech F k2 WD .vech F /T .vech F / F G T G hvech jvech iWD.vech F/ .vech /: 

(c) Thirdly let F D Œfij DŒfji be the antisymmetric matrix of dimension dim F D n n, an element of A2. Accordingly veck F (read “vector skew”) is the n.n 1/=2 1 vector which is generated by stacking the elements under the main diagonal of the matrix F columnwise in a vector: 2 3 f21 6 7 6: 7 6 7 6f 7 6 n1 7 6 7 F F T F 6f32 7 F D Œfji DŒfji D H) veck WD 6 7 ; dim veck D n.n 1/=2 6: 7 6 7 6fn2 7 4: 5

fn1n

veck F D K vec F ; dim K D n.n 1/=2 n2:

The Euclidean norm and the Euclidean inner product of veck F , veck G, respectively 586 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra # T F D Œfij DŒfji DF H) T G D Œgij DŒgji DG   kveck F k2 WD .veck F /T .veck F / : F G F T G hveck jveck iWD.veck / .veck /  Youwillfindtheforms(a)vec F and (b) VechF in the standard book of (Harville, 1997, Chap. 16, 2001, Chap. 16) including many examples. Here we will present Example A.3 in computing the norm as well as the inner product of a 2-contravariant, 0-covariant tensor for the operator vec, vech and veck. The veck operator has been introduced by (Grafarend and Schaffrin, 1993, pp. 418–419).

Example A.3. (Norm and inner product of a 2-contravariant, 0-covariant tensor): 2 3 adg .a/ A WD4 beh5 ; dim A D 3 3 H) vec A D Œa;b;c;d;e;f;g;h;kT ; cf k dim vec A D 9 1 k vec Ak2 D .vec A/T .vec A/ D tr AT A D a2 C :::C k2 2 3 ab c .b/ A WD4 bd e5D AT ; dim A D 3 3 H) vech A D Œa;b;c;d;e;fT ; cef dim vech A D 6 1 H vech A D2 vec A 3 10 0 000 000 6 7 6 01=20 1=2 0 0 0007 6 7 6 7 H 6 001=2 000 0007 H 8 WD 6 7 ; dim D 6 9 6 00 0 010 0007 4 00 0 001=201=205 00 0 000 001 kvech Ak2 D .vech A/T .vech A/ D a2 C b2 C c2 C d 2 C e2 C f 2 (Henderson2 and Searle (1978,3 p. 68–69)) 0 a b c 6 7 6 a0d e 7 .c/ A WD4 5DAT ; dim A D 3 3 H) bd 0f cef 0 veck A D Œa;b;c;d;e;fT ; dim veck A D 6 1 veck A D K vec A A-4 The , Self 587 2 3 0100 1000 0 000 0000 6 7 6 0010 0000 1 000 00007 6 7 1 6 7 K 6 0001 0000 0 000 10007 8 WD 6 7 ; 2 6 0000 0010 0 100 00007 4 0000 0001 0 000 0 1005 0000 0000 0 001 0010 dim K D 6 16 kveck Ak2 D a2 C b2 C c2 C d 2 C e2 C f 2 |

A-4 The Hodge Star Operator, Self Duality

In Chap. 3, we took advantage of the Hodge star operator, for instance for transforming an overdetermined system of linear equations (inconsistent system) into a system of condition equations. There we referred to multilinear operations “join” and“meet”. The most important operator of the algebra of antisymmetric multilinear functions is the “Hodge star operator” which we shall present finally. In addition, we shall bring to you the surprising special feature of skew algebra called “selfduality”. p The algebra Aq of antisymmetric multilinear functions has been based on the exterior product “^” (“wedge product”). There has been created a duality operator called the Hodge star operator which is a of Ap ! Anp where n D dim X D dim X denotes the dimension of the base space X R3.The basic idea of such a map of antisymmetric multilinear functions f 2 Ap into antisymmetric linear functions f 2 Anp originates according to Box A.2vii from the following situation: The multilinear base of Ap is spanned by

f1; ei1 ; ei1 ^ ei2 ;:::ei1 ^ ei2 ^ :::^ eip g once we focus on p D 0;1;2;:::n, respectively. Obviously for any dimension p number n and p-contravariant, q-covariant index of the skew tensor space Aq there is an associated cobasis, namely 8 <ˆ basis Wf1; ei1 g n D 1; p D 0; 1 W :ˆ associated cobasis Wfei1 ;1g 8 <ˆ basis Wf1; ei1 ; ei1 ^ ei2 g n D 2; p D 0; 1; 2 W :ˆ associated cobasis Wfei1 ^ ei2 ; ei2 ;1g 588 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra 8 <ˆ basis Wf1; ei1 ; ei2 ^ ei3 ; ei1 ^ ei2 ^ ei3 g n D 3; p D 0; 1; 2; 3 W :ˆ associated cobasis Wfei1 ^ ei2 ^ ei3 ; ei2 ^ ei3 ; ei3 ;1g: in general, for arbitrary n 2 N, p D 0;1;:::;n 1; n 1 ( basis W f1; ei1 ;:::;ei1 ^ :::^ ein g associated cobasis W ei1 ei2 ein1 ein ei2 ein1 ein ein1 ein ein 0f ^ ^ :::^ ^ ; ^ ::: ^ ;:::; ^ ; ;1; ) as long as we concentrate on p-contravariant Ap only. A similar set-up of basis- p associated cobasis for q-covariant Aq and mixed Aq can be made. The linear map Ap ! Anp,theHodge star operator  ¨ 1 i :::i .ei1 ^ :::^ eip / WD 1 p eipC1 ^ :::^ ein ipC1:::in  .n p/Š © maps by means of the permutation symbol 2 C 1 for an even permutation 6 6 of f1;2;:::;n 1; ng 6 i1 ::: ip 6 WD 6 1 for an odd permutation ipC1 ::: in 6 4 of f1;2;:::;n 1; ng 0 otherwise

– sometimes called Eddington’s epsilons – on orthonormal (“unimodular”) base of Ap onto an orthonormal (“unimodular”) base of Anp. For antisymmetric multilinear functions also called -valued functions represented in an orthonormal (“unimodular”) base the Hodge star operator is the following linear map 8 9 < D X = 1 n Xdim Tp Ap 3 f D ei1 ^ :::^ eip f ; 0 :pŠ i1:::ip ; i1;:::;ip D1 8 9 < D X D X = 1 n Xdim n Xdim 1 p np i1:::ip ipC1 in T A 3f WD e ^ :::^ e fi :::i : 0 :.n p/Š pŠ ipC1:::in 1 p; ipC1;:::;in i1;:::;ip

As soon as the base space x 2 ˝ R3 is not covered by Cartesian coordinates, rather by , its coordinates base A-4 The Hodge Star Operator, Self Duality 589 @ @ @ fb1; b2; b3gDfdy1;dy2;dy3g versus fb ; b ; b gD ; ; 1 2 3 @y 1 @y 2 @y 3 of contravariant versus covariant type is neither orthogonal nor normalized. It is for this reason that finally we present f ,theHodge star operator of an antisymmetric multilinear function f , also called the dual of f , in a general coordinate base.

Definition A.2. (Hodgestaroperator, the dual of an antisymmetric multilin- ear function):

If an antisymmetric .p; 0/ multilinear function is an element of the skew algebra Ap with respect, to a general base fbi1 ^ :::^ bip g is given 8 9 < X = 1 nDXdim f D bi1 ^ :::^ bip f :pŠ i1:::ip ; i1;:::;ip D1

then the8Hodge star operator,thedual of f , can be uniquely represented by < X X X 1 nDXdim nDXdim nDXdim 1 (a) f D bipC1 ^ :::^ bip :.n p/Š pŠ ipC1;:::;in i1;:::ip j1;:::;jp )

p i1j1 ip jp gi1:::ip ipC1:::in g :::g fj1:::jp 8 9 < nDdim X nDdim X = 1 X X 1 p (b) f D bipC1 ^ :::^ bin g f i1:::ip :.n p/Š pŠ i1:::ipipC1:::in ; (ipC1;:::;in i1;:::;ip ) nDdimPX p i1:::ip (c) .f/k1:::knp D gi1:::ipk1:::knp f i1;:::ip as an element of the skew algebra Anp in the general associated cobase fbpC1^ :::^bin g with respect to the base space x 2 X Rpn of dimension n D dim X D kl 1 p dim X and Œg D G D adj G=det G , g D jgklj. If we extend the algebra Ap of antisymmetric multilinear functions by 1 D e1 ^ :::en 2 An and e1 ^ :::^ en D 1 2 A0 D R, respectively, let us collect some properties of f ,thedual of f .   Proposition A.1. (Hodgestaroperator, the dual of an antisymmetric multi- linear function):  

Let the linearly ordered base fe1;:::;eng be orthonormal (“unimodular”). Then the Hodge star operator of an antisymmetric multilinear function f ,the dual of f , with respect to fe1;:::eng satisfies the following: 590 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

(a) maps antisymmetric p-contravariant tensor-valued functions to antisymmet- ric .n p/-contravariant tensor-valued functions: (WAp ! Anp 1 D e1 ^ :::^ en DW e for every 1 2 A0; e 2 A (b) e D 1 for every e 2 An;12 Ap (c) f D .1/p.np/f for every f 2 Ap (d) f ^f Dkf k2e1 ^ :::^ en with respect to the norm

X 1 nDXdim kf k2 WD f f i1:::ip : pŠ i1:::ip i1;:::;ipD1

Example A.4. (Hodge star operator n D dim X D dim X D 3, span X D fe1; e2; e3g, Ap ! Anp): n D 3; p D 0 W1 D e1 ^ e2 ^ e3 1 n D 3; p D 1 Wei1 D i1 ei2 ^ ei3 2 i2i3 2 1 1 2 3 3 2 2 3 6 e D .e ^ e e ^ e / D e ^ e 6 2 6 6 1 6 e2 e3 e1 e1 e3 e3 e1 6 D . ^ ^ / D ^ 6 2 4 1 e3 D .e1 ^ e2 e2 ^ e1/ D e1 ^ e2 2 n D 3; p D 2 Wei1 ^ ei2 D i1i2 ei3 i3 2 e1 ^ e2 D e3 6 4 e2 ^ e3 D e1 e3 ^ e1 D e2 n D 3; p D 3 Wei1 ^ ei2 ^ ei3 D 1 |

Example A.5. (Hodge star operator of an antisymmetric tensor-valued func- tion, n D dim X D dim X D 3, Ap ! Anp):

Throughout we apply the summation convention over repeated indices. ( f “0-” n D 3; p D 0 W f D fdx1 ^ dx2 ^ dx3 “3-differential form’’ A-4 The Hodge Star Operator, Self Duality 591 8 i1 ˆ f D dx fi1 “1-differential form” ˆ ˆ 1 < i1 i2 i3 f D dx ^ dx fi 2 i2i3 1 n D 3; p D 1 W ˆ ˆ 2 3 3 1 ˆ D f1dx ^ dx C f2dx ^ dx :ˆ 1 2 C f3dx ^ dx “2-differential form” 8 1 ˆ i1 i2 ˆ f D dx ^ dx fi i “2-differential form” <ˆ 2 1 2 1 n D 3; p D 2 W i1i2 i3 ˆ f D dx fi i ˆ i3 1 2 :ˆ 2 1 2 3 D f23dx C f31dx C f12dx “1-differential form” 8 ˆ 1 <ˆ f D dxi1 ^ dxi2 ^ dxi3 f “3-differential form” 6 i1i2i3 n D 3; p D 3 W ˆ 1 : f D i1i2i3 f D f “0-differential form” | 6 i1i2i3 123

Example A.6. (Hodge star operator, n D dim X D dim X D 3,“” product ()):

By means of the Hodge star operator we are able to interpret the “” product (“cross product”) in threedimensional vector space. If the vectors x; y 2 X,dimX D 3, presented in the orthonormal (“unimodular”) base fe1; e2; e3g the following equivalence between x ^ y and x y holds: # i j x D ei x ; y D ej y .summation convention H) x 2 X ; y 2 X i;j 2f1; 2; 3; g/

i j x ^ y D ei ^ ej x y 1 2 2 1 2 3 3 2 D e1 ^ e2.x y x y / C e2 ^ e3.x y x y / 3 1 1 3 C e3 ^ e1.x y x y / 1 2 2 1 H) .x ^ y/ D.e1 ^ e2/.x y x y / 2 3 3 2 C.e2 ^ e3/.x y x y / e e x3y1 x1y3 k e xi yj C. 3 ^ 1/. / D ij k x y e x1y2 x2y1 e x2y3 x3y e x3y1 x1y3 . ^ / D 3. / C 1. 2/ C 2. / 2 3 3 2 3 1 1 3 1 2 2 1 D e1.x y x y / C e2.x y x y / C e3.x y x y / #  ¨ x y e e xi xj D i j x y x y e e ke H) D. ^ / | i j WD ij k  © 592 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

Example A.7. (Hodge star operator, n D dim X D dim X D 4;X 2 R4, Minkwinski space, self-duality (Atiyah et al., 1978)):

By means of the Examples A-5–A-7 we like to make you familiar with (a) the Hodge star operator of an antisymmetric tensor-valued function over R3, (b) its equivalence to the “x” product (“cross product”) and (c) selfduality in a fourdimensional space. Such a selfduality plays a key role in differential geometry and as being emphasized by Atiyah et al. (1978). 9 6 Historical Aside Thus we have constructed an anticommutative algebra by implement- ing the “exterior product”“^”, also called “wedge product”, initiated by H. Grassmann in “Ausdehnungslehre” (second version published in 1882). See also his collected works, H. Grassmann (1911). In addition the work by G. Peano (Calcolo geometrico secondo, l’Ausdehnungslehre di Grassmann, Fratelli Bocca Editori, Torino 1888) should be mentioned here. The historical development may be documented by the work of Forder (1960). A modern version of the “wedge product” is given by Berman (1961). In particular we mention the contribution by Barnabei et al. (1985) where by avoiding the notion of the dual X of a linear space X and based upon operations like union, intersection,andcomplement – i.e. known in – have developed a double algebra with exterior products of type one (“wedge product”, “the join”) and of type two (“the meet”), namely “to restore H. Grassmanns original ideas to full geometrical power”. The star operator “” has been introduced by W. V. D. Hodge, being implemented into algebra in the work Hodge (1941)and Hodge and Pedoe (1968), pp. 232–309). Here the star operation has been called “dual Grassmann coordinates”; in addition “intersections and joins”havebeen introduced. 8 7

A-5 Linear Algebra

Multilinear algebra is built on linear algebra we are going into now. At first we give a careful definition of linear algebra which secondly we deepen by the diagrams “Ass”, “Uni”and“Comm”. The subalgebra “ring with identity” which is of central importance for solving polynomial equations by means of Groebner bases,the Buchberger and the multipolynomial resultant method is our third subject. 4 introduces the motion of division algebra and the non-. Fifthly, we confront you with (“God is a lie ”); in particular with Witt algebra. Section 6 compares Lie algebra and Killing analysis.Hereweadd some notes on the difficulties of a composition algebra in Sect. 7. Finally in Sect. 8 A-5 Linear Algebra 593 matrix algebra is presented again, but this time as a division algebra. As examples of a division algebra as well as composition algebra we introduce complex algebra (Clifford algebra Cl.0;1/) in Sect. 9 and quaternion algebra in Sect. 10 (Clifford algebra Cl.0;2/ ) which is followed by an interesting letter of W. R. Hamilton (16 October 1943) to his son reproduced in Sect. 11. Octonian algebra (Clifford algebra with respect to H H) in Sect. 12 is an example for a “non associative” algebra as well as a composition algebra. Of course, we have reserved “Sect. 13” for the fundamental Hurwitz theorem of composition algebra and the fundamental Frobenius theorem of division algebra.

A-51 Definition of a Linear Algebra

Up to now we have succeeded to introduce the base space X of vectors x 2 X D R3 equipped with a metric and specialized to be threedimensional Euclidean.Wehave extended the base space to a tensor space, namely from vector-valued functions to n tensor-valuedfunctions on fR ;gij g. Now we proceed to give linear and multilinear functions an algebraic structure, namely by the definition of two binary operations, (two internal relations) .opera/1 D ˛, .opera/2 D and one binary operation (external relation) .opera/3 D ˇ.

Definition A.51. (linear algebra over the field of real numbers, linearity of vector space X):

Let R be the field of real numbers. A linear algebra over R or R-algebra consists of a set X of objects, two internal relations (either “additive”or “multiplicative”) and one external relation

.opera/1 DW ˛ W X X ! X

.opera/2 DW ˇ W R X ! X or X R ! X

.opera/3 DW W X X ! X:

1 With respect to the internal relation ˛ (“join”) X as a linear space is a vector space over R,anAbelian group written “additively”or“multiplicatively”:

x; y; z 2 X

additively written multiplicatively written Abelian group Abelian group ˛.x; y/ DW x C y ˛.x; y/ DW x ı y .G1C/.x C y/ C z D x C .y C z/.G1ı/.x ı y/ ı z D x ı .y ı z/ .additive associativity/.multiplicative associativity/ 594 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

.G2C/ x C 0 D x .G2ı/ x ı 1 D x .additive identity;.multiplicative identity; neutral element/ neutral element/ .G3C/ x C .x/ D 0 .G3ı/ x ı x1 D 1 .additive inverse/.multiplicative inverse/ .G4C/ x C y D y C x .G4ı/ x ı y D y ı x .additive commutativity;.multiplicative commutativity; Abelian axiom/ Abelian axiom/:

The triplet of axioms f.G1C/; .G2C/; .G3C/g or f.G1ı/; .G2ı/; .G3ı/g constitutes the set of group axioms. 2 With respect to the external relation ˇ the following compatibility conditions are satisfied:

x; y 2 X;r; s 2 R ˇ.r; x/ DWr x

.D1C/r .x C y/ D .x C y/ r.D1ı/r .x ı y/ D .x ı y/ r D r x C r y D .r x/ ı y D x r C y r D x ı .y ı r/ .1st additive distributivity/.1st multiplicative distributivity/ .D2C/.rC s/ x D x .r C s/ .D2ı/.rı s/ x D x .r ı s/ D r x C s x D r .s x/ D x r C x s D .x r/ s .2nd additive distributivity/.2nd multiplicative distributivity/

.D3/1 x D x 1 D x .left and right identity/

3 With respect to the internal relation (“meet”) the following compatibility conditions are satisfied:

x; y; z 2 X;r2 R .x; y/ DW x y .G1/.x y/ z D x .y z/ .associativity w.r.t internal multiplication/ A-5 Linear Algebra 595

.D1 C/ x .y C z/ D x y C x z .x C y/ z D x z C y z .left and right additive distributivity w.r.t internal multiplication/ .D1 ı/ x .y ı z/ D .x y/ ı z .x ı y/ z D x ı .y z/ .left and right multiplicative distributivity w.r.t internal multiplication/ .D2 /r .x y/ D .r x/ y .x y/ r D x .yr/ .left and right distributivity of internal and external multiplication/

Please, in the following pay attention to the 3 axiom sets of the linear algebra. We specify now the three axiomatic sets called “associativity” (ass), “unity”(Uni) and “commutativity” (comm).

A-52 The Diagrams “Ass”, “Uni” and “Comm”

Conventionally a linear algebra is minimally constituted by the triplet (X;˛;ˇ/ where X as a linear space is a vector space equipped with the linear maps ˛ W X X ! X and ˇ W R X ! X satisfying the axioms (Ass)and(Uni) according to the following diagrams:

(Ass): (Uni): The diagram The square b × id id × b ×× × × × × a × id α id × a

α × Commutes. Commutes. (Comm): The triangle

α α 596 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

Axiom (Ass) expresses the requirement that the multiplication ˛ is associative whereas Axiom (Uni) means that the element ˇ.1/ of X is a left as well as a right unit for ˛. The algebra .X;˛;ˇ/is commutative if in addition it satisfies the axiom x y (Comm): commutes where X;X is the flip switching the factors: X;X. ı / D y ı x. | Indeed we have expressed a set of axioms both explicitly as well as in a diagram- matic approach which minimally constitute a linear algebra .X;˛;ˇ/. In addition, beside the first internal relation ˛ called “join” we have experienced a second internal relation called “meet” which had to be made compatible with the other relations ˛ and ˇ, respectively. Actually the diagram for the axiom (Dis) is left as an exercise. Obviously we have experienced the words “addition”and“multiplication”for various binary operations. Note that in the linear algebra isomorphic to the vector space as its geometric counterpart we have not specified the inner multiplication .x; y/ 2 X. In a threedimensional vector space of Euclidean type

.x; y/ DW .x ^ y/ D x y namely the star of the exterior product x ^ y or the “cross product” x y,for x 2 R3, y 2 R3 is an example. Sometimes

.x; y/ DW Œx; y is written by rectangular brackets. 9 6 Historical Aside

Following a proposal of L. Kronecker (“Uber¨ die algebraisch auflosbaren¨ Gleichungen (Abhandlung, 1929)theaxiom of commutativity .G4C/ or .G4ı/ is called after N. H. Abel (Memoire sur un classe particuliere` d’equations resolable´ algebraique,´ Crelle’s J. reine angewandte Mathematik 4 (1828) 131–156 Oeuvres vol. 1, pp. 478–514, vol. 2, pp. 217–243, 329–331 edited by S. Lie and L. Sylow, Christiana 1881) who dealt with a particular class of equations of all degrees which are solvable by radicals, e.g. the cyclotomic equation xn1 D 0. N. H. Abel has proved the following general theorem: If the roots of an equation are such that all roots can be expressed as rational functions of one of them, say x, and if any two of the roots, say r1x and r2x where r1 and r2 are rational functions are connected in such a way that r2r1x D r1r2x,then the equation can be solved by radicals. Refer r2r1x D r1r2x to .G1/. 8 7 A-5 Linear Algebra 597

A-53 Ringed Spaces: The Subalgebra “Ring with Identity”

In .G2ı/ the neutral element 1 as well as in .G3ı/ the inverse element has been multiplied from the right. Similarly left multiplication .G2ı/ by the neutral element 1 as well as .G3ı/ by the inverse element are defined. Indeed it can be shown that there exist exactly one neutral element which is both left-neutral and right-neutral as well as exactly one inverse element which is both left-inverse and right-inverse. A subalgebra is called a “ring with identity” if the following seven conditions hold:

A ring with identity .G3/ is a division ring if every nonzero element of the ring has a multiplicative inverse.Acommutative ring is a ring with commutative multiplication .G4/. Modules are generalizations of the vector spaces of linear algebra in which the “scalars” are allowed to be from an arbitrary ring, rather than a field of real numbers. They will be discussed as soon as we introduce . Now we take reference to   Lemma A.53. (anticommutativity): x ı x D 0 for all x 2 X ” x ı y D y ı x for all x; y 2 X.“ı” is used in the notation “^” accordingly.  

Proof.

“ H) ”x ı y C y ı x D x ı x C x ı y C y ı x C y ı y D x ı .x C y/ C y ı .x C y/ D .x C y/ ı .x C y/ D 0 “ (H ”x D y H) x ı x Dx ı x H) x ı x D 0:

Later on we refer to the following algebras. | 598 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

A-54 Definition of a Division Algebra and Non-Associative Algebra

Definition A.23. (division algebra):

A R-algebra is called division algebra over R, if all non-null elements of X0 WD X nf0g form additionally a group with respect to inner multiplication DW x ı y, namely

x; y; z 2 Xnf0g .G1ı/.x ı y/ ı z D x ı .y ı z/ (associativity of inner multiplication) .G2ı/ x ı 1 D x (identity of inner multiplication) .G3ı/ x ı x1 D 1 (inverse of inner multiplication)

Definition A.24. (non-associative algebra):

A weaking of a R-algebra is the non-associative algebra over R,iftheaxioms 1 , 2 and 3 of linear algebra according to Definition A.21 hold with the exception of .G1ı/, that is the associativity of inner multiplication is cancelled.

A-55 Lie Algebra, Witt Algebra

“perhaps god is a ” Many physicists believe that all modern physics is based on the operation called “Lie algebra”. Indeed more than 1000 textbooks and papers are written on this most important subject. Indeed many physicists believe in “perhaps god is a lie group”. Here, we can give a very short notice of “Lie algebra”. We skip a note of comparison “Lie algebra” and its brother “Killing analysis”.

Definition A.25. (Lie algebra):

A non-associative algebra is called Lie algebra over R, if the following opera- tions with respect to inner multiplication WD x ı y hold: A-5 Linear Algebra 599

.L1/ x ı x D 0 .L2/ .x ı y/ ı z C .y ı z/ ı x C .z ı x/ ı y D 0: .Jacobi identity/

The examples of the Lie algebra are numerous. As a special Lie algebra we present the Witt algebra which is applied to Laurent polynomials.

Example A.8. (Witt algebra on the ring of Laurent polynomials (Chen, 1995)):

The Witt algebra W is the complex Lie algebra of polynomial fields on the unit circle S1. An element of W is a of the elements of the form in @ e @ ,where is a real parameter, and the Lie bracket of W is given by @ @ @ eim ;ein D i.n m/ei.mCn/ : @ @ @

A-56 Definition of a Composition Algebra

Various algebras are generated by adding an additional structure to the minimal set of axioms of a linear algebra blocked by (a), (b) and (c). Later on we use such an additional structure for matrix algebra.

Definition A.26. (composition algebra):

A non-associative algebra with 1 as identity of inner multiplication is called composition algebra over R, if there exists a regular quadratic form Q W X ! R which is compatible with the corresponding operations that is the following operations hold:

.K1/QW X ! R is a regular quadratic form; x;y;z 2 R;r2 R Q.r x/ D r2 Q.x/.quadratic form/ Q.x C y C z/ D Q.x C y/C Q.x C z/ C Q.y C z/ Q.x/ Q.y/ Q.z/ Q.r x C y/ r Q.x C y/ D .r 1/ Œr Q.x/ Q.y/ Q.x/ D 0 ” x D 0.regularity/ .K2/Q.x ^ y/ D Q.x/ Q.y/ .multiplicativity/ Q.1/ D 1 600 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

The quadratic form introduced by Definition A.55 leads to the topological notion of products, norm and metric we already used:

Lemma A.56. (scalar product, norm, metric):

In a composition algebra with a positive-definite quadratic form a scalar product (“inner product”) is defined by the bilinear form hji W X X ! R with

1 hxjyiWD ŒQ.x C y/ Q.x/ Q.y/I 2

a norm is defined by kkWX ! R with

kxkWDCŒQ.x/1=2

and metric is defined by the bilinear form

.x; y/ WD CŒQ.x y/1=2:

Thus to the algebraic structure a topological structure is added, if in addition

.K3/ Q.x/ 0

for all x 2 X holds. Proof. § ¤ ¦(i) scalar product ¥

hji W X X ! R is a scalar product since 1 .1/ hxjyiD ŒQ.x C y/ Q.x/ Q.y/ 2 1 D ŒQ.y C x/ Q.y/ Q.x/ Dhyjxi .symmetry/ 2 1 .2/ hx C yjziD ŒQ.x C y C z/ Q.x C y/ Q.z/ 2 1 D ŒQ.x C z/ Q.x/ Q.z/ 2 1 C ŒQ.y C z/ Q.y/ Q.z/ 2 DhxjziChyjzi .additivity/ A-5 Linear Algebra 601

1 .3/ hrxjyiD ŒQ.rx C y/ Q.rx/ Q.y/ 2 1 D rŒQ.x C y/ Q.x/ Q.y/ 2 D r hxjyi .homogenity/ 1 .4/ hxjxiD ŒQ.x C x/ Q.x/ Q.x/ 2 1 D ŒQ.2x/ 2 Q.x/ D Q.x/ 0.positivity/ 2 § ¤ ¦(ii) norm ¥

kkWX ! R is a norm since .N 1/ kxkDCŒQ.x/1=2 0 (positivity) and kxkD0 ” x D 0 .N 2/ krxkDCŒQ.rx/1=2 DCŒr 2 Q.x/1=2 Djrjkxk (homogenity) .N 3/ kx C ykDCŒQ.x C y/1=2 DCŒQ.x/ C Q.y/ C 2hxjyi1=2 h i 1=2 DC kxk2 Ckyk2 C 2kxkkyk kxkCkyk: .Cauchy-Schwarz’ inequality/“triangle inequality”/ £ ¢(iii) metric ¡

W X X ! R is a metric since

.M1/ .x; y/ DCŒQ.x y/1=2 Dkx yk0.positivity/ and .x; y/ D 0 ” x y D 0 ” x D y .M2/ .x; y/ Dkx ykDj1jky xkD.y; x/.symmetry/ .M3/ .x; y/ Dkx ykDk.x z/ C .z y/k kx zkCkz xkD.x; z/ C .z; y/ (triangle inequality) | 602 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

We treat in the next section a special case of a division algebra, namely matrix algebra.

A-6 Matrix Algebra Revisited, Generalized Inverses

It is known that every nonsingular matrix A has a unique inverse, usually denoted by A1 such that AA1 D A1A D I,whereI is the unit matrix. A matrix has a inverse only if it is square, and even then only if it is nonsingular, or alternatively if its columns or rows are linearly independent. Over the many years past it was felt the need of some kind of partial inverse of a matrix that is singular or even rectangularsingular matrix. By the term generalized inverse of a given matrix A we shall mean a matrix X associated in some way with the matrix A that (a) exists for a class of matrices larger than the class of nonsingular matrices, (b) has some of the properties of the usual inverse, and (c) reduces to the usual inverse when A is non singular. Some others have used the term “pseudoinvese” rather than general inverse without specifying the chosen type of general inverse. For a given matrix A, the matrix equation AXA D A alone characterizes those generalized inverses X that are of use in analyzing the solutions of the linear system Ax D b. For other purposes, other relationships play an essential role. Thus if we are concerned with least squares properties, the equation AXA D A is not enough and must be supplemented by other relations. There results a more restricted class of generalized inverses. Here we are limited to generalized inverses finite matrices,but extension to infinite-dimensional space and to differential and integral operations are very well known. E.H. Moore is attributed to have written one of the first papers on the topic of generalized inverses called by him the “general reciprocal” of any finite matrix,square or rectangular. His first publication on the subject was an abstract talk given at a meeting of the American Mathematical Society which appeared in 1920. Details of his talk were published only in 1935 (Moore, 1920), Moore (1935); (Moore and Nashed, 1974) after Moore’s death! Little note was taken of Moore’s discovery for 30 years after his first publication, during which time generalized inverses were taken for matrices by C. L. Siegel and for operators by Tseng (1936), Tseng (1949a)–Tseng (1949c), Tseng (1956), Murray and von Neumann (1936)and many others. A surprising revival of interest in general inverses appeared in 1950s when least squares properties were analyzed. The important properties were realized by Bjerhammar (1951a), Bjerhammar (1951b), (1968), one swedish colleague teaching LESS and geodetic applications of the subject. In 1955 R. Penrose extended A. Bjerhammar’s results on linear systems and showed that E.H. Moore inverse 0 satisfied four equations of type (a) AXA D A,(b)XAX D X,(c)AX D AX,and 0 (d) XA D XA nowadays called the axioms of the Moore-Penrose inverse,often denoted by AC. There are excellent textbooks on matrix algebra and generalized inverses of matrices including many examples upto 500! We like to mention the excellent text A-6 Matrix Algebra Revisited, Generalized Inverses 603 of Ben-Israel and Greville (1974), Bjerhammar (1973), Gere and Weaver (1965), Graybill (1963), Mardia et al. (1979), Nashed (1974), Rao and Mitra (1971), Rao and Rao (1998), Scarle (1982), Styan (1983). Here we will be unable to compete with the dense information given by these special texts. We assume that the reader is familiar with the standard notion of a matrix as a rectangular array of numbers offered by any undergraduate text of . Familiarity of various notion, for instance the dimension of a matrix of type n m, multiplication and addition of two matrices of type (a) “Cayley” or simply the matrix product C WD A:B,(b)“Kronecker-Zehfuss” denoted by C WD B ˝ A,(c)“Katri-Rao” denoted by C WD B ˇ A, and (d)“Hadamard” attributed by K WD G H. How are the various matrix product defined? Who defined the various algebras? Matrix algebra is the special division algebra over the field of real numbers. There is a natural generalization in terms of complex numbers for instance. The three axioms

nm Let A D Œaij 2 R be a rectangular matrix

1 A; B; C 2 Rnm; first set of axiom ˛.A; B/ DW A C B .G1C/.A C B/ C C D A C .B C C / .G2C/ A C 0 D A .G3C/ A A D 0 .G4C/ A C B D B C A

2 A; B 2 Rnm ; second set of axiom r; s 2 R;ˇ.r;A/ DW r A .D1C/r .A C B/ D r A C r B .D2C/.rC s/ A D r A C sA .D3/ 1 A D A

3 “multiplication of matrices” (a) “Cayley-product” (just “the matrix product”) # nl A D Œaij 2 R ; dim A D n l H) C WD A B D Œc 2 Rnm ; lm ij B D Œbij 2 R ; dim B D l m Pl dim C D n mcij WD aikbkl: kD1 604 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

The product was introduced by Cayley (1857); see also his Collected Works, vol. 2, 475–496. A historical perspective is given in Feldmann (1962). (b) “Kronecker-Zehfuß-product” # nm A D Œaij 2 R ; dim A D n m kl B D Œbij 2 R dim B D k l

knlm H) C WD B ˝ A D Œcij 2 R ;

dim C D kn lm; B ˝ A WD Œbij A:

The product was early referenced to L. Kronecker by Mac Duffee (1946). The other reference is Zehfuss (1858). See also Henderson et al. (1983) and Horn and Johnson (1990). Reference is also made to Steeb (1991)and Graham (1981). (c) “Khatri-Rao-product” (two rectangular matrices of identical column number) # nm A D Œa1;:::;am 2 R ; dim A D n m km B D Œb1;:::;bm 2 R ; dim B D k m

knm H) C WD B ˇ A WD Œb1 ˝ a1;:::;bm ˝ am 2 R dim C D kn m:

“two rectangular matrices of identical column numbers are multiplied.” The product was introduced by Khatri and Rao (1968). (d) “Hadamard product” (two rectangular matrices of the same dimension, elementwise product) # nm G D Œgij 2 R ; dim G D n m mm H D Œhij 2 R ; dim H D n m nm H) K WD G H D Œkij 2 R ; dim K D n m; kij WD gij hij .no summation/:

“two rectangular matrices of the same dimension define the elementwise product.” The product was introduced by Hadamard (1899). See also Moutard (1894), as well as Hadamard (1949)andSchur (1911)andHorn and Johnson (1991)andStyan (1973). A-6 Matrix Algebra Revisited, Generalized Inverses 605

Example: (a) 2 3 23 123 A D 2 Z23; B D 4 455 2 Z32 H) 456 67

(b) 28 34 H) A B D 2 Z22 .“integer numbers”/: 64 79 2 3 12 123 A D 2 Z23 ; B D 4 345 2 Z32 H) B ˝ A D Œb A 456 ij 56 2 3 123 246 6 7 6 4 5 6 810127 22 3 3 6 7 12 6 7 6 7 44 5 5 6 368 48127 Z66 D 34 ˝ A D 6 7 2 6 12 15 18 16 20 24 7 56 6 7 4 5 10 15 6 12 18 5 20 25 30 24 30 36

(c) 2 3 123 123 A D 2 Z23; B D 4 4565 2 Z33 456 789 22 3 2 3 2 3 2 3 2 3 2 33 1 1 2 2 3 3 H) B ˇ A D 44 4 5 ˝ 4 5 ; 4 5 5 ˝ 4 5 ; 4 6 5 ˝ 4 55 7 4 8 5 9 6 2 3 149 6 7 6 410187 6 7 6 7 6 410187 Z63 D 6 7 2 6 16 25 36 7 4 716275 23 40 54 606 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

(d) 123 234 G D 2 Z23 ; H D 2 Z23 456 567

2612 H) G H D Œg h D 2 Z23: ij ij 20 30 42

A-61 Special Matrices: Helmert, Hankel, and Vandemonte

All the quoted textbooks review effectively special matrices of various types: symmetric, antisymmetric, diagonal, unity, zero, triangular, idempotent, , orthogonal, orthonormal, positive-definite, positive-semidefinite, permutation, and commutation matrices. Here, we review only orthonormal matrices of various representations. The Helmert representation of orthonomal matrix is given in various forms. In addition, we give examples for an , for instance the of power sums and the . Definition (orthogonal matrix) :

The matrix A is called orthogonal if AA0 and A0A are diagonal matrices. (The rows and columns of A are orthogonal.) Definition (orthonormal matrix): The matrix A is called orthonormal if AA0 D A0A D I. (The rows and columns of A are orthonormal.) Facts (representation of a 22 orthonormal matrix) X 2 SO.2/:A2 2 orthonormal matrix X 2 SO.2/ is an element of the special orthogonal group SO(2) defined by

22 0 SO.2/ WD fX 2 R j X X D I2 and det X DC1g

8 ˇ 9 ˇ 2 2 < ˇ x1 C x2 D 1 = x1 x2 R22 ˇ :X D 2 ˇ x1x3 C x2x4 D 0; x1x4 x2x3 DC1; x3 x4 ˇ 2 2 x3 C x4 D 1

(a) cos sin X D 2 R22;2 Œ0; 2 sin cos is a trigonometric representation of X 2 SO.2/. A-6 Matrix Algebra Revisited, Generalized Inverses 607

(b) " p # x 1 x2 X D p 2 R22;x2 ŒC1; 1 1 x2 x is an algebraic representation of X 2 SO.2/ p p 2 2 2 2 2 2 x11 C x12 D 1; x11x21 C x12x22 Dx 1 x C x 1 x D 0; x21 C x22 D 1 :

(c) " # 1x2 2x 2 C 2 X D 1Cx 1Cx 2 R22;x2 R 2x 1x2 1Cx2 1Cx2 is called a stereographic projection of X (stereographic projection of SO(2) S1 onto L1). (d) 0x X D .I C S/.I S/1; S D ; 2 2 x0 where S DS0 is a skew matrix (antisymmetric matrix), is called a Cayley-Lipschitz representation of X 2 SO.2/.(e)X 2 SO.2/ is a commutative group (“Abel”) (Example: X1 2 SO.2/, X2 2 SO.2/,thenX1X2 D X2X1)(SO(n)forn D 2 is the only commutative group, SO(nj n ¤ 2) is not “Abel”). Facts (representation of an n n orthonormal matrix) X 2 SO.n/: An n n orthonormal matrix X 2 SO.n/ is an element of the special orthogonal group SO(n) defined by

nn 0 SO.n/ WD fX 2 R jX X D In and det X DC1g:

As a differentiable SO(n) inherits a Riemann structure from the ambient 2 2 space n with a Euclidean metric (vec X0 2 Rn ; dim vec X0 D n2). Any atlas of the special orthogonal group SO(n) has at least four distinct charts and there is one with exactly four charts. (“minimal atlas”: Lusternik-Schnirelmann category)(a)

1 X D .In C S/.In S/ ; where

S DS0 608 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra is a skew matrix (antisymmetric matrix), is called a Cayley-Lipschitz representation of X 2 SO.n/.(nŠ=2.n 2/Š is the number of independent parameters/coordinates of X) (b) If each of the matrices R1;:::;Rk is an n n orthonormal matrix,then their product

R1R2 Rk1Rk 2 SO.n/ is an n n orthonormal matrix. Facts (orthonormal matrix: Helmert representation): 0 Let a D Œa1;:::;an represent any row vector such that ai ¤ 0 .i 2f1;:::;ng/ is any row vector whose elements are all nonzero. Suppose that we require an n n orthonormal matrix, one row which is proportional to a0. In what follows one such 0 0 matrix R is derived.LetŒr 1;:::;r n represent the rows of R and take the first row 0 0 0 r 1 to be the row of R that is proportional to a .Takethesecond row r 2 to be proportional to the n-dimensional row vector

2 Œa1; a1=a2; 0; 0;:::;0; .H 2/

0 the third row r 3 proportional to 2 2 a1; a2; .a1 C a2/=a3; 0; 0;:::;0 .H3/

0 0 and more generally the first through nth rows r 1;:::;r n proportional to " # Xk1 2 a1; a2;:::;ak1; ai =ak; 0; 0;:::;0 .Hn 1/ iD1 for k 2f2;:::;ng; respectively confirm to yourself that the n-1 vectors (Hn1) are orthogonal to each 0 0 0 other and to the vector a . In order to obtain explicit expressions for r 1;:::;r n it 0 remains to normalize a and the vectors (Hn1). The Euclidean norm of the kth of the vectors (Hn1)is 8 9 ! 1=2 ( ! ! )

0 0 Accordingly for the orthonormal vectors r 1;:::;r n we finally find " # Xn 1=2 0 2 (1st row) r 1 D ai .a1;:::;an/ iD1 A-6 Matrix Algebra Revisited, Generalized Inverses 609

2 3 1=2 6 7 6 a2 7 0 6 !k !7 (kth row) r k D 6 7 4 kP1 Pk 5 2 2 ai ai iD1 iD1 ! Xk1 2 ai a1; a2;:::;ak1; ; 0; 0;:::;0 a k iD1 2 3 1=2 " # 6 2 7 Xn1 2 0 6 an 7 ai .nth row/ r D 6 7 a ; a ;:::;a ; : n 4 nP1 Pn 5 1 2 n 1 a 2 2 iD1 n ai ai : iD1 iD1

The recipe is complicated: When a0 D Œ1; 1;:::; 1; 1,theHelmert factors in the 1st row, :::; kthrow,...,nthrowsimplifyto

0 1=2 n r 1 D n Œ1;1;:::;1;12

0 1=2 n r k D Œk.k 1/ Œ1;1;:::;1;1 k; 0; 0; : : : ; 0; 0 2

0 1=2 n r n D Œn.n 1/ Œ1; 1; :::; 1; 1 n 2 R :

The orthonormal matrix 2 3 0 r 1 6 0 7 6 r 2 7 6 7 6 7 6 0 7 6 r k1 7 6 0 7 2 SO.n/ 6 r k 7 6 7 6 7 4 0 5 r n1 0 r n is known as the Helmert matrix of order n. (Alternatively the transposes of such a matrix are called the Helmert matrix.) Example (Helmert matrix of order 3):

2 p p p 3 1= 31= 31=3 6 7 6 p p 7 4 1= 2 1= 205 2 SO.3/: p p p 1= 61= 6 2= 6

Check that the rows are orthogonal and normalized. 610 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

Example (Helmert matrix of order 4):

2 3 1=2 1=2 1=2 1=2 6 p p 7 6 7 6 1= 2 1= 20 07 6 p p p 7 2 SO.4/: 4 1= 61=6 2= 605 p p p p 1= 12 1= 12 1= 12 3= 12

Check that the rows are orthogonal and normalized. Example (Helmert matrix of order n):

2 p p p p p p 3 1= n1=n1=n1=n 1= n1=n 6 p p 7 6 7 6 1= 2 1= 20 0 007 6 p p p 7 6 7 6 1= 61=6 2= 60 007 6 7 2 SO.n/: 6 7 6 7 6 p 1 p 1 p 1 p 1 .n 1/ 0 7 4 .n1/.n2/ .n1/.n2/ .n1/.n2/ .n1/.n2/ 5 p 1 p 1 p 1 p 1 p 1n n.n1/ n.n1/ n.n1/ n.n1/ n.n1/

Check that the rows are orthogonal and normalized. An example is the nth row

1 1 .1 n/2 n 1 1 2n C n2 CC C D C n.n 1/ n.n 1/ n.n 1/ n.n 1/ n.n 1/ n2 n n.n 1/ D D D 1; n.n 1/ n.n 1/ where .n 1/ terms 1=Œn.n 1/ have to be summed. Definition (orthogonal matrix):

nm A rectangular matrix A D Œaij 2 R is called “a Hankel matrix”ifthenCm 1 distinct elements of A, 2 3 a 6 11 7 6 a 7 6 21 7 6 7 6 7 4 an11 5 an1 an2 anm only appear in the first column and last row. A-6 Matrix Algebra Revisited, Generalized Inverses 611

Example: Hankel matrix of power sums Let A 2 Rnm be a nm rectangular matrix (n 6 m) whose entries are power sums. 2 3 Pn Pn Pn 2 m 6 ˛i xi ˛i xi ˛i xi 7 6 iD1 iD1 iD1 7 6 Pn Pn Pn 7 6 2 3 mC1 7 6 ˛i xi ˛i xi ˛i xi 7 6 iD1 iD1 iD1 7 A WD 6 7 6 : : : : 7 6 : : : : 7 4 Pn Pn Pn 5 n nC1 nCm1 ˛i xi ˛i xi ˛i xi iD1 iD1 iD1

A is a Hankel matrix. Definition (Vandermonde matrix): Vandermonde matrix: V 2 Rnn 2 3 11 1 6 7 6 x x x 7 6 1 2 n 7 V WD6 : : : : 7 ; 4 : : : : 5 n1 n1 n1 x1 x2 xn Y det V D .xi xj /: i;j n i>j

Example: Vandermonde matrix V 2 R33 2 3 111 6 7 V WD 4 x1 x2 x3 5 ; det V D .x2 x1/.x3 x2/.x3 x1/: 2 2 2 x1 x2 x3

Example: Submatrix of a Hankel matrix of power sums Consider the submatrix nm P D Œa1;a2;:::;an of the Hankel matrix A 2 R .n 6 m/ whose entries are power sums. The of the power sums matrix P is ! ! Yn Yn 2 det P D ˛i xi .det V/ ; iD1 iD1 where det V is the Vandermonde determinant. Example: Submatrix P 2 R33 of a 3 4 Hankel matrix of power sums (n D 3, m D 4) 612 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

2 3 ˛ x C ˛ x C ˛ x ˛ x2 C ˛ x2 C ˛ x2 ˛ x3 C ˛ x3 C ˛ x3 ˛ x4 C ˛ x4 C ˛ x4 6 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 7 6 7 A D 6 2 2 2 3 3 3 4 4 4 5 5 5 7 4 ˛1x1 C ˛2x2 C ˛3x3 ˛1x1 C ˛2x2 C ˛3x3 ˛1x1 C ˛2x2 C ˛3x3 ˛1x1 C ˛2x2 C ˛3x3 5 3 3 3 4 4 4 5 5 5 6 6 6 ˛1x1 C ˛2x2 C ˛3x3 ˛1x1 C ˛2x2 C ˛3x3 ˛1x1 C ˛2x2 C ˛3x3 ˛1x1 C ˛2x2 C ˛3x3 2 3 ˛ x C ˛ x C ˛ x ˛ x2 C ˛ x2 C ˛ x2 ˛ x3 C ˛ x3 C ˛ x3 6 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 7 6 7 P D Œa ;a ;a 6 2 2 2 3 3 3 4 4 4 7 : 1 2 3 4 ˛1x1 C ˛2x2 C ˛3x3 ˛1x1 C ˛2x2 C ˛3x3 ˛1x1 C ˛2x2 C ˛3x3 5 3 3 3 4 4 4 5 5 5 ˛1x1 C ˛2x2 C ˛3x3 ˛1x1 C ˛2x2 C ˛3x3 ˛1x1 C ˛2x2 C ˛3x3

A-62 Scalar Measures of Matrices

All reference textbooks review various scalar measures of matrices like • • Column and row rank • Rank identities to which we refer. Permanently, we referred to a special technique called IPM (“Inverse Partitioned Matrix”) of a symmetric matrix we will review now. Facts: (Inverse Partitional Matrix/IPM/of a symmetric matrix): Let the symmetric matrix A be partitioned as " # A A A WD 11 12 ; A0 D A ; A0 D A : 0 11 11 22 22 A 12 A22

Then its Cayley inverse A1 is symmetric and can be partitioned as well as 2 3 1 A11 A12 A1 D 4 5 0 A 12 A22 2 3 1 0 1 1 0 1 1 0 1 1 ŒI C A11 A12.A22 A 12A11 A12/ A 12A11 A11 A12.A22 A 12A11 A12/ D 4 5 ; 0 1 1 0 1 0 1 1 .A22 A 12A11 A12/ A 12A11 .A22 A 12A11 A12/

1 if A11 exists; 2 3 1 A11 A12 A1 D 4 5 0 A 12 A22 2 3 0 1 1 0 1 1 1 .A11 A 12A22 A12/ .A11 A 12A22 A12/ A12A22 D 4 5 ; 1 0 0 1 1 1 0 1 0 1 1 A22 A 12.A11 A 12A22 A12/ ŒI C A22 A 12.A11 A12A22 A 12/ A12A22 A-6 Matrix Algebra Revisited, Generalized Inverses 613

1 if A22 exists:

0 1 0 1 S11 WD A22 A 12A11 A12 and S22 WD A11 A 12A22 A12 are the minors determined by properly chosen rows and columns of the matrix A called “Schur complements” such that " # " # 1 A A .I C A1A S1A0 /A1 A1A S1 A1 D 11 12 D 11 12 11 12 11 11 12 11 0 1 0 1 1 A 12 A22 S11 A 12A11 S11

1 if A11 exists; " # " # 1 A A S1 S1A A1 A1 D 11 12 D 22 22 12 22 0 1 0 1 1 0 1 1 A 12 A22 A22 A 12S22 ŒI C A22 A 12S22 A12A22

1 if A22 exists; are representations of the Cayley inverse partitioned matrix A1 in terms of “Schur complements”. The formulae S11 and S22 were first used by J. Schur (1917). The term “Schur complements” was introduced by Haynsworth (1968). Albert (1969) replaced the Cayley inverse A1 by the Moore-Penrose inverse AC. For a survey we recommend Cottle (1974), Ouellette (1981), Carlson (1986)andStyan (1985). Proof. For the proof of the “inverse partitioned matrix” A1 (Cayley inverse) of the partitioned matrix A of full rank we apply Gauss elimination (without pivoting).

AA1 D A1A D I " mm ml A A A11 2 R ; A12 2 R A D 11 12 ; A0 D A ; A0 D A 0 11 11 22 22 0 lm ll A 12 A22 A 12 2 R ; A22 2 R " mm ml B B B11 2 R ; B12 2 R A1 D 11 12 ; B0 D B ; B0 D B 0 11 11 22 22 0 lm ll B 12 B22 B 12 2 R ; B22 2 R 2 0 0 A11B11 C A12B 12 D B11A11 C B12A 12 D Im .1/ 6 6 A B C A B D B A C B A D 0 .2/ AA1 D A1A D I , 6 11 12 12 22 11 12 12 22 4 0 0 0 0 A 12B11 C A22B 12 D B 12A11 C B22A 12 D 0 .3/ 0 0 A 12B12 C A22B22 D B 12A12 C B22A22 D Il :.4/ 614 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

1 Case (a) W A11 exists

“forward step” # 0 0 1 A11B11 C A12B 12 D Im .first left equation:multiply by A 12A11 / 0 0 A 12B11 C A22B 12 D 0 .secondrightequation) # A0 B A0 A1A B0 D A0 A1 , 12 11 12 11 12 12 12 11 0 0 A 12B11 C A22B 12 D 0 " A B C A B0 D I , 11 11 12 12 m 0 1 0 0 1 .A22 A 12A11 A12/B 12 DA 12A11 0 0 1 1 0 1 ) B 12 D.A22 A 12A11 A12/ A 12A11 0 1 0 1 B 12 DS11 A 12A11 or " #" # " # I 0 A A A A m 11 12 D 11 12 : 0 1 0 0 1 A 12A11 Il A 12 A22 0A22 A 12A11 A12

0 1 Note the “Schur complement” S11 WD A22 A 12A11 A12. “backward step” # 0 A11B11 C A12B 12 D Im 0 0 1 1 0 1 B 12 D.A22 A 12A11 A12/ A 12A11 1 0 0 1 ) B11 D A11 .Im A12B 12/ D .Im B12A 12/A11 1 0 1 1 0 1 B11 D ŒIm C A11 A12.A22 A 12A11 A12/ A 12A11 1 1 1 0 1 B11 D A11 C A11 A12S11 A 12A11

A11B12 C A12B22 D 0 .second left equation/ 1 1 0 1 1 ) B12 DA11 A12B22 DA11 A12.A22 A 12A11 A12/ 0 1 1 , B22 D .A22 A 12A11 A12/ 1 B22 D S11 :

1 Case (b) W A22 exists

“forward step” A-6 Matrix Algebra Revisited, Generalized Inverses 615

# A11B12 C A12B22 D 0 .third right equation) 0 1 A 12B12 C A22B22 D Il .fourth left equation: multiply by A12A22 / # A B C A B D 0 , 11 12 12 22 1 0 1 A12A22 A 12B12 A12B22 DA12A22 " A0 B C A B D I , 12 12 22 22 l 1 0 1 .A11 A12A22 A 12/B12 DA12A22 1 0 1 0 1 ) B12 D.A11 A12A22 A 12/ A 12A22 1 1 B12 DS22 A12A22 or " #" # " # I A A1 A A A A A1A0 0 m 12 22 11 12 D 11 12 22 12 : 0 0 0Il A 12 A22 A 12 A22

Note the “Schur complement”

1 0 S22 WD A11 A12A22 A 12:

“backward step” # 0 A 12B12 C A22B22 D Il 1 0 1 1 B12 D.A11 A12A22 A 12/ A12A22 1 0 0 0 1 ) B22 D A22 .Il A 12B 12/ D .Il B 12A12/A22 1 0 1 0 1 1 B22 D ŒIl C A22 A 12.A11 A12A22 A 12/ A12A22 1 1 0 1 1 B22 D A22 C A22 A 12S22 A12A22 0 0 A 12B11 C A22B 12 D 0 .third left equation/ 0 1 0 1 0 1 0 1 ) B 12 DA22 A 12B11 DA22 A 12.A11 A12A22 A 12/

1 0 1 B11 D .A11 A12A22 A 12/ , | 1 B11 D S22 :

0 0 The representations B11; B12; B21 D B 12; B22 in terms of A11; A12; A21 D A 12; A22 have been derived by Banachiewicz (1937). Generalizations are referred to Ando (1979), Brunaldi and Schneider (1963), Burns et al. (1974), Carlson (1980), Meyer (1973)andMitra (1982), Li and Mathias (2000). We leave the proof of the following fact as an exercise. 616 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

Fact (Inverse Partitioned Matrix /IPM/ of a quadratic matrix): Let the quadratic matrix A be partitioned as " # A A A WD 11 12 : A21 A22

Then its Cayley inverse A1 can be partitioned as well as " # " # 1 A A A1 C A1A S1A A1 A1A S1 A1 D 11 12 D 11 11 12 11 21 11 11 12 11 ; 1 1 1 A21 A22 S11 A21A11 S11

1 if A11 exists " # " # 1 A A S1 S1A A1 A1 D 11 12 D 22 22 12 22 ; 1 1 1 1 1 1 A21 A22 A22 A21S22 A22 C A22 A21S22 A12A22

1 if A22 exists and the “Schur complements” are defined by

1 1 S11 WD A22 A21A11 A12 and S22 WD A11 A12A22 A21:

Facts: Cayley Inverse, DG matrix identity, SMW matrix identity, sum of two matrices

.DG id/ BD.A C CBD/1 D .B1 C DA1C/1DA1 (Duncan-Guttman matrix identity):

.SMW id/.A C CBD/1 D A1 A1C.B1 C DA1C/1DA1 (Sherman - Morrison - Woodbury matrix identity):

Duncan (1944) calls (DG) the Sherman-Morrison-Woodbury matrix identity.Ifthe matrix A is singular consult Henderson and Searle (1981a), Henderson and Searle (1981b), Ouellette (1981), Hager (1989), Stewart (1977)andRiedel (1992). (SMW) has been noted by Duncan (1944)andGuttman (1946): The result is directly derived from the identity

.A C CBD/.A C CBD/1 D I ) A.A C CBD/1 C CBD.A C CBD/1 D I .A C CBD/1 D A1 A1CBD.A C CBD/1 A-6 Matrix Algebra Revisited, Generalized Inverses 617

A1 D .A C CBD/1 C A1CBD.A C CBD/1 DA1 D D.A C CBD/1 C DA1CBD.A C CBD/1 DA1 D .I C DA1CB/D.A C CBD/1 DA1 D .B1 C DA1C/BD.A C CBD/1 .B1 C DA1C/1DA1 D BD.A C CBD/1:

Up to now we presented IPM of a symmetric matrix. Alternatively, we review rank factorization of a symmetric and positive semidefinite/definite matrix. Facts (rank factorization): (a) If the n n matrix is symmetric and positive semidefinite, then its rank factorization is " # G1 0 0 A D G 1 G 2 ; G2

where G1 is a lower of the order O.G1/ D rk A rk A with rk G2 D rk A, whereas G2 has the format O.G2/ D .n rk A/ rk A: In this case we speak of a Choleski decomposition. (b) In case that the matrix A is positive definite, the matrix block G2 is not needed anymore: G1 is uniquely determined. There holds

1 1 0 1 A D .G1 / G1 :

Various notions, for instance submatrices adjoint, traces and , as scalar measures of a matrix are given by D. A. Harville (2001, examples, Sects. 2,5 and 13) to which we refer. We already introduced vector-valued matrix forms by means of the operations vec, vech and veck. Please pay attention to the vec-forms (a) vecA B C0 D .A ˝ C/vecB (b) .A/0vecB D tr.A B0/ (c) vec xy0 D x ˝ y

0 0 (d) vec(A B/ D .B ˝ In/vecA D .B ˝ A/vecIm nm mq D .Iq ˝ A/vecB; for all A 2 R ; B 2 R

given by Pukelsheim (1977), pp. 324, 326 or Harville (2001), examples, Sect. 16, 22 pp. 618 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

A-63 Three Basic Types of Generalized Inverses

In Chaps. 1, 3 and 5 we obtained the complete class of solution of equation “Ax D y00 and showed that every solution can be expressed in the form x D Gy where G is the properly chosen generalized inverse. Here we inquire to find solutions for such generalized inverses which are of the following type

.i/rkA D rk.AA0/ D n W “minimum norm”

Consistent system of observation equations: Underdetermine. Theorem (“minimum norm”: Rao and Mitra (1971), pp. 44–47)

Let G be a generalized inverse of the matrix A such that Gy is a minimum norm solution of the equation Ax D y;rkA D rk.AA0/ D n. Then it is necessary and sufficient that Min (a) kxk2 DkG k2 D or y Ax D y (b) AGA D A and .GA/0 D GA.or (c) A D A0.AA0/ (reflexive generalized inverse which is minimum norm). mr n o Min If we use the weighted generalized inverse of the type kxk2 D x0Gx Ax D y we get the Gx-MINOS solution of Chap. 1, case (a), case (b) and case (c).

.ii/rkA D rk.A0A/ D m W “generalized least-squares solution for Ax D y”

Inconsistent system of linear observation equations: overdetermine. Theorem (“Least-squares”: Rao and Mitra (1971), pp. 48–50)

Let G be a matrix (not necessarily a generalized inverse) such that Gy is a least- squares solution of Ax D y such that rkA D rk.A0A/ D m. Then it is necessary and sufficient that (a) ky Axk2 D min.inconsistent/ or (b) AGA D A and .GA/0 D GA: or (c) A D .A0A/A (reflexive generalized inverse which is least-squares). lr n Min 2 If we use the weighted generalized inverse of the type ky AxkG D o x y 0 .y Ax/ Gy .y Ax/ we enjoy receiving the Gy-LESS solution of Chap. 3, case (a), case (b) and case (c). A-7 Complex Algebra, Quaternion Algebra, Octonian Algebra, Clifford Algebra 619

.iii/rkA

Inconsistent system of linear observation equations with a datum defect: overdetermine-underdetermined. ut Here we start with a definition Definition (“MINOLESS”: Rao and Mitra (1971), p. 51) G is said to be a minimum norm, least-squares generalized inverse of the matrix A, Y if G is Al and for any y 2

kGy km kxkm for all x 2fx jky Axkm ky Azkm for all z 2 X

m n where k:kn and k:km are norms in X and Y respectively. Finally we will refer to the basic results generating “MINOLESS”. Theorem (“MINOLESS”: Rao and Mitra (1971), pp. 50–54,64)

Let G be a matrix such that Gy is a minimum norm, least-squares solution of the inconsistent equation Ax D y C i. Then it is necessary and sufficient that x D ACy namely, (a) AGA D A,(b).AG/0 D AG,(c)GAG/ D G,(d).GA/0 D GA (Penrose 1955). or

AC D A0AŒ.A0A/2A0 D .I C A0A/A0ŒA0A.I C A0A/AA or

Xk Xk lim lim AC D k ! 1 A0.I C AA0/k D k ! 1 .I C A0A/k A0 or kD1 kD1

lim lim AC D ! 0CA0.I C AA0/1 D ! 0C.I C A0A/1A0

If we use the weighted norms kxk2 and ky Axk2 , we receive the G -minimum Px Py x norm, Gy- least squares solution of Chap. 5, case (a), case (b) and case (c).

A-7 Complex Algebra, Quaternion Algebra, Octonian Algebra, Clifford Algebra, Hurwitz Theorem

The greatest advantage of Clifford algebra is the following fact: We are able to write down the field equations namely “rot” and “div” equation of gravitational field and electromagnetic field in one equation. The related literature is very rich and we could recommend the book by Meetz and Engl (1980). A more detailed introduction into Clifford algebra and its fascinating chess board as well as is listed in Grafarend (2004) with more than 300 references. From some point of view, the variona algebra presented here are rather out of fashion. Indeed 620 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

• Complex algebra, Clifford algebra Cl.0; 1/ • Quaternion algebra, Clifford algebra Cl.0; 2/

A-71 Complex Algebra as a Division Algebra as well as a Composition Algebra, Clifford algebra Cl.0;1/

Here we present to you “complex algebra” and refer it to Clifford algebra Cl.0;1/. The “complex algebra” C due to C. F. Gauß is a division algebra over R as well as a composition algebra.

x 2 C

0 1 0 1 2 x D e0x C e1x subject to fx ;x g2R

span C Df1; e1g

1 x; y; z 2 R2

˛.x; y/ DW x C y:

The axioms .G1C/, .G2C/, .G3C/, .G4C/ of an Abelian group apply. 2 x; y 2 R2;r;s2 R

ˇ.r; x/ DW r x:

The axioms .D1C/, .D2C/, .D3/ of additive distributivity apply. 3 One way to explicitly describe a multiplicative group with finitely many elements is to give a table listing the multiplications just representing the map W C C ! C. £ ¢multiplication diagram, Cayley diagram ¡

1 e1 1 1 e1 e1 e1 1

Note that in the multiplication table each entry of a group appears exactly once in each row and column. The multiplication has to be read from left to right that is, the entry at the intersection of the row headed by e1 and the column headed by e1 is the product e1 e1. Such a table is called a Cayley diagram of the multiplicative group. A-7 Complex Algebra, Quaternion Algebra, Octonian Algebra, Clifford Algebra 621

Here note in addition the associativity of the internal multiplication given in the table. Such a “complex algebra” C is not a Lie algebra since neither x x D 0.L1/ nor .x y/ zCC.y z/ x C .z x/ y D 0 (Jacobi identity) .L2/ hold. Just by means of the multiplication table compute

0 2 1 2 0 1 x x D 1f.x / .x / gC2e1x x 6D 0:

4 Begin with the choice

1 x1 D .1x0 e x1/ .x0/2 C .x1/2 1 in order to end up with

1x0 e x1 x x1 D .1x0 C e x1/ 1 D 1 1 .x0/2 C .x1/2 Accordingly .G1/, .G2/, .G3/ of a division algebra apply. 5 Begin with the choice

0 1 0 2 1 2 Q.x/ D Q.1x C e1x / WD .x / C .x /

in order to prove (K1), (K2) and (K3). We only focus on (K2i):

Q.x y/ D Q.x/ Q.y/.multiplicativity/

0 0 1 1 1 0 0 1 Q.x y/ D Qf1.x y x y / C e1.x y C x y /g D .x0/.y0/2 C .x1/2.y1/2 C .x1/2.y0/2 C .x0/2.y1/2 Q.x/ Q.y/ Df.x0/2 C .x1/2gf.y0/2 C .y1/2g D .x0/2.y0/2 C .x1/2.y1/2 C .x1/2.y0/2 C .x0/2.y1/2 § ¤ Q.x y/ D Q.x/ Q.y/ q:e:d: ¦ ¥ C How can be one dream about such a complex algebra ? Gauss (1887) hadp been motivated in his to introduce complex numbers with i WD 1 as 0 1 1 the “imaginary unit”. Identify 1x with the “real part”ande1x D ix with the “imaginary part”ofx and we are left with the standard theory of complex numbers. 1 0 1 x is based upon the complex conjugate 1x e1x of x being divided by the norm of x. There is a remarkable isomorphism between complex numbers and complex algebra. The proper algebraic interpretation of complex numbers is in terms of Clifford algebra Cl.0;1/.Observeg.e1; e1/ D1 which interprets the binary operation of the base vector which spans the vector part of a complex number. Now translate the multiplication table into the language of the Clifford product, namely 622 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra # 1 ^ 1 D 1; 1 ^ e1 D e1 e ^ 1 D e ; e ^ e D1 "1 1 1 1 ! in order to convince yourself that the Clifford algebra Cl.0;1/ is algebraically isomorphic to the space of complex numbers. |

How can we relate complex numbers to Clifford algebra Cl1?Observeg.e1; e1/ D 1 which interprets the binary operation of the base vector which spans the vector part of a complex number. While the scalar part of a complex number is an element of A0, its vector part can be considered to be an element of A1.Thedirect sum

A0 ˚ A1 of spaces A0, A1 is algebraically isomorphic to the space of complex numbers, being an element of the Clifford algebra Cl1. |

A-72 Quaternion Algebra as a Division Algebra as well as a Composition Algebra, Clifford algebra Cl.0;2/

Next we review “quaternion algebra” quoting W. R. Hamilton and refer it to Clifford algebra Cl.0;2/.The”quaternion algebra” H due to Hamilton (1843) is a division algebra over R as well as a composition algebra:

x 2 H

0 1 2 3 0 1 2 3 4 x D 1x C e1x C e2x C e3x subject t o fx ;x ;x ;x g2R

span H Df1; e1; e2; e3g

1 x; y; z 2 R4

˛.x; y/ DW x C y:

The axioms .G1C/, .G2C/, .G3C/, .G4C/ of an Abelian additive group apply. 2 x; y 2 R4;r;s2 R

ˇ.r; y/ DW r x:

The axioms .D1C/, .D2C/, .D3/ of additive distributivity apply. A-7 Complex Algebra, Quaternion Algebra, Octonian Algebra, Clifford Algebra 623

3 One way to explicitly describe a multiplicative group with finitely many elements is to give a table listing the multiplications just representing the map W H H ! H. § ¤ multiplication table, Cayley diagram ¦ ¥

1 e1 e2 e3 1 1e1 e2 e3 e1 e1 1e3 e2 : e2 e2 e3 1e1 e3 e3 e2 e1 1

Note that in the multiplication table each antry of a group appears exactly once in each row and column. The multiplication has to be read from left to right that is, the entry at the intersection of the row headed by e1 and the column headed by e2 is the product e1 e2. Such a table is called a Cayley diagram of the multiplicative group. Here note in addition the associativity of the internal multiplication given by the table, e.g. e1 .e2 e3/ D e1 e1 D1 D e3 e3 D .e1 e2/ e3 or ! X3 X x y ı ı k k e ı k k ı k i j D 1 x y x y C k.x y C x y C ij x y / kD1 i;j;k

such that .x y/ z D x .y z/. Such a “Hamilton algebra” H is not a Lie algebra since neither x x D 0 (L1) nor .x y/ z C .y z/ x C .z x/ y D 0 (L2) (Jacobi identity) hold. Just by means of the multiplication table compute

x x D 1f.xı/2 .x1/2 .x2/2 .x3/2g

ı 1 ı 2 ı 3 C 2e1x x C 2e2x x C 2e3x x 6D 0

4 Begin with the choice

1 x1 D .1xı e x1 x x2 e x3/ .xı/2 C .x1/2 C .x2/2 C .x3/2 1 2 2 in order to to end up with

1xı e x1 e x2 e x3 x x1 D Œ1xı C e x1 C e x2 C e x3 1 2 3 D 1: 1 2 3 .xı/2 C .x1/2 C .x2/2 C .x3/2 Accordingly .G1/, .G2/, .G3/ of a division algebra apply. 5 Begin with the choice 624 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

1 2 3 0 2 1 2 2 2 3 2 Q.x/ D Q.1 C e1x C e2x C e3x / WD .x / C .x / C .x / C .x /

in order to prove .K1/. .K2/ and .K3/. The laborious proofs are left as an exercise. How can one dream about such a “quaternion algebra” H? Hamilton (16 October 1843) invented quaternion numbers as outlined in a letter (1865) to his son A. H. Hamilton for the following reason: “If I may be allowed to speak of myself in connexion with the subject, I might do so in a way which would bring you in, by referring to an antequaternionic time, when you were a mere child, but had caught from me the conception of a Vector, as represented by a Triplet; and indeed I happen to be able to put the finger of memory upon the year and month – October, 1843 – when having recently returned from visits to Cork and Parsonstown, connected with a Meeting of the British Association, the desire to discover the laws of the multiplication referred to regained with me a certain strength and carnestness, which had for years been dormant, but was then on the point of being gratified, and was occasionally talked of with you. Every morning in the early part of the above cited month, on my coming down to breakfast, your (then) little brother William Edwin, and yourself, used to ask me, “Well, Papa, can you multiply triplets”? Whereto I was always obliged to reply, with a sad shake of the head: “No, I can only add and subtract them.”

But on the 16th day of the same month – which happened to be a Monday, and a Council day of the Royal Irish Academy – I was walking in to attend and preside, and your mother was walking with me, along the Royal Canal, to which she had perhaps driven; and although she talked with me now and then, yet an under-current of thought was going on in my mind, which gave at last a result, whereof it is not too much to say that I felt at once the importance. An electric circuit seemed to close; and a spark flashed forth. The herald (as I foresaw, immediately) of many long years to come of definitely directed thought and work, by myself if spared, and at all events on the part of others, if should even be allowed to live long enough distinctly to communicate the discovery. Nor could I resist the impulse – unphilosophical as it may have been – to cut with a knife on a stone of Brougham Bridge, as we passed it, the fundamental formula with the symbols, i;j;k; namely

i 2 D j 2 D k2 D ij k D1 A-7 Complex Algebra, Quaternion Algebra, Octonian Algebra, Clifford Algebra 625 which contains the Solution of the Problem, but of course, as an inscription, has long since moldered away. A more durable notice remains, however, on the Council Books of the Academy for that day (October 16th, 1843), which records the fact, that I then asked for and obtained base to read a Paper on Quaternion,at the First General Meeting of the Session: which reading took place accordingly, on Monday the 13th of the November following.”

1 2 3 1 2 3 Obviously the vector part e1x C e2x C e3x D i x C j x C kx of a quaternion number replaces the imaginary part of a complex number, the scalar part 1x0 the real part.Thequaternian conjugate

X3 ı k 1x ekx DW x kD1 substitutes the complex conjugate of ta complex number, leading to the quaternion inverse x x1 D : Q.x/ The proper algebraic interpretation of quaternion numbers is in terms of Clifford algebra Cl.0;2/.Ifn D dim X D 2 is the dimension of the linear space X which we base the Clifford algebra on, its basis elements are

f1; e1; e2; e1 ^ e2g subject to e1 ^ e2 C e2 ^ e1 D 0; e1 ^ e1 D g.e1; e1/1 D1; e2 ^ e2 D g.e2; e2/1 D1; 2 .e2 ^ e2/ D .e1 ^ e2/ ^ .e1 ^ e2/ De2 ^ .e1 ^ e1/ ^ e1 DCe2 ^ e2 D1 .e2 ^ e2/ ^ e1 De2 ^ .e1 ^ e1/ D e2 .e2 ^ e2/ ^ e2 D e1 ^ .e2 ^ e2/ De1 and e3 WD e1 ^ e2 by classical notation. Obviously

ı 1 2 3 x D 1x C e1x C e2x C e1 ^ e2x 2 Cl.0;2/ is an element of Clifford algebra Cl.0;2/. There is an algebraic isomorphism between the quaternion algebra H of vectors and the quaternion algebra of matrices, namely either M.R44/ of 4 4 real matrices or M.C22/ of 2 2 complex matrices. 626 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

Firstly we define the 4 4 real matrix basis E and decompose it into the four constituents ˙ 0, ˙ 1, ˙ 2, ˙ 3 of 4 4 real which form a multiplicative group of the multiplication table of Hamilton type 2 3 1 e1 e2 e3 6 7 6 e1 1 e3 e2 7 44 E WD 4 5 D 1˙ 0 C e1˙ 1 C e2˙ 2 C e3˙ 3 2 R e2 e3 1 e1 e3 e2 e1 1

2 3 2 3 1000 010 0 6 7 6 7 6 01007 6 100 07 ˙ 0 D 4 5 ; ˙ 1 WD 4 5 ; 0010 0001 0001 001 0 2 3 2 3 0 010 00 01 6 7 6 7 6 0 0017 6 00107 ˙ 2 D 4 5 ; ˙ 3 WD 4 5 ; 1 000 01 00 0 100 10 00 § ¤ ¦multiplication table, Cayley diagram ¥

˙ 0 ˙ 1 ˙ 2 ˙ 3 ˙ 0 ˙ 0 ˙ 1 ˙ 2 ˙ 3

˙ 1 ˙ 1 ˙ 0 ˙ 3 ˙ 2 ˙ 2 ˙ 2 ˙ 3 ˙ 0 ˙ 1

˙ 3 ˙ 3 ˙ 2 ˙ 1 ˙ 0 or

˙ 0˙ 0 D ˙ 0; ˙ 0˙ i D ˙ i ˙ 0 D ˙ i for all i 2f1; 2; 3g

˙ i ˙ j Dıij ˙ 0 C ij k ˙ k for all i;j;k 2f1; 2; 3g

Let A, B, C 2 M (R44, Hamilton) constituted by means of 2 3 a1 a2 a3 a4 6 7 6 a2 a1 a4 a3 7 4 5 DW A a3 a4 a1 a2 a4 a3 a2 a1 2 3 b1 b2 b3 b4 6 7 6 b2 b1 b4 b3 7 4 5 DW B b3 b4 b1 b2 b4 b3 b2 b1 A-7 Complex Algebra, Quaternion Algebra, Octonian Algebra, Clifford Algebra 627 such that the Cayley-product 2 3 c1 c2 c3 c4 6 7 6 c2 c1 c4 c3 7 44 AB D 4 5 DW C 2 M .R ; Hamilton/ c3 c4 c1 c2 c4 c3 c2 c1

c1 D a1b1 a2b2 a3b3 a4b4

c2 D a1b2 C a2b1 C a3b4 a4b3

c3 D a1b3 a2b4 C a3b1 C a4b2

c4 D a1b4 C a2b3 a3b2 C a4b1 fulfilling the axioms .G1ı/, .G2ı/, .G3ı/ of a non-Abelian multiplicative group, namely

.G1ı/.AB/C D A.BC / .associativity/ .G2ı/ AI D A .identity/ .G3ı/ AA1 D I .inverse/; but .G4ı/ does not apply, in particular

A 2 2 2 2 B 2 2 2 2 det D a1 C a2 C a3 C a4; det D b1 C b2 C b3 C b4 det .AB/ D .det A/.det B/:

Secondly we define the 2 2 complex matrix basis E and decompose it into the four constituents ˙ 0, ˙ 1, ˙ 2, ˙ 3 of 2 2 complex Pauli matrices which form a multiplicative group of the multiplication table of Hamilton type " # e e e 1 C i 1 2 C i 3 0 1 2 3 22 E WD D 1˙ C e1˙ C e2˙ C e3˙ 2 C e2 C ie3 1 ie1 10 i0 ˙ 0 WD ; ˙ 1 WD ; 01 0 i 01 0i ˙ 2 WD ; ˙ 3 WD 10 i0 § ¤ ¦multiplication table, Cayley diagram ¥ 628 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

˙ 0 ˙ 1 ˙ 2 ˙ 3 ˙ 0 ˙ 0 ˙ 1 ˙ 2 ˙ 3 ˙ 1 ˙ 1 ˙ 0 ˙ 3 ˙ 2 : ˙ 2 ˙ 2 ˙ 3 ˙ 0 ˙ 1 ˙ 3 ˙ 3 ˙ 2 ˙ 1 ˙ 0

Note that E 2 C22 is “Hermitean”. Let A, B, C 2 M .C22, Hamilton) constituted by means of " # a C ia a C ia 1 2 3 4 DW A a3 C ia4 a1 ia2 " # b C ib b C ib 1 2 3 4 DW B b3 C ib4 b1 ib2 such that the Cayley-product " # c C ic c C ic AB D 1 2 3 4 DW C 2 M .C2; Hamilton/ c3 C ic4 c1 ic2 A A B 2 2 2 2 2 2 2 2 det . B/ D .det /.det / D a1 C a2 C a3 C a4 b1 C b2 C b3 C b4 2 2 2 2 D c1 C c2 C c3 C c4

c1 C ic2 D .a1 C ia2/.b1 C ib2/ C .a3 C ia4/.b3 C ib4/

D a1b1 a2b2 a3b3 a4b4 C i.a1b2 C a2b1 C a3b4 a4b3/

c3 C ic4 D .a1 C ia2/.b3 C ib4/ C .a3 C ia4/.b1 ib2/

D a1b3 a2b4 C a3b1 C a4b2 C i.a1b4 C a2b3 a3b2 C a4b1/ fulfilling the axioms .G1ı/, G2ı/, .G3ı/ of a non-Abelian multiplicative group. The " # " # 1 C ie s s WD 1 D 1 e2 C ie3 s2 as a vector of length zero relates to the 2 2 complex matrix basis by " # s s E D 1 2 : | s s 2 1 A-7 Complex Algebra, Quaternion Algebra, Octonian Algebra, Clifford Algebra 629

A-73 Octanian Algebra as a Non-Associative Algebra as well as a Composition Algebra, Clifford algebra with Respect to H H

The octanian algebra O also called “the algebra of octaves” due to Graves (1843) and Cayley (1845)isacomposition algebra over R as well as a non-associative algebra:

x 2 O

ı 1 2 3 4 5 6 7 x D 1x C e1x C e2x C e3x C e4x C e5x C e6x C e7x subject to fxı;x1;:::;x6;x7g2R8 span O Df1; e1; e2; e3; e4; e5; e6; e7g

1 x; y; z 2 R8

˛.x; y/ DW x C y

The axioms .G1C/, .G2C/, .G3C/, .G4C/ of an Abelian additive group apply. 2 x; y 2 R8;r;s2 R

ˇ.r; x/ DW r x

The axioms .D1C/, .D2C/, .D3/ of additive distributivity apply. 3 One way to explicitly describe a multiplicative group with finitely many elements is to give a table listing the multiplications just representing the map W O O ! O. § ¤ multiplication table, Cayley diagram ¦ ¥

1 e1 e2 e3 e4 e5 e6 e7 1 1 e1 e2 e3 e4 e5 e6 e7 e1 e1 1 e3 e2 e5 e4 e7 e6 e2 e2 e3 1 e1 e6 e7 e4 e5 e3 e3 e2 e1 1 e7 e6 e5 e4 e4 e4 e5 e6 e7 1 e1 e2 e3 e5 e5 e4 e7 e6 e1 1 e3 e2 e6 e6 e7 e4 e5 e2 e3 1 e1 e7 e7 e6 e5 e4 e3 e2 e1 1 630 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

Note that in the multiplication table each entry of a group appears exactly once in each row and column. The multiplication has to be read from left to right that is, the entry at the intersection of the row headed by e5 is the product e3 e5. Such a table is called a Cayley diagram of the multiplicative group. Note the non-associativity of the internal multiplication given by the table, e.g. e2 .e3 e4/ 6D .e2 e3/e4, namely by means of e3 e4 D e7, e2 .e3 e4/ D e2 e7 De5 versus e2 e3 D e1, .e2 e3/ e4 D e1 e4 DCe5.Such an “octonian algebra” O is not a Lie algebra since neither x x D 0 (L1) nor .x y/z C .y z/ x C .z x/ y D 0 (L2) (Jacobi identity) hold. Just by means of the multiplication table compute

.e2 e3/ e4 C .e3 e4/ e2 C .e4 e2/ e3 D e5 6D 0:

4 does not apply. 5 Begin with the choice

ı 1 6 7 Q.x/ D Q.1x C e1x CCe6x C e7x / D .xı/2 C .x1/2 CC.x6/2 C .x7/2

in order to prove (K1), (K2), (K3). The laborious proofs are left as an exercise. The proper algebraic interpretation of octonian numbers is in terms of Clifford algebra, namely with respect to the eight dimensional set H H DW H2 where H is the usual skew field of Hamilton’s , algebraically isomorphic to Cl.0;2/. Indeed it would have been temptating to base “octonian algebra” O on Cl.0;3/,dimCl.0;3/D 23 D 8, but its generic elements

f1; e1; e2; e3; e1 ^ e2; e2 ^ e3; e3 ^ e1; e1 ^ e2 ^ e3g are not representing the octonian multiplication table e.g.

2 e1 ^ e2 ^ e3/ D g.e1 ^ e2 ^ e3; e1 ^ e2 ^ e3/ D .e1 ^ e2 ^ e3/ ^ .e1 ^ e2 ^ e3/ De1 ^ e2 ^ e1 ^ e3 ^ e2 ^ e3 D e1 ^ e2 ^ e1 ^ e2 ^ .e3 ^ e3/ De1 ^ e2 ^ e1 ^ e2 De1 ^ .e2 ^ e2/ ^ e1 D.e2 ^ e1/ DC1

In contrast, let us introduce the pair

x WD .a; b/ 2fX j a 2 H; b 2 Hg A-7 Complex Algebra, Quaternion Algebra, Octonian Algebra, Clifford Algebra 631

0 00 1 x 2 H2; x 2 H2; x 2 H2

0 0 ˛.x; x DW x C x /

0 0 0 x C x D .a C a ; b C b /:

The axioms .G1C/, .G2C/, .G3C/, .G4C/ of an Abelian additive group apply. 0 0 2 x:x 2 H2;r;r2 R

ˇ.r; x/ DW r x r x D .r a;r b/:

The axioms .D1C/, .D2C/, .D3/ of additive distributivity apply.

0 3 x 2 H H D H2; x 2 H H D H2

0 0 .x; x / DW x x

0 0 0 0 0 x x DW .aa b b; b a C ba /

0 0 a, b denote the conjugate of a 2 H, b 2 H, respectively. If .a; b/, .a ; b / are represented by 0 1 0 1 X3 X3 X3 X3 @ ı i ı jA @ 0ı 0i 0ı 0jA 1˛ C ei ˛ ;1ˇ C ej ˇ ; 1˛ C ei 0 ˛ ;1ˇ C ej 0 ˇ iD1 j D1 i 0D1 j D1

respectively, where

span H Df1; e1; e2; e1 ^ e2 D e3g or 0 0 span H Df1 ; e10 ; e20 ; e10 ^ e20 D e30 gDf1 ; e5; e6; e7g

0 the “octonian product” x x results in 9 6 0 0 0 P3 0 x x D 1 ˛ı˛ ı ˇıˇ ı .˛k˛‘k ˇkˇ k/ kD1 P3 e ı k k ı k i 0j j 0i C kŒ˛ ˇ C ˛ ˇ C ij .˛ ˛ ˇ ˇ /; i;j;k D1 0 0 P3 0 1 ˛ıˇ ı ˛ ıˇı .˛k ˇ‘k ˛ kˇk / kD1 ! P3 e ı 0k k 0ı k j 0i 0j i C kŒ˛ ˇ C ˛ ˇ C ij .˛ ˇ ˛ ˇ / : 8 i;j;kD1 7 632 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

the axioms .D1 C/, .D2 / of distributivity apply. The pair .1; 0/ is the neutral element. 4 Begin with the choice of

.1st/ the x WD a; b/ of x 2 H2 .2nd/ x x D Q.x/ or x x D .aa C bb; 0/ x .3rd/ x1 D if x 6D 0 Q.x/

in order to end up with

x x1 D 1:

A historical perspective of octonian numbers is given by Van Der Waerden (1950). Reference is made to Graves (1848) and A. Caley: Collected Mathe- matical Papers, vol. 1, p. 127 and vol. 11, pp. 368–371. | The exceptional role of the examples on complex, quaternion and octonian algebra illustrating Clifford algebra Cl.0;1/, Cl.0;2/ as well as Clifford algebra with respect to H2 is established by the following theorems: 9 6 Theorem (“Hurwitz’ theorem of composition algebras”): A complete list of composition algebras over R consists of (a) the real numbers R, (b) the complex numbers C, (c) the quaternions H, (d) the octonians O . 8 7 9 6 Theorem (“Frobenius’ theorem of division algebras”): The only finite-dimensional division algebra over R are (˛) the real numbers R, (ˇ) the complex numbers C, () the quaternions H . 8 7

Historical Aside For details consult the historical texts Hurwitz (1898), Frobenius (1878) as well as Hazlett (1917). A more recent reference is Jacobson (1974), pp. 425 and 430. A-7 Complex Algebra, Quaternion Algebra, Octonian Algebra, Clifford Algebra 633

A-74 Clifford Algebra

We already took advantage of the notion of Clifford algebra when we referred to complex algebra, quaternion algebra,andoctonian algebra. Here we finally confront you with the definition of “orthogonal clifford algebra Cl.p;q/”. But on our way to Clifford algebra we have to generalize at first the notion of a basis, in particular its bilinear form. 9 6 Theorem (bilinear form): Suppose that the bracket hji or g.; / W XX ! R is a bilinear form on a finite dimensional linear space X, e. g. a vector space, over the field R of real numbers, in addition X its dual space such that n D dim X D dimX. There exists a basis fe1;:::;eng such that

(a) hei j ej iD0org.ei ; ej / D 0 for i 6D j 2 hei j ei iDC1org.ei ; ei / DC1 for 1 i1

The numbers r and p are determined exclusively by the bilinear form. r is called the rank, r p D q is called the index and the ordered pair .p; q/ the signature.The theorem assures that any two spaces of the same dimension with bilinear forms of the same signature are isometrically isomorphic. A scalar product (“inner product”) in this context is a nondegenerate bilinear form, i.e., a form with rank equal to the dimension of X. When dealing with low dimensional spaces as we do, we will often indicate the signature with a series of plus and minus signs and zeroes where R4 appropriate. For example, the signature of 1 may be written .CCC/ instead of .3; 1/. If the bilinear form is nondegenerate, a basis with the properties listed in corresponding Theorem is called an (“unimodular”) for X with respect to the bilinear form.

Definition (orthogonal Clifford algebra Cl.p;q/): The orthogonal Clifford algebra Cl.p;q/is the algebra of polynomials generated by the direct sum of the space of multilinear functions

m n X ˚mD0 ^ . /

X X Rn on a linear space , respectively its dual over the field of real numbers p of dimension 634 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

m n X n dim ˚mD0 ^ . / D 2

and signature .p; q/, namely 1 ( nDdimPX nDdimPX i1 i1 i2 1f 0 C e fi1 C e ^ e fi1i2 i1D1 i1;i2D1 nDdimPX nDdimPX i1 i2 i3 i1 in C e ^ e ^ e fi1i2i3 CC e ^^ e fi1in 0i1;i2;i3D1 i1;:::;inD1 )

subject to the Clifford product, also called the Clifford dualizer, 5 2 .i/ei ^ ej Dej ^ ei for i 6D j 2 e ^ e D g.e ;e / DC1for1 i p; 6 i1 i1 i1 i1 1 .ii/ 6 4 ei2 ^ ei2 D g.ei2 ;ei2 / D1forpC 1 i2 p C q D r; e ^ e D g.e ;e / D 0forrC 1 i n; 4i3 i3 i3 i3 3 3

or

e1 ^ ej C ej ^ ei 2 g.ei ; ei / DC1 for 1 i1 p 6 1 1 e e 6 e e D 2g. i ; j /ıij 1subject t o 4g. i2 ; i2 / D1 for p C 1 i2 p C q D r e e g. i3 ; i3 / D 0 for r C 1 i3 n

1 being the neutral element. If ek ^ ek D 0 or g.ek;ek/ D 0 holds uniformly the orthogonal Clifford algebra Cl.p;q/ reduces to the polynomial algebra of antisym-metric multilinear functions

n m n m X X ˚mD0A D˚mD0 . / D . / n m n m X X n dim ˚mD0 A D dim ˚mD0 . / D dim . / D 2

represented by 5 2 X X 1 nDXdim 1 nDXdim 1f C ei1 f C ei1 ^ ei2 f 0 1Š i1 2Š i1i2 i1D1 i1;i2D1 X X 1 nDXdim 1 nDXdim C ei1 ^ ei2 ^ ei3 f CC ei1 ^^ein f : 3Š i1i2i3 nŠ i1in 4i1;i2;i3D1 i1;:::;inD1 3 A-7 Complex Algebra, Quaternion Algebra, Octonian Algebra, Clifford Algebra 635 9 6 Example: Clifford product: x y, x y 2 X;signX D .3; 0/

Let x y 2 X be a real three-dimensional vector space X of signature (3,0). then x y (read: “x Clifford y”) with respect to a set of the bases fe1; e2; e3g accounts for

X3 X3 X3 X3 i j i j x ^ y D ei ^ ej x y D x y ei ^ ej iD1 j D1 iD1 j D1

1 2 3 1 2 3 x ^ y D .e1x C e2x C e3x / ^.e1y C e2y C e3y /

1 1 2 2 3 3 1 2 2 1 x ^ y D 1.x y C x y C x y / C e1 ^ e2.x y x y / 2 3 3 2 3 1 1 3 C e2 ^ e3.x y x y / C e3 ^ e1.x y x y /

Indeed x ^ y as a Clifford number is decomposed into a scalar part and an antisymmetric tensor part with respect to the bilinear basis fe1 ^ e2; e2 ^ e3; e3 ^ e1g. 8 7

Tensor algebra or the algebra of multilinear functions, namely

nDXdim X nDXdim X ei1 ei ei2 1f 0 C fi1 C ˝ fi1i2 i1D1 i1;i2D1

nDXdim X nDXdim X ei1 ei2 ei3 ei1 ein C ˝ ˝ fi1i2i3 CC ˝˝ fi1in i1;i2;i3D1 i1;:::;inD1 n X X T C T 2˚mD0 ˝ . / D˝. / D ˚ " C 2h T D˚hD0 ˝ .X/.“even”/ subject to 2kC1 T D˚kD0 ˝ .X/.“odd”/ is the sum of two spaces, T C and T , respectively, in particular

Xn Xn 1 1 ClC 3 1f C ei1 ^ ei2 f C ei1 ^ ei2 ^ ei3 ^ ei4 f C ; 0 2Š i1i2 4Š i1i2i3i4 i1;i2D1 i1;i2;i3;i4 Xn Xn 1 1 Cl 3 ei1 f C ei1 ^ ei2 ^ ei3 f C : 1Š i1 3Š i1i2i3 i1D1 i1;i2;i3D1 636 A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra

Obviously ClC as well as Cl are subalgebras of Cl.LettheClifford numbers z be divided into zC 2 ClC and z 2 Cl, then the properties § ¤ C C C C C ¦z ^ z 2 Cl ; z ^ z 2 Cl ; z ^ z 2 Cl ¥

prove that Cl.p;q/is graded over the cydric group Z2 Df0; 1g. | Appendix B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

We begin with sampling distributions by two sections on the transformation of random variables.Afirst confidence interval for Gauss-Laplace normal distribution 2 observations 1 known is constructed, including its famous Three Sigma Rule. The second confidence interval of Gauss-Laplace i.i.d. observations is derived for the sample mean b BLUE of 1 when the variance is known. We take advantage of the forward-backward Helmert transformation leading to Helmert chi-square 2 probability distribution (Helmert, 1875). In contrast, the sampling distributions from Gauss-Laplace i.i.d. normal distributions within the third confidence interval is analyzed for the mean, but an unknownp variance. Our basis is student’s t-distribution on the random variable n.b /=b where the sample mean b – is BLUE of whereas the sample confidence for the “true” mean ,variance 2 unknown which is based on student’s probability distribution. In detail, we derive the related Uncertainty Principle generated by the Magic Triangle of (a) length of the confidence interval, (b) coefficient of negative confidence called the uncertainty number and (c) the number of observations. For more details we refer to Lemma B.12 of W.S. Gosset. The sampling from the Gauss-Laplace normal distribution, namely the fourth confidence interval for the variance is reviewed: We introduce the missing confidence interval for the “true” variance 2: Table B.18 as a flow chart summarizes the various steps in computing a confidence interval for the variance. This time the related Uncertainty Principle is built on (a) the coefficient of complementary confidence ˛, also called uncertainty number (b) the number of observations, n, and (c) the length ı2.n; ˛/ of the confidence interval the “true” variance 2. The most detailed sampling theory from multidimensional Gauss-Laplace normal distribution, namely for the confidence region for the fixed parameters in the linear Gauss–Markov, is stated by an extensive Example B.19. We need the Principle Component Analysis PCA, also called Singular Value Decomposition (SVD) or Eigenvalue Analysis (EIGEN). Theorem B.17 summarizes the marginal distributions special linear Gauss–Markov model with datum defect. In our appendix we concentrate on multidimensional variance analysis, namely sampling form the multivariate Gauss-Laplace normal distribution. In short

E. Grafarend and J. Awange, Applications of Linear and Nonlinear Models, 637 Springer Geophysics, DOI 10.1007/978-3-642-22241-2, © Springer-Verlag Berlin Heidelberg 2012 638 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions introduction we review the distribution of sample mean and variance-covariance. We define the k-dimensional noncentral WHISHART distribution by (B377) and the characteristic function of a vector-valued random variate of type Gauss-Laplace ^ distribution. Our highlight is the distribution of xN and SN of type WHISHART. Another highlight is the distribution related to the correlation coefficients originated by R.A. Fisher (1915), programmed by F.N. David (1954).

B-1 A First Vehicle: Transformation of Random Variables

0 If the probability density function (pdf ) of a random vector y D Œy1;:::;yn is known, but we want to derive the probability density function (pdf ) of a random 0 vector x D Œx1;:::;xn (pdf ) which is generated by an injective mapping x =g(y) or xi D gi Œy1;:::;yn for all i 2f1;:::;ng we need the results of Lemma B.1.

Lemma B.1. (transformation of pdf):

0 Let the random vector y WD Œy1;:::;yn be transformed into the random vector 0 x D Œx1;:::;xn by an injective mapping x D g.y/ or xi D gi Œy1;:::;yn for all i 2f1;:::;ng which is of continuity class C1 (first derivatives are continuous). Let the Jacobi matrix Jx WD.@gi =@yi / be regular (det Jx ¤ 0), then the inverse 1 transformation y D g 1.x/ or yi D gi Œx1;:::;xn is unique.Letfx.x1;:::;xn/ be the unknown pdf,butfy .y1;:::;yn/ the given pdf,then ˇ ˇ 1 1 ˇ ˇ fx.x1;:::;xn/ D f.g1 .x1;:::;xn/;:::;g1 .x1;:::;xn// det Jy with respect to the Jacobi matrix 1 @yi @gi Jy WD D @xj @xj for all i; j 2f1;:::;ng holds. Before we sketch the proof we shall present two examples in order to make you more familiar with the notation.

Example B.1. (“counter example”):

The vector-valued random variable .y1;y2/ is transformed into the vector-valued random variable .x1;x2/ by means of

2 2 x1 D y1 C y2;x2 D y1 C y2 @x @x1=@y1 @x1=@y2 11 Jx WD 0 D D @y @x2=@y1 @x2=@y2 2y1 2y2 B-1 A First Vehicle: Transformation of Random Variables 639

2 2 2 2 2 x1 D y1 C 2y1y2 C y2 ;x2 C 2y1y2 D y1 C 2y1y2 C y2 2 2 x1 D x2 C 2y1y2;y2 D .x1 x2/=.2y1/ 2 1 x1 x2 2 1 2 x1 D y1 C y2 D y1 C ;x1y1 D y1 C .x1 x2/ 2 y1 2 1 y2 x y C .x2 x / D 0 1 1 1 2 1 2 s 1 x2 1 y˙ D x ˙ 1 .x2 x / 1 2 1 4 2 1 2 s 1 x2 1 y˙ D x 1 .x2 x /: 2 2 1 4 2 1 2

At first we have computed the Jacobi matrix Jx, secondly we aimed at an inversion of the direct transformation .y1;y2/ 7! .x1;x2/. As the detailed inversion step proves, namely the solution of a quadratic equation, the mapping x D g.y/ is not injective.

Example B.2.

Suppose .x1;x2/ is a random variable having pdf exp .x x /; x 0; x 0 f .x ;x / D 1 2 1 2 x 1 2 0;otherwise:

We require to find the pdf of the random variable

.x1 C x2;x2=x1/:

The transformation

x2 y1 D x1 C x2;y2 D x1 has the inverse

y1 y1y2 x1 D ;x2 D : 1 C y2 1 C y2

The transformation provides a one-to-one mapping between points in the first P2 quadrant of the .x1;x2/ –plane x and in the first quadrant of the .y1;y2/ –plane P2 y . The of the Jacobian of the transformation for all points in the first quadrant is 640 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions ˇ ˇ ˇ ˇ ˇ @x @x ˇ ˇ ˇ ˇ @.x ;x / ˇ ˇ 1 1 ˇ ˇ 1 2 ˇ ˇ 1 2 ˇ ˇ @y1 @y2 ˇ ˇ .1 C y2/ y1.1 C y2/ ˇ ˇ ˇ D @x2 @x2 D ˇ 1 2 ˇ @.y ;y / ˇ ˇ y2.1 C y2/ y1.1 C y2/ Œ.1 C y2/ y2 1 2 @y1 @y2 y D y .1 C y /3 C y y .1 C y /3 D 1 : 1 2 1 2 2 2 .1 C y2/

Hence we have found for the pdf of .y1;y2/ " y1 exp.y1/ .1Cy /2 ;y1 >0;y2 >0 fy .y1;y2/ D 2 0;otherwise:

Incidentally it should be noted that y1 and y2 are independent random variables, namely

2 fy .y1;y2/ D f1.y1/f .y2/ D y1 exp.y1/.1 C y2/ : |

Proof. The probability that the random variables y1;:::;yn take on values in the region ˝y is given by Z Z

fy .y1;:::;yn/dy1 dyn:

˝y

If the random variables of this integral are transformed by the function xi D gi .y1;:::;yn/ for all i 2f1;:::;ng which map the region ˝y onto the regions ˝x, we receive Z Z

fy .y1;:::;yn/dy1 dyn

˝y Z Z ˇ ˇ 1 1 ˇ ˇ D fy .g1 .x1;:::;xn/;:::;gn .x1;:::;xn// det Jy dx1 dxn

˝x from the standard theory of transformation of hypervolume elements, namely

dy1 dyn Djdet Jy jdx1 dxn or

.dy1 ^^dyn/ Djdet Jy j.dx1 ^^dxn/:

Here we have taken advantage of the oriented hypervolume element dy1 ^^dyn (Grassmann product, skew product, wedge product) and the Hodge star operator * n n applied to the n – differential form dy1 ^^dyn 2 (the ). B-1 A First Vehicle: Transformation of Random Variables 641

The star * : p ! np in Rn maps a p – differential form onto a .n p/ – differential form, in general. Here p D n, n p D 0 applies. Finally we define

1 1 fx.x1;:::;xn/ WD f.g1 .x1;:::;xn/;:::;gn .x1;:::;xn//j det Jyj as a function which is certainly non-negative and integrated over ˝x to one. | In applying the transformation theorems of pdf we meet quite often the problem that the function xi D gi .y1;:::;yn/ for all i 2f1;:::;ng is given but not the inverse 1 function yi D gi .x1;:::;xn/ for all i 2f1;:::;ng. Then the following results are helpful.

Corollary B.1. (Jacobian):

If the inverse Jacobian j det JxjDjdet.@gi =@yj /j is given, we are able to compute

1 @gi .x1;:::;xn/ 1 @gi .y1;:::;yn/ 1 j det JyjDjdet jDjdet Jj Djdet j : @xj @yj

Example B.3. (Jacobian):

Let us continue Example B.2.Theinverse map 1 g1 .y1;y2/ x1 C x2 @y 11 y D 1 D ) 0 D 2 g .y1;y2/ x2=x1 @x x2=x 1= x1 2 ˇ ˇ 1 ˇ ˇ ˇ @y ˇ 1 x2 x1 C x2 jy DjJyjDˇ 0 ˇ D C 2 D 2 @x x1 x x 1ˇ ˇ 1 ˇ ˇ 2 2 1 1 ˇ @x ˇ x1 x1 jx DjJxjDjy DjJyj D ˇ 0 ˇ D D @y x1 C x2 y1 allows us to compute the Jacobian Jx from Jy.Thedirect map g .y ;y/ x y =.1 C y / x D 1 1 2 D 1 D 1 2 g2.y1;y2/ x2 y1y2=.1 C y2/ leads us to the final version of the Jacobian.

y j DjJ jD 1 : x x 2 .1 C y2/

For the special case that the Jacobi matrix is given in a partitioned form, the results of Corollary B.3 are useful. 642 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

Corollary B.2. (Jacobian):

If the Jacobi matrix Jx is given in the partitioned form @gi U jJxjD D ; @yj V then q p 0 0 0 0 0 1 0 det Jx D j det JxJxjD det.UU / detŒVV .VU /.UU / UV

if det.UU0/ ¤ 0 q p 0 0 0 0 0 1 0 det Jx D j det JxJxjD det.VV / detŒUU UV .VV / VU ;

if det.VV0/ ¤ 0

1 j det JyjDjdet Jxj :

Proof. The Proof is based upon the determinantal relations of a partitioned matrix of type AU det D det A det.D VA 1U/if det A ¤ 0 VD AU det D det D det.A UD1U/if det D ¤ 0 VD AU det D D det A V.adjA/U; VD which have been introduced by Frobenius (1908)andSchur (1917).

B-2 A Second Vehicle: Transformation of Random Variables

Previously we analyzed the transformation of the pdf under an injective map of random variables y 7! g.y/ D x. Here we study the transformation of polar coordinates Œ1;2;:::;n1;r 2 Y as parameters of an Euclidian observation space to Cartesian coordinates Œy1;:::;yn 2 Y. In addition we introduce the hypervolume element of a sphere Sn1 Y; dim Y D n.First,wegivethree examples. Second, we summarize the general results in Lemma B.4. B-2 A Second Vehicle: Transformation of Random Variables 643

Example B.4. (polar coordinates: “2d”):

Table B.1 collects characteristic elements of the transformation of polar coordinates .1;r/ of type “longitude, radius” to Cartesian coordinates .y1;y2/; their 1 2 and range, the planar elements dy1;dy2 as well as the circle S embedded into E WD 2 fR ;ıklg, equipped with the canonical metric I2 D Œıkl and its total measure of arc !1. Table B.1 Cartesian and polar coordinates of a two-dimensional observation space, total measure of the arc of the circle

2 .1;r/2 Œ0; 2 0; 1Œ; .y1;y2/ 2 R

dy1dy2 D rdrd1 S1 R2 2 2 WD fy 2 jy1 C y2 D 1g

Z2

!1 D d1 D 2: 0

Example B.5. (polar coordinates: “3d”):

Table B.2 is a collectors’ item for characteristic elements of the transformation of polar coordinates .1;2;r/ of type “longitude, latitude, radius” to Cartesian coordinates .y1;y2;y3/; their domain and range, the dy1;dy2;dy3 2 3 3 as well as of the sphere S embedded into E WD fR ;ıklg equipped with the canonical metric I3 D Œıkl and its total measure of surface !2. Table B.2 Cartesian and polar coordinates of a three-dimensional observation space, total measure of the surface of the circle

y1 D r cos 2 cos 1;y2 D r cos 2 sin 1;y3 D r sin 2 . ; ;r/2 Œ0; 2 ; Œ 0; rŒ; .y ;y / 2 R2 1 2 2 2 1 2 3 .y1;y2;y3/; 2 R

2 dy1dy2dy3 D r dr cos 2d1d2 S2 R 2 2 2 WD fy 2 jy1 C y2 C y3 D 1g

Z2 CZ=2

!2 D d1 d2 cos 2 D 4: 0 =2 644 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

Example B.6. (polar coordinates: “4d”):

Table B.3 is a collection of characteristic elements of the transformation of polar coordinates .1;2;3;r/to Cartesian coordinates .y1;y2;y3;y4/; their domain and 3 range, the hypervolume element dy1;dy2;dy3;dy4 as well as of the 3 - sphere S 4 4 embedded into E WD fR ;ıklg equipped with the canonical metric I4 D Œıkl and its total measure of hypersurface. Table B.3 Cartesian and polar coordinates of a four-dimensional observation space total measure of the hypersurface of the 3-sphere

y1 D r cos 3 cos 2 cos 1;y2 D r cos 3 cos 2 sin 1;

y3 D r cos 3 sin 2;y4 D r sin 3 . ; ; ;r/2 Œ0; 2 ; Œ ; Œ 0; 2Œ 1 2 3 2 2 2 2 3 2 dy1dy2dy3dy4 D r cos 3 cos 2drd3d2d1

@.y1;y2;y3;y4/ Jy WD @.1;2;3;r/ 2 3 r cos cos sin r cos sin cos r sin cos cos cos cos cos 6 3 2 1 3 2 1 3 2 1 3 2 1 7 6 Cr cos cos cos r cos sin sin r sin cos sin cos cos sin 7 D 6 3 2 1 3 2 1 3 2 1 3 2 1 7 4 0 Cr cos 3 cos 2 r sin 3 sin 2 cos 3 cos 2 5 00rcos 3 sin 3

3 2 j det Jy jDr cos 3 cos 2 S3 R4 2 2 2 2 WD fy 2 jy1 C y2 C y3 C y4 D 1g 2 !3 D 2 :

Lemma B.2. (polar coordinates, hypervolume element, hypersurface element):

2 3 2 3 y1 cos n1 cos n2 cos n3 cos 2 cos 1 6 7 6 7 6 y2 7 6 cos n1 cos n2 cos n3 cos 2 sin 1 7 6 7 6 7 6 y 7 6 cos cos cos sin 7 6 3 7 6 n1 n2 n3 2 7 6 y 7 6 7 6 4 7 6 cos n1 cos n2 cos 3 7 6 7 6 7 Let 6 7 D r 6 7 6 7 6 7 6 yn3 7 6 cos n1 cos n2 sin n3 7 6 7 6 7 6 yn2 7 6 cos n1 cos n2 7 4 5 4 5 yn1 cos n1 sin n2 yn sin n1 B-2 A Second Vehicle: Transformation of Random Variables 645 be a transformation of polar coordinates .1;2; :::,n2;n1;r/ to Cartesian coordinates .y1;y2;:::,yn1;yn/, their domain and range given by . ; ;:::; ; ;r/2 Œ0; 2 ; C Œ ; 1 2 n2 n1 2 2 2 C Œ ; C Œ 0; 1Œ; 2 2 2 then the local hypervolume element dy1 dyn n1 n2 n3 2 D r dr cos n1 cos n2 :::cos 3 cos 2dn1dn2 :::d3d2d1; as well as the global hypersurface element

CZ=2 CZ=2 Z2 .n1/=2 2 n2 !n1 D n1 WD cos n1 dn1 cos 2d2 d1; . 2 / =2 =2 0 where .X/ is the gamma function. Before we care for the proof, let us define Euler’s gamma function.

Definition B.1. (Euler’s gamma function):

Z1 .x/D et t x1dt .x > 0/

0 is Euler’s gamma function which enjoys the recurrence relation

.xC 1/ D x .x/ subject to 1 p .1/D 1 or D 2 3 1 1 1p .2/D 1D D 2 2 2 2 p p q p q .nC 1/ D nŠ D q q q p if n is integer, n 2 ZC if is a rational number, p=q 2 QC. q 646 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

Example B.7. (Euler’s gamma function): 1 p (a) .1/D 1.i/D 2 3 1 1 1p (b) .2/D 1.ii/ D D 2 2 2 2 5 3 3 3p (c) .3/D 1 2 D 2.iii/ D D 2 2 2 4 7 5 5 15p (d) .4/D 1 2 3 D 6.iv/ D D : 2 2 2 8 Proof. Our proof of Lemma B.4 will be based upon computing the image of the n1 n n1 n Ty S E of the hypersphere S E . Let us embed the n1 n hypersphere S parameterized by .1;2;:::;n2;n1/ in E parameterized n by .y1;:::;yn/, namely y 2 E ,

y D e1r cos n1 cos n2 cos 2 cos 1

C e2r cos n1 cos n2 cos 2 sin 1 C

C en1r cos n1 sin n2

C enr sin n1:

Note that 1 is a parameter of type longitude, 0 1 2, while 2;:::;n1 are parameters of type latitude, =2 < 2 < C=2;:::;=2 < n1 < C=2 (open intervals). The images of the tangent vectors which span the local tangent space are given in the orthonormal n-legfe1; e2;:::;en1; enj0g by

g1 WD D1 y De1r cos n1 cos n2 cos 2 sin 1

C e2r cos n1 cos n2 cos 2 cos 1

g2 WD D2 y De1r cos n1 cos n2 sin 2 cos 1

e2r cos n1 cos n2 sin 2 sin 1

C e3r cos n1 cos n2 cos 2

:::

gn1 WD Dn1 y De1r sin n1 cos n2 cos 2 cos 1

en1r sin n1 sin n2

C enr cos n1 B-2 A Second Vehicle: Transformation of Random Variables 647

gn WD Dn y D e1r cos n1 cos n2 cos 2 cos 1

C e2r cos n1 cos n2 sin 2 sin 1 C

C en1r cos n1 cos n2

C enr sin n1 D y=r:

n fg1;:::;gn1g span the image of the tangent space in E . gn is the hypersphere normal vector, kgnkD1. From the inner products hgi jgj iDgij , i;j 2f1;:::;ng, we derive the Gauss matrix of the metric G WD Œgij .

2 2 2 2 2 hg1jg1iDr cos n1 cos n2 cos 3 cos 2 2 2 2 2 hg2jg2iDr cos n1 cos n2 cos 3 2 hgn1jgn1iDr ;

hgnjgniD1:

The off-diagonal elements of the Gauss matrix of the metric are zero. Accordingly p p n1 n2 n3 2 det Gn D det Gn1 D r .cos n1/ .cos n2/ .cos 3/ cos 2: p p The square root det Gn, det Gn1 elegantly represents the Jacobian determinant p @.y1;y2;:::;yn/ Jy WD D det Gn: @.1;2;:::;n1;r/ p Accordingly we have found the local hypervolume element det Gn dr dn1 dn2 d3 d2 d1.Fortheglobal hypersurface element !n1,weintegrate

Z2

d1 D 2 0 CZ=2 C=2 cos 2d2 D Œsin 2=2 D 2 =2

CZ=2 1 cos2 d D Œcos sin C=2 D=2 3 3 2 3 3 3 =2 =2 648 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

CZ=2 1 4 cos3 d D Œcos2 sin 2 sin C=2 D 4 4 3 4 4 4 =2 3 =2 ::: CZ=2 1 .cos /n2d D Œ.cos /n3C=2 n1 n1 n 2 n1 =2 =2

CZ=2 1 C .cos /n4d n 3 n1 n1 =2 recursively. As soon as we substitute the gamma function, we arrive at !n1.

B-3 A First Confidence Interval of GaussÐLaplace Normally Distributed Observations , 2 Known, the Three Sigma Rule

The first confidence interval of Gauss-Laplace normally distributed observations constrained to .; 2/ known, will be computed as an introductory example. An application is the Three Sigma Rule. In the empirical sciences, estimates of certain quantities derived from observations are often given in the form of the estimate plus or minus a certain amount.For instance, the distance between a benchmark on the Earth’s surface and a satellite orbiting the Earth may be estimated to be

.20; 101; 104:132 ˙ 0:023/m with the idea that the first factor is very unlikely to be outside the range

20; 101; 104:155 m to 20; 101; 104:109m :

A cost accountant for a publishing company in trying to allow for all factors which enter into the cost of producing a certain book, actual production costs, proportion of plant overhead, proportion of executive salaries, may estimate the cost to be 21 ˙ 1; 1 Euro per volume with the implication that the correct cost very probably lies between 19.9 and 22.1 Euro per volume. The Bureau of Labor Statistics may estimate the number of unemployed in a certain area to be 2:4˙ 0:3 million at a given time though intuitively it should be between 2.1 and 2.7 million. What we are saying is that in practice we are quite accustomed to seeing estimates in the form of intervals. In order to give to these ideas we shall B-3 A First Confidence Interval of Gauss–Laplace Normally Distributed Observations 649 consider a particular example. Suppose that a random sample x 2fR;pdfg is taken from a Gauss-Laplace normal distribution with known mean and known variance 2. We ask the key question. What is the probability of the random interval . c; C c/ to cover the mean as a quantile c of the standard deviation ? To put this question into a mathematical form we write the probabilistic two-sided interval identity.

P.x1 < X

x2DZCc 1 1 p exp .x /2 dx D 2 22 x1Dc with a left boundary l D x1 and a right boundary r D x2. The length of the interval is x2 x1 D r l.Thecenter of the interval is .x1 C x2/=2 or .Herewehave taken advantage of the Gauss-Laplace pdf in generating the cumulative probability

P.x1 < X

F.x2/ F.x1/ D F. C c/ F. C c/:

Typical values for the confidence coefficient are D 0:95 ( D 95%or1 D 5% negative confidence), D 0:99 ( D 1%or1 D 1% negative confidence) or D 0:999 ( D 999%O or 1 D 1%O negative confidence). Consult Fig. B.1 for a geometric interpretation. The confidence coefficient is a measure of the probability mass between x1 D c and x2 D C c.Fora given confidence coefficient

Zx2 f.xj; 2/dx D

x1 establishes an integral equation. To make this point of view to be better under-stood let us transform the integral equations to its standard form.

1 x 7! z D .x / , x D C z x2DZCc ZCc 1 1 1 1 p exp .x /2 dx D p exp z2 dz D 2 22 2 2 x1Dc c Zx2 ZCc f.xj; 2/dx D f.zj0; 1/dz D :

x1 c 650 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

f(x)

μ–3σ μ–2σ μ–σ μ μ+σ μ+2σ μ+3σ x

Fig. B.1 Probability mass in a two-sided confidence interval x1 < X

The special Helmert transformation maps x to z,nowbeingstandard Gauss- Laplace normal: 1 is the dilatation factor, also called scale variation, but the parameter. The Gauss-Laplace pdf is symmetric, namely f.x/ D f.Cx/ or f.z/ D f.Cz/. Accordingly we can write the integral identity

Zx2 Zx2 f.xj; 2/dx D 2 f.xj; 2/dx D

x1 0 ZCc Zc , f.zj0; 1/dz D 2 f.zj0; 1/dz D :

c 0

The classification of integral equations tells us that

Zz .z/ D 2 f.z/dz

0 is a linear Volterra integral equation the first kind. B-3 A First Confidence Interval of Gauss–Laplace Normally Distributed Observations 651

In case of a Gauss-Laplace standard normal pdf, such an integral equation is solved by a table. In a forward computation

Zz Zz 1 1 2 F.z/ WD f.zj0; 1/dz or ˚.z/ WD exp z dz 2 2 1 1 are tabulated in a regular grid. For a given value F.z1/ or F.z2/, z1 or z2 are determined by interpolation. C.F. Gauss did not use such a procedure. He took advantage of the Gauss inequality which has been reviewed in this context by Pukelsheim (1994). There also the Vysochanskii-Petunin inequality has been discussed. We follow here a two-step procedure. First, we divide the domain z 2 Œ0; 1 into two intervals z 2 Œ0; 1 and z 2 Œ1; 1. In the first interval f.z/ is isotonic, differentiable and convex, f 00.z/ D f.z/.z2 1/ < 0; while in the second interval isotonic, differentiable and concave, f 00.z/ D f.z/.z2 1/ > 0. z D 1 is the point of inflection. Second, we setup Taylor series of f.z/ in the interval z 2 Œ0; 1 at the point z D 0, while in the interval z 2 Œ1; 1 at the point z D 1 and z 2 Œ2; 1 at the point z D 2. Three examples of such a forward solution of the characteristic linear Volterra integral equation of the first kind will follow. They establish:

The One Sigma Rule

The Two Sigma Rule The Three Sigma Rule

Box B.1. (Operational applied to the Gauss-Laplace probability distribution):

“generating differential equations”

f 00.z/ C 2f 0.z/ C f.z/ D 0 subject to

ZC1 f.z/dz D 1 1 652 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

“recursive differentiation” 1 1 f.z/ D p exp z2 2 2 f 0.z/ Dzf.z/ DW g.z/ f 00.z/ D g0.z/ Df.z/ zg.z/ D .z2 1/f .z/ f 000.z/ D 2zf.z/ C .z2 1/g.z/ D .z3 C 3z/f .z/ f .4/.z/ D .3z2 C 3/f .z/ C .z3 C 3z/g.z/ D .z4 6z2 C 3/f .z/ f .5/.z/ D .4z3 12z/f .z/ C .z4 6z2 C 3/g.z/ D .z5 C 10z3 15z/f .z/ f .6/.z/ D .5z4 C 30z2 15/f .z/ C .z5 C 10z3 15z/g.z/ D .z6 15z4 C 45z2 15/f .z/ f .7/.z/ D .6z5 60z3 C 90z/f .z/ C .z6 15z4 C 45z2 15/g.z/ D .z7 C 21z5 105z3 C 105z/f .z/ f .8/.z/ D .7z6 C 105z4 315z2 C 105/f .z/ C.z7 C 21z5 105z3 C 105z/f .z/ D .z8 28z6 C 210z4 420z2 C 105/f .z/ f .9/.z/ D .8z7 168z5 C 840z3 840z/f .z/ C.z8 28z6 C 210z4 420z2 C 105/g.z/ D .z9 C 36z7 378z5 C 1260z3 945z/f .z/ f .10/.z/ D .9z8 C 252z6 1890z4 C 3780z2 945/f .z/ C C.z9 C 36z7 378z5 C 1260z3 945/g.z/ D .z10 45z8 C 630z6 3150z4 C 4725z2 945/f .z/

“upper triangle representation of the matrix transforming f.z/ ! f n.z/” 2 3 2 3 2 3 f.z/ 1 0 0 0 0 0 00000 1 6 0 7 6 7 6 7 6 f .z/ 7 6 0 1 0 0 0 0 000007 6 z 7 6 7 6 7 6 7 6 f 00.z/ 7 6 1 0 1 0 0 0 000007 6 z2 7 6 7 6 7 6 7 6 000 7 6 7 6 3 7 6 f .z/ 7 6 03 01 0 0 000007 6 z 7 6 .4/ 7 6 7 6 4 7 6 f .z/ 7 6 306 0 1 0 000007 6 z 7 6 7 6 7 6 7 6 f .5/.z/ 7 D f.z/ 6 0 1501001000007 6 z5 7 : 6 7 6 7 6 7 6 f .6/.z/ 7 6 150450150 100007 6 z6 7 6 7 6 7 6 7 6 .7/ 7 6 7 6 7 7 6 f .z/ 7 6 0 105 0 105 0 21 0 10 007 6 z 7 6 .8/ 7 6 7 6 8 7 6 f .z/ 7 6 105 0 420 0 210 0 2801007 6 z 7 4 f .9/.z/ 5 4 0 945 0 1260 0 378 0 36 0 105 4 z9 5 f .10/.z/ 945 0 4725 0 3150 0 630 0 45 0 1 z10 B-3 A First Confidence Interval of Gauss–Laplace Normally Distributed Observations 653

B-31 The Forward Computation of a First Confidence Interval of GaussÐLaplace Normally Distributed Observations: ; 2 Known

We can avoid solving the linear Volterra integral equation of the first kind if we push forward the integration for a fixed value z.

Example B.8. (Series expansion of the Gauss-Laplace integral, first interval):

Let us solve the integral

Z1 .z D 1/ WD 2 f.z/dz

0 in the first interval 0 z 1 by Taylor expansion with respect to the successive differentiation of f.z/ outlined in Box B.1 and the specific derivatives f n.0/ given in Table B.4. Based on those auxiliary results, Box B.2 presents us the detailed interpretation. First, we expand exp.z2=2/ up to order O.14/. The specific Taylor series are uniformly convergent. Accordingly, in order to compute the integral, second we integrate termwise up to order O.15/. For the specific value z D 1,we have computed the coefficient of confidence .1/ D 0:683.Theresult

P.

Box B.2. A specific integral

“expansion of the exponential function”

x x2 x3 xn exp x D 71 C C C CC C O.n/ 8jxj <1 1Š 2Š 3Š nŠ 1 x WD z2 2 1 1 1 1 1 1 1 exp z2 D 1 z2 C z4 z6 C z8 z10 C z12 C O.14/ 2 2 8 48 384 3840 46080 654 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

“the specific integral”

Zz Zz 1 2 1 1 1 1 f.z/dz D p exp z dz D p z z3 C z5 z7 2 2 6 40 336 0 0 1 1 1 C z9 z11 C z13 C O.15/ 3456 42240 599040

“the specific values z D 1”

Z1 .1/ D 2 f.z/dz

0 2 1 1 1 1 1 1 D p 1 C C C C O.15/ 2 6 40 336 3456 42240 599040 2 D p .1 0:166;667 C 0:025;000/ 2 0:002;976 C 0:000;289 0; 000;024 C 0:000;002/ 2 D p 0:855;624 D 0:682;689 2 D 0:683

“coefficient of confidence”

1 0:683 D 1 317:311 103 D 1 : 3

Table B.4 (Special values of derivatives- Gauss-Laplace probability distribution):

z D 0 1 p D 0:398; 942 2 1 f.0/ D p ;f0.0/ D 0; 2 1 1 f 00.0/ Dp ; f 00.0/ D0:199; 471 2 2Š B-3 A First Confidence Interval of Gauss–Laplace Normally Distributed Observations 655

3 1 f 000.0/ D 0; f .4/.0/ DCp ; f .4/.0/ DC0:049; 868 2 4Š 15 1 f .5/.0/ D 0; f .6/.0/ Dp ; f .6/.0/ D0:008; 311: 2 6Š

Example B.9. (Series expansion of the Gauss-Laplace integral, 2nd inter- val):

Let us solve the integrals

Z2 Z1 Z2 .z D 2/ WD 2 f.z/dz D 2 f.z/dzC2 f.z/dz

0 0 1

Z2 .z D 2/ D .z D 1/ C 2 f.z/dz;

1 namely in the second interval 1 z 2. First,wesetupTaylor series of f.z/ “around the point z D 1”. The derivatives of f.z/ “at the point z=1” are collected up to order 10 in Table B.5. Second, we integrate the Taylor series termwise and receive the specific integral of Box B.3. Note that termwise integrated is permitted since the Taylor series are uniformly convergent. The detailed computation up to order O(12) has led us to the coefficient of confidence .2/ D 0:954.Theresult

P. 2 < X <C 2/ D 0:954 is known as the Two Sigma Rule. 95.4% of the sample interval 2; C 2 Œ, 0.046% outside. If we make 22 experiments, one experiment is outside the 2 interval.

Box B.3. (A specific integral):

“expansion of the exponential function” 1 1 f.z/ WD p exp z2 2 2 1 1 1 f.z/ D f.1/C f 0.1/.z 1/ C f 00.1/.z 1/2 CC f 10.1/.z 1/10 1Š 2Š 10Š C O.11/ 656 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

“the specific integral”

Z2 1 1 1 1 f.z/dz D f.1/.z 1/ C f 0.1/.z 1/2 C f 00.1/.z 1/3 2 1Š 3 2Š 1 1 1 1 1 C f 000.1/.z 1/4 C f .4/.1/.z 1/5 4 3Š 5 4Š 1 1 1 1 C f .5/.1/.z 1/6 CC f .10/.1/.z 1/11 C O.12/ 6 5Š 11 10Š case z D 2

Z2 .2/ D .1/C 2 f.z/dz D.1/C 2.0:241; 971

1 0:120; 985 C 0:020; 122 0:004; 024 0:002; 016 C 0:000; 768 C 0:000; 120 0:000; 088 0:000; 002 0:000; 050 C O.12// D 0:682; 690 C 0:271; 632 D 0:954

“coefficient of confidence”

1 0:954 D 1 45:678 103 D 1 : 22

Table B.5 (Special values of derivatives – Gauss-Laplace probability distri- bution):

z D 1 1 1 p D 0:398; 942; exp D 0:606; 531 2 2 1 1 f.1/ D p exp D 0:241; 971 2 2 1 1 f 0.1/ Df.1/Dp exp D0:241; 971; f 00.1/ D 0 2 2 2 1 f 000.1/ D 2f .1/ D p exp D 0:482; 942 2 2 B-3 A First Confidence Interval of Gauss–Laplace Normally Distributed Observations 657

1 f 000.1/ DC0:080; 490 3Š f .4/.1/ D2f .1/ D0:482; 942 1 f .4/.1/ D0:020; 122 4Š 6 1 f .5/.1/ D6f .1/ Dp exp D1:451; 826 2 2 1 f .5/.1/ D0:012; 098 5Š 16 1 f .6/.1/ D 16f .1/ D p exp D 3:871; 536 2 2 1 f .6/.1/ D 0:005; 377 6Š 20 1 f .7/.1/ D 20f.1/ D p exp D 4:829; 420 2 2 1 f .7/.1/ D 0:000; 958 7Š f .8/.1/ D132f .1/ D31:940; 172 1 f .8/.1/ D0:000; 792 8Š f .9/.1/ D28f.1/ D6:775; 188 1 f .9/.1/ D0:000; 019 9Š f .10/.1/ D8234f.1/ D1992:389 1 f .10/.1/ D0:000; 549: 10Š

Example B.10. (Series expansion of the Gauss-Laplace integral, third inter- val):

Let us solve the integrals

Z3 Z1 Z2 Z3 .z D 3/ WD 2 f.z/dz D 2 f.z/dz C 2 f.z/dz C 2 f.z/dz

0 0 1 2 Z3 .z D 3/ D .z D 1/ C .z D 2/ C 2 f.z/dz;

2 658 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions namely in the third interval 2 z 3. First,wesetupTaylor series of f(z) “around the point z D 2”. The derivatives of f.z/ “at the point z D 2” are collected up to order 10 in Table B.6. Second, we integrate the Taylor series termwise and receive the specific integral of Box B.4. Note that termwise integration is permitted since the Taylor series are uniformly convergent. The detailed computation up to order O(12) leads us to the coefficient of confidence .3/ D 0:997.Theresult

P. 3 < X <C 3/ D 0:997 is known as the Three Sigma Rule. 99.7% of the sample are in the interval 3; C 3Œ, 0.003% outside. If we make 377 experiments, one experiment is outside the 3 interval.

Table B.6 (Special values of derivatives Gauss-Laplace probability distribu- tion):

z D 2 1 p D 0:398; 942; exp .2/ D 0:135; 335 2 1 f.2/D p exp .2/ D 0:053; 991 2 f 0.2/ D2f .2/ D0:107; 982 1 f 00.2/ D 3f.2/; f 00.2/ DC0:080; 986 2Š 1 f 000.2/ D2f .2/; f 000.2/ D0:017; 997 3Š 1 f .4/.2/ D5f.2/; f .4/.2/ D0:011; 248 4Š 1 f .5/.2/ D 18f.2/; f .5/.2/ DC0:008; 099 5Š 1 f .6/.2/ D11f.2/; f .6/.2/ D0:000; 825 6Š 1 f .7/.2/ D86f .2/; f .7/.2/ D0:000; 921 7Š 1 f .8/.2/ DC249f.2/; f .8/.2/ DC0:000; 333 8Š 1 f .9/.2/ D 190f.2/; f .9/.2/ DC0:000; 028 9Š 1 f .10/.2/ D2621f.2/; f .10/.2/ D0:000; 039: 10Š B-3 A First Confidence Interval of Gauss–Laplace Normally Distributed Observations 659

Box B.4 (A specific integral) “expansion of the exponential function” 1 1 f.z/ WD p exp z2 2 2 1 1 1 f.z/ D f.2/C f 0.2/.z 2/ C f 00.2/.z 2/2 CC f .10/.2/.z 2/10 1Š 3Š 10Š C O.11/

“the specific integral”

Zz 1 1 1 1 f.z/dz D f.2/.z 2/ C f 0.2/.z 2/2 C f 00.2/.z 2/3 2 1Š 3 2Š 2 1 1 1 1 C f 000.2/.z 2/4 C f .4/.2/.z 2/5 4 3Š 5 4Š 1 1 1 1 C f .5/.2/.z 2/6 CC f .10/.2/.z 2/11 C O.12/ 6 5Š 11 10Š case z D 3

Z3 .3/ D .1/C .2/C 2 f.z/dz

2 D 0:682; 690 C 0:271; 672 C 2.0:053; 991 0:053; 991 C 0:026; 995 0:004; 499 0:002; 250 C 0:001; 350 0:000; 118 C 0:000; 037 C 0:000; 003 0:000; 004 C O.12// D 0:682; 690 C 0:271; 632 C 0:043; 028 D 0:997

“coefficient of confidence” 1 0:997 D 1 2:65 103 D 1 : 377

B-32 The Backward Computation of a First Confidence Interval of GaussÐLaplace Normally Distributed Observations: ; 2 Known

Finally we solve the Volterra integral equation of the first kind by the technique of series inversion, also called series reversion. Let us recognize that the interval 660 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions integration of a Taylor series expanded Gauss-Laplace normal density distribution led us to a univariate homogeneous polynomial of arbitrary order. Such a univariate 2 n homogeneous polynomial y D a1x C a2x CCanx (“input”) can be reversed 2 n as a univariate homogeneous polynomial x D b1y C b2y CCbny (“output”) as outlined in Table B.7. Consult Abramowitz and Stegun (1965), p. 16 for a review, but Grafarend (1996) for a derivation based upon . Table B.7 (Series inversion (Grafarend, 1996)): “input: univariate homogeneous polynomial”

2 3 4 5 6 7 8 y D a1x C a2x C a3x C a4x C a5x C a6x C a7x C O.x /

“output: reverse univariate homogeneous polynomial”

2 3 4 5 6 7 8 x D b1y C b2y C b3y C b4y C b5y C b6y C b7y C O.y /

“coefficient relation”

(a) a1b1 D 1 3 (b) a1b2 Da2 5 2 (c) a1b3 D 2a2 a1a3 7 2 3 (d) a1b4 D 5a1a2a3 a1a4 5a2 9 2 2 2 4 3 2 (e) a1b5 D 6a1a2a4 C 3a1a3 C 14a2 a1a5 21a1a2a3 11 3 3 3 4 2 5 2 2 (f) a1 b6 D 7a1a2a5 C7a1a2a4 C84a1a2a3 a1a6 28a1a2a3 42a2 28a1a2a4 13 4 4 4 2 2 3 2 2 2 6 (g) a1 b7 D 6a1a2a6 C 8a1a2a5 C 4a1a4 C 120a1a2a4 C 180a1a2a3 C 132a2 5 3 2 3 3 3 4 a1a7 36a1a2a5 72a1a2a3a4 12a1a3 330a1a2a3.

Example B.11. (Solving the Volterra integral equation of the first kind):

Let us define the coefficient of confidence D 0:90 or 90%. We want to know the quantile c0:90 which determines the probability identity

P. c < X <C c/ D 0:90:

If you follow the detailed computation of Table B.5, namely the input as well as the output up to order O(5), you find the quantile

c0:90 D 1:64; as well as the confidence interval

P. 1:64 < X <C 1:64/ D 0:90: B-3 A First Confidence Interval of Gauss–Laplace Normally Distributed Observations 661

90% of the sample are in the interval 1:64; C 1:64Œ, 10% outside. If we make 10 experiments one experiment is outside the 1.62 interval.

Table B.8 (Series inversion quantile c0:90):

(i) input

Z1 Zz .z/ D 2 f.z/dz C 2 f.z/dz D 0:682; 689 C 2Œf .1/.z 1/

0 0 1 1 1 1 C f 0.1/.z 1/2 CC f .n1/.1/.z 1/n C O.n C 1/ 2 1Š n .n 1/Š 1 1 1 Œ.z/ 0:682; 689 D f.1/.z 1/ C f 0.1/.z 1/2 C 2 2 1Š 1 1 C f .n1/.1/.z 1/n C O.n C 1/ n .n 1/Š 2 n y D a1x C a2x CCanx C O.n C 1/ x WD z 1 y WD .0:900; 000 0:682; 689/=2 D 0:108; 656

a1 WD f.1/D 0:241; 971 1 1 a WD f 0.1/ D0:241; 971 2 2 1Š 1 1 a WD f 00.1/ D 0 3 3 2Š 1 1 a WD f 000.1/ D 0:020; 125 4 4 3Š 1 1 a WD f .4/.1/ D0:004; 024 5 5 4Š 1 1 a WD f .n1/.1/: n n .n 1/Š (ii) output 1 b1 D D 4:132; 726 a1 1 b2 D 3 a2 D 8:539; 715 a1 662 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

1 2 b3 D 5 .2a2 a1a3/ D 35:292; 308 a1

1 2 3 b4 D 7 .5a1a2a3 a1a4 5a2/ D 158:070 a1

1 2 2 2 4 3 2 b5 D 9 .6a1a2a4 C 3a1a3 C 14a2 a1a5 21a1a2a3/ D 475:452; 152 a1 2 b1y D 0:449; 045; b2y D 0:100; 821; 3 4 b3y D 0:045; 273; b4y D 0:022; 032; 5 b5y D 0:007; 201 2 3 4 5 x D b1y C b2y C b3y C b4y C b5y C O.6/ D 0:624; 372

z D x C 1 D 1:624; 372 D c0:90:

At this end we would like to give some sample references on computing the “inverse error function”

Zx 1 1 y D F.x/ WD p exp z2 dz DW erfx versus 2 2 0 x D F 1.y/ D inverfy; namely Carlitz (1963) and Strecok (1968).

B-4 Sampling from the GaussÐLaplace Normal Distribution: A Second Confidence Interval for the Mean, Variance Known

The second confidence interval of Gauss-Laplace i.i.d. observations will be con- structed for the mean b BLUUE of , when the variance 2 is known. “n”isthe size of the sample, namely to agree to the number of observations. Before we present the general sampling distribution we shall work through two examples. Example B.12 has been chosen for a sample size n D 2, while Example B.12 for n D 3 observations. Afterwards the general result is obvious and sufficiently motivated.

Example B.12. (Gauss-Laplace i.i.d. observations, observation space Y, dim Y)

In order to derive the marginal distributions of b BLUUE of and b 2 BIQUUE of 2 for a two dimensional Euclidean observation space we have to introduce B-4 Sampling from the Gauss–Laplace Normal Distribution: 663

= σ2 σ2 f2(x) f2(ˆ / )

x: = σˆ2 / σ2

2 Fig. B.2 Special Helmert pdf of p for one degree of freedom, p D 1 various images. First, we define the probability function of two Gauss-Laplace i.i.d. observations and consequently implement the basic .b;b 2/ decomposition into the pdf. Second, we separate the quadratic form .y 1/0.y 1/ into the quadratic form .y 1b/0.y 1b/, the vehicle to introduce b 2 BIQUUE of 2, and into the quadratic form .b /2 the vehicle to bring in b BLUUE of . Third,weaimat transforming the quadratic form .y 1b/0.y 1b/ D y0 My; rk M D 1, into the 2 specialˇ form 1=2.y1 y2/ DW x. Fourth, we generate the marginal distributions ˇ 2 2 2 f1.b ; =2/ of the mean b BLUUE of and f2. / of the sample variance b BIQUUE of 2. The basic results of the example are collected in Corollary B.6. The special Helmert pdf 2 with one degree of freedom is plotted in Fig. B.2,butthe special Gauss-Laplace normal pdf of variance 2=2 in Fig. B.3. Thefirstactionitem Let us assume an experiment of two Gauss-Laplace i.i.d. observations. Their pdf is given by

f.y1;y2/ D f.y1/f . y2/; 1 1 f.y ;y/ D exp Œ.y /2 C .y /2 ; 1 2 22 22 1 2 1 1 f.y ;y/ D exp .y 1/0.y 1/ : 1 2 22 22 664 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

0.4

0.3

f (z| 0, 1) 1 0.2

0.1

0 –5 –4 –3 –2 –1 0 1 2 3 4 5

2 z = (mˆ − m)/ s 2

Fig. B.3 Special Gauss-Laplace normal pdf of .b /= 2=2

The second action item 0 The coordinates of the observation vector have been denoted by Œy1;y2 D y 2 Y; dim Y D 2.Thequadratic form .y 1/0.y 1/ allows the fundamental decomposition

y 1 D .y 1b/ C 1.b / .y 1/0.y 1/ D .y 1b/0.y 1b/ C 101.b /2 .y 1/0.y 1/ D b 2 C 2.b /2:

Here, b is BLUUE of and b 2 BIQUUE of 2. The detailed computation proves our statement.

2 2 Œ.y1 b/ C .b / C Œ.y2 b/ C .b / 2 2 2 D .y1 b/ C .y2 b/ C 2.b / C 2.b /Œ.y1 b/ C .y2 b/ 2 2 2 D .y1 b/ C .y2 b/ C 2.b / C 2b.y1 b/ C 2b.y2 b/

2.y1 b/ 2.y2 b/ B-4 Sampling from the Gauss–Laplace Normal Distribution: 665

1 b D .y C y / 2 1 2 2 2 2 b D .y1 b/ C .y2 b/ :

As soon as we substitute b and b 2 we arrive at

2 2 2 2 .y1 / C .y2 / D Œ.y1 b/ C .b / C Œ.y2 b/ C .b / D b 2 C 2.b /2; since the residual terms vanish:

2b.y1 b/ C 2b.y2 b/ 2.y1 b/ 2.y2 b/ 2 2 D 2by1 2b C 2by2 2b 2y1 C 2b 2y2 C 2b 2 D 2b.y1 C y2/ 4b 2.y1 C y2/ C 4b D 4b2 4b2 4b C 4b D 0:

The third action item The cumulative pdf b 2 b 2 dF D f.y ;y/dy dy D f .b/f .x/dbdx D f .b/f dbd 1 2 1 2 1 2 1 2 2 2

2 has to be decomposed into the first pdf f1.b j; =n/ representing the pdf of the sample mean b and the second pdf f2.x/ of the new variable x WD .y1 2 2 2 2 2 2 y2/ =.2 / D b = representing the sample variance b , normalized by .

How can the second decomposition f1f2 be understood? Let us replace the quadratic form .y 1/0.y 1/ D b 2 C 2.b /2 in the cumulative pdf 1 1 dF D f.y ;y/dy dy D exp .y 1/0.y 1/ dy dy 1 2 1 2 22 22 1 2 1 1 D exp Œb 2 C 2.b /2 dy dy 22 22 1 2

dF D f.y1;y2/dy1dy2 1 1 1 .b /2 1 1 1 b 2 D p exp p p exp dy1dy2: p 2 2=2 2 2 2 2 2 2 666 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

The quadratic form b 2, conventionally given in terms of the residual vector y 1b 0 will be rewritten in terms of the coordinates Œy1;y2 D y of the observation vector. 1 2 1 2 b 2 D .y b/2 C .y b/2 D y .y C y / C y .y C y / 1 2 1 2 1 2 2 2 1 2

1 1 1 b 2 D .y y /2 C .y y /2 D .y y /2: 4 1 2 4 2 1 2 1 2

The fourth action item

1 2 The new variable x WD 2 2 .y1 y2/ will be introduced in the cumulative pdf dF D f.y1;y2/dy1dy2. The new surface element dbdx will be related to the old surface element dy1dy2. ˇ " #ˇ ˇ ˇ ˇ D bD b ˇ b ˇ y1 y2 ˇ ddx D ˇ det ˇ dy1dy2 D jJj dy1dy2 Dy1 xDy2 x

@b 1 @b 1 b b Dy1 WD D ;Dy2 WD D @y1 2 @y2 2

@x y y @x y y D x WD D 1 2 ;Dx WD D 1 2 : y1 2 y2 2 @y1 @y2

The absolute value of the Jacobi determinant amounts to ˇ " # ˇ ˇ ˇ ˇ 1 1 ˇ y y 2 jJjDˇ det 2 2 ˇ D 1 2 ; jJj1 D : ˇ y1y2 y1y2 ˇ 2 y1 y2 2 2

In consequence, we have derived

2 dy1dy2 D dbdx D p p dbdx y1 y2 2 x based upon

1 p 1 x D .y y /2 ) 2x D .y y /: 22 1 2 1 2 In collecting all detailed partial results we can formulate a corollary. B-4 Sampling from the Gauss–Laplace Normal Distribution: 667

Corollary B.3. (marginal probability distributions of b; 2 given, and b 2):

The cumulative pdf of a set of two observations is represented by

2 dF D f.y1;y2/dy1dy2 D f1.b j; =2/f2.x/dbdx subject to b 2 2 1 1 1 . / f1.b j; ; =2/ WD p exp 2 p 2 2=2 2 b 2 1 1 1 f2.x/ D f2 WD p p exp x subject to 2 2 x 2 ZC1 ZC1

f1.b/ db D 1and f2.x/ dx D 1: 1 0 f1.b/ is the pdf of the sample mean b D .y1 C y2/=2 and f2.x/ the pdf of the 2 2 2 sample variance b D .y1 y2/ =2 D x. f1.b/ is a Gauss-Laplace pdf with 2 2 mean and variance =n, while f2.x/ is a Helmert with one degree of freedom.

Example B.13. (Gauss-Laplace i.i.d. observations, observation space Y, dim Y D 3):

In order to derive the marginal distribution of b BLUUE of and b 2 BIQUUE of 2 for a three-dimensional Euclidean observation space, we have to act in various scenes. First, we introduce the probability function of three Gauss-Laplace i.i.d. observations and consequently implement the .b; b 2/ decomposition in the pdf. Second, we force the quadratic form .y 1b/0.y 1b/ to be decomposed into b 2 and .b/2, actually a way to introduce the sample variance b 2 BIQUUE of b 2 and the sample mean b BLUUE of . Third, we succeed to transform the quadratic form b 0 b 2 2 .y 1/ .y 1/ D yMy; rkM D 2 into the canonical form z1 C z2 by means of 0 0 0 Œz1; z2 D HŒy1;y2;y3 . Fourth, we produce the right inverse Hk D H in order to 0 0 0 invert H, namely Œy1;y2;y3 D H Œz1; z2 . Fifth, in order to transform the original 2 b 0 b 2 2 2 quadratic form .y1/ .y1/ into the canonical form z1 Cz2 Cz3 we review the general Helmert transformation z D 1H.y/ and its inverse y D H0z subject to H 2 SO.3/ and identify its parameters translation, and dilatation 2 (scale). Sixth, we summarize the marginal probability distributions f1.b j; =3/ 2 2 2 of the sample mean b BLUUE of and f2.2b = / of the sample variance b BIQUUE of 2. The special Helmert pdf 2 with two degrees of freedom is plotted in Fig. B.4 while the special Gauss-Laplace normal pdf of variance 2=3 in Fig. B.5. The basic results of the example are collected in Corollary B.7. 668 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

ˆ 2 2 f2(2s | s )

x := 2s2 | s2

2 Fig. B.4 Special Helmert pdf of p for two degrees of freedom, p D 2

s 2 f1(mˆ | m, ) 3

s2 (mˆ − m) / 3

b 2 Fig. B.5 Special Gauss-Laplace normal pdf of . /= 3 B-4 Sampling from the Gauss–Laplace Normal Distribution: 669

Thefirstactionitem Let us assume an experiment of three Gauss-Laplace i.i.d. observations. Their pdf is given by

f.y1;y2;y3/ D f.y1/f . y2/f . y3/; 1 f.y ;y;y/ D .2/3=2 3 exp Œ.y /2 C .y /2 C .y /2 ; 1 2 3 22 1 2 3 1 f.y ;y;y/ D .2/3=2 3 exp .y 1/0.y 1/ : 1 2 3 22

0 The coordinates of the observation vector have been denoted by Œy1;y2;y3 D y 2 Y, dim Y D 2. The second action item The coordinates of the observation vector have been denoted by D y 2 Y,dimY D 2. 0 The quadratic form .y1 1/ .y2 1/ allows the fundamental decomposition

y 1 D .y 1b/ C 1.b /; .y 1/0.y 1/ D .y 1b/0.y 1b/ C 101.b /2

.y 1/0.y 1/ D 2b 2 C 3.b /2:

Here, b is BLUUE of and b 2 BIQUUE of 2. The detailed computation proves our statement.

2 2 2 Œ.y1 b/ C .b / C Œ.y2 b/ C .b / C Œ.y3 b/ C .b / 2 2 2 2 D .y1 b/ C .y2 b/ C .y3 b/ C 3.b / C 2b.y1 b/

C 2b.y2 b/ C 2b.y3 b/ 2.y1 b/ 2.y2 b/ 2.y3 b/

1 b BLUUE of W b D .y C y C y / 3 1 2 3 1 b 2 BIQUUE of 2 W b 2 D Œ.y b/2 C .y b/2 C .y b/2: 2 1 2 3

As soon as we substitute b and b 2 we arrive at

2 2 2 .y1 / C .y2 / C .y3 / 2 2 2 2 2 2 2 2 D Œ.y1 b/ C .b / C Œ.y2 b/ C .b / C Œ.y3 b/ C .b / D 2b 2 C 3.b /2: 670 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

The third action item Let us begin with transforming the cumulative probability function

dF D f.y1;y2;y3/dy1dy2dy3 1 D .2/3=2 3 exp .y 1/0.y 1/ dy dy dy 22 1 2 3 1 D .2/3=2 3 exp Œ2b 2 C 3.b /2 dy dy dy 22 1 2 3 into its canonical form. In detail, we transform the quadratic form b 2 BIQUUE of 2 canonically.

1 1 2 1 2 1 1 y b D y y .y C y / D y .y C y / D y y y 1 1 3 1 3 2 3 3 1 3 2 3 3 1 3 2 3 3 1 1 1 2 1 y b D y y .y C y / D y C y y 2 2 3 2 3 1 3 3 1 3 2 3 3 1 1 1 1 2 y b D y y .y C y / D y y C y 3 3 3 3 3 1 2 3 1 3 2 3 3 as well as

4 1 1 4 2 4 .y b/2 D y2 C y2 C y2 y y C y y y y 1 9 1 9 2 9 3 9 1 2 9 2 3 9 3 1 1 4 1 4 4 2 .y b/2 D y2 C y2 C y2 y y y y C y y 2 9 1 9 2 9 3 9 1 2 9 2 3 9 3 1 1 1 4 2 4 4 .y b/2 D y2 C y2 C y2 C y y y y y y 3 9 1 9 2 9 3 9 1 2 9 2 3 9 3 1 and

2 .y b/2 C .y b/2 C .y b/2 D .y2 C y2 C y2 y y y y y y /: 1 2 3 3 1 2 3 1 2 2 3 3 1

We shall prove

b 0 b 0 2 2 R33 .y 1/ .y 1/ D y My D z1 C z2; rkM D 2; M 2 that the symmetric matrix M, 2 3 2 1 1 M D 4 121 5 1 12 B-4 Sampling from the Gauss–Laplace Normal Distribution: 671 has rank 2 or rank deficiency 1. Just compute jMj D 0 as a determinant identity as well as the subdeterminant ˇ ˇ ˇ ˇ ˇ 2 1 ˇ ˇ ˇ D 3 ¤ 0 12 2 3 2 3 2 1 1 y 1 1 .y 1b/0.y 1b/ D y0My D Œy ;y ;y 4 121 5 4 y 5 : 3 1 2 3 2 1 12 y3

How to transform a degenerate quadratic form to a canonical form? Helmert (1875) had the bright idea to implement what we call nowadays the forward Helmert transformation

1 z1 D p .y1 y2/ 1 2 1 z2 D p .y1 C y2 2y3/ or 2 3 1 z2 D .y2 2y y C y2/ 1 2 1 1 2 2 1 z2 D .y2 C y2 C 4y2 C 2y y 4y y 4y y / 2 6 1 2 3 1 2 2 3 3 1

2 z2 C z2 D .y2 C y2 C y2 y y y y y y / : 1 2 3 1 2 3 1 2 2 3 3 1

Indeed we found

b 0 b b 2 b 2 b 2 2 2 .y 1/ .y 1/ D .y1 / C .y2 / C .y3 / D z1 C z2:

In algebraic terms, a representation of the rectangular Helmert matrix is 2 3 " # p1 p1 0 y1 z1 12 12 4 5 z D D 1 1 2 y2 z2 p p p 23 23 23 y3 " # p1 p1 0 12 12 z D H23y; H23 WD : p1 p1 p2 23 23 23 672 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

The rectangular Helmert matrix is right orthogonal, 2 3 1 1 " # p p p1 p1 0 6 12 23 7 0 12 12 6 p1 p1 7 10 H23H 23 D 4 5 D D I2: p1 p1 p2 12 23 01 23 23 23 0 p2 23

The fourth action item

2 2 By means of the forward Helmert transformation we could prove that z1 C z2 represents the quadratic form .y1b/0.y1b/. Unfortunately, the forward Helmert transformation only allows indirectly by a canonical transformation. What would be needed is the inverse Helmert transformation z 7! y, also called backward Helmert transformation.Therectangular Helmert matrix has the disadvantage to have no Cayley inverse. Fortunately, its right inverse

0 0 1 0 R32 HR WD H 23.H23H 23/ D H 23 2 solves our problem. The inverse Helmert transformation

0 y D HRz D H 23z brings

2 .y 1b/0.y 1b/ D .y2 C y2 C y2 y y y y y y / 3 1 2 3 1 2 2 3 3 1 via 2 1 1 y1 D p z1 C p z2 6 12 23 0 6 1 1 y D H z or y2 Dp z1 C p z2 23 4 12 23 2 y3 Dp z2; 23

2 2 2 1 2 1 2 1 1 2 1 2 1 2 2 y C y C y D z C z C p z1z2 C z C z p z1z2 C z ; 1 2 3 2 1 6 2 3 2 2 6 2 3 3 2

1 2 1 2 1 1 2 1 1 2 y1y2 C y2y3 C y3y1 D z C z C p z1z2 z p z1z2 z ; 2 1 6 2 3 3 2 3 2 2 2 2 3 3 .y2 C y2 C y2 y y y y y y / D z2 C z2 D z2 C z2; 3 1 2 3 1 2 2 3 3 1 3 2 1 2 2 1 2 into the canonical form. B-4 Sampling from the Gauss–Laplace Normal Distribution: 673

The fifth action item Let us go back to the partitioned pdf in order to inject the canonical representation of the deficient quadratic form y0My; M 2 R33, rkM D 2. Here we meet first the problem to transform 1 dF D .2/3=2 3 exp Œ2b 2 C 3.b /2 dy dy dy 22 1 2 3

0 3=2 by an extended vector Œz1; z2; z3 DW z into the canonical form dF D .2/ 1 2 2 2 exp 2 .z1 C z2 C z3/ dz1dz2dz3, which is generated by the general forward Helmert transformation

z D 1H.y 1/ 2 3 2 3 2 3 p1 p1 0 z1 6 12 12 7 y1 4 5 1 6 p1 p1 p2 7 4 5 z2 D 4 5 y2 23 23 23 z3 p1 p1 p1 y3 3 3 3 or its backward Helmert transformation, also called the general inverse Helmert transformation 2 3 2 3 p1 p1 p1 2 3 y1 6 12 23 3 7 z1 4 5 D 6 p1 p1 p1 7 4 5 : y2 4 12 23 3 5 z2 y3 0 p2 p1 z3 23 3

y 1 D H0z

0 thanks to the orthonormality of the quadratic Helmert matrix H3, namely H3H 3 D 0 1 0 H 3H3 D I3 or H3 D H 3. Secondly, notice the transformation of the volume element

3 dy1dy2dy3 D d.y1 /d.y2 /d.y3 / D dz1dz2dz3; which is due to the Jacobi determinant ˇ ˇ J D 3 ˇH0ˇ D 3 jHj D 3:

Let us prove that

p b 1 z3 WD 3 .b / D p 3 674 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions brings the first marginal density 2 1 1 1 2 f1 D bj; WD p exp 3.b / 3 p 22 2 3 into the canonical form 1 1 2 f1.z3 j0; 1/ D p exp z : 2 2 3

Let us compute b as well as 3.b /2 which concludes the proof. 2 3 y1 1 1 1 1 4 5 z3 D p ; p ; p y2 3 3 3 y3 3 1 y1 C y2 C y3 3 z3 D p 7 3 7 5 y C y C y 1 2 3 D b ) y C y C y D 3b 3 1 2 3 b 1 2 1 2 ) z3 D 3 p ; z D 3.b / : 3 3 2

Indeed the extended Helmert matrix H3 is ingenious to decompose

1 .y 1b/0.y 1b/ D z2 C z2 C z2 2 1 2 3

2 2 b2 2 b 2 into a canonical quadratic form relating z1 C z2 to and z3 to . / .Atthis point, we have to interpret the general Helmert transformation z D 1H.y /: Structure elements of the Helmert transformation

scale or dilatation 1 rotation H translation

1 2 RC produces a dilatation or a scale change, H 2 SO.3/ WD fH 2 R33 jH0H D 3 I3 and jHj DC1g a rotation (3 parameters) and 1 2 R a translation. Please, prove for yourself that the quadratic Helmert matrix is orthonormal, that is HH0 D 0 H H D I3 and jHj DC1. B-4 Sampling from the Gauss–Laplace Normal Distribution: 675

The sixth action item

Finally we are left with the problem to split the cumulative pdf into one part f1.b/ which is a marginal distribution of the mean b BLUUE of and another 2 part f2.b/ which is a marginal distribution of the standard deviation b, b BIQUUE 2 2 of , Helmert’s 2 with two degrees of freedom. First let us introduce polar coordinates .1;r/which represent the Cartesian coor- dinates z1 D r cos 1, z2 D r sin 1. The index 1 is needed for later generalization to higher dimension. As a longitude, the domain of 1 is 1 2 Œ0; 2 or 0 1 2. 2 2 2 The new random variable z1 C z2 Dkzk DW x or radius r relates to Helmert’s

2b 2 1 2 D z2 C z2 D D .y 1b/0.y 1b/ : 1 2 2 2

Secondly, the marginal distribution of the b, b BLUUE of , f1 b j; p db D f1.z3 j0; 1/dz3 N ; p 3 3 is a Gauss-Laplace normal distribution with mean and variance 2=3 gener- ated by dF1 D f1 b j; p db D f1.z3 j0; 1/dz3 3 ZC1 ZC1 1 1 D .2/1=2 exp z2 dz .2/1 exp .z2 C z2/ dz dz or 2 3 3 2 1 2 1 2 1 1 p 1=2 3 3 2 f1 b j; p db D .2/ exp .b / db: 3 22

b2 2 2 2 Third, the marginal distribution of the sample variance 2 = D z1 C z2 DW x, Helmert’s 2 distribution for p D n 1 D 2 degrees of freedom, 2 2 1 p 1 x f .2b = / D f .x/ D x 2 2 2 p=2 p exp 2 .2 / 2 is generated by

ZC1 Z2 1 1 1 dF D .2/1=2 exp z2 dz d .2/1 exp x dx 2 2 3 3 1 2 2 1 0 676 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

Z2 1 1 dF D .2/1! exp x dx subject to ! D d D 2 2 2 2 2 2 1 0 1 1 dF D exp x dx 2 2 2 and

dx x WD z2 C z2 D r2 ) dx D 2rdr; dr D 1 2 2r 1 dz dz D rdrd D dxd 1 2 1 2 1 is the transformation of the surface element dz1dz2. In collecting all detailed results let us formulate a corollary.

Corollary B.7. (marginal probability distributions of b, 2 given, and of b 2):

The cumulative pdf of a set of three observations is represented by 2 dF D f.y ;y ;y /dy dy dy D f bj; f .x/dbdx 1 2 3 1 2 3 1 3 2 subject to 2 1 1 1 .b /2 f1 bj; WD p p exp 3 2 = 3 2 2=3 1 1 f .x/ D exp x 2 2 2 subject to

2 x WD z2 C z2 D 2b 2=2;dxD db 2 1 2 2 and

Z1 Z1

f1.b/ db D 1 versus f2.x/ dx D 1: 1 0 f1.b/ is the pdf of the sample mean b D .y1 C y2 C y3/=3 and f2.x/ the pdf 2 0 0 2 of the sample variance b D .y 1b/ .y 1b/=2 normalized by . f1.b/ is a B-4 Sampling from the Gauss–Laplace Normal Distribution: 677

2 2 Gauss-Laplace pdf with mean b and variance =3, while f2.x/ a Helmert with two degrees of freedom. In summary, an experiment with three Gauss-Laplace i.i.d. observations is charac- terized by two marginal probability densities, one for the mean b BLUUE of and another one for b 2 BIQUUE of 2: Marginal probability densities n D 3, Gauss-Laplace i.i.d. observations 2 2 2 2 b W f1 b j; p db b W f2.2b = /db 3 1 1 .b /2 b 2 b 2 D .2/1=2 p exp db D exp db 2 = 3 2 2=3 2 2 or or f1.z3 j0; 1/dz3 f2.x/dx 1 1 1 D .2/1=2 exp z2 dz D exp x dx 2 3 3 2 2 b b 2 z WD x WD 2 3 3 2

B-41 Sampling Distributions of the Sample Mean b, 2 Known, and of the Sample Variance b2

The two examples have prepared us for the general sampling distribution of the sample mean b, 2 known, and of the sample variance b 2 for Gauss-Laplace i.i.d. observations, namely samples of size n. By means of Lemma B.8 on the rectangular Helmert transformation andLemmaB.9onthequadratic Helmert transformation we prepare for Theorem B.10 which summaries both the pdfs for b BLUUE of , 2 known, for the standard deviation b and for b 2 BIQUUE of 2. Corollary B.11 focusses on the pdf of D qb where is an unbiased estimation of the standard deviation , namely EfgD.

Lemma B.3. (rectangular Helmert transformation):

n.n1/ The rectangular Helmert matrix Hn1;n 2 R transforms the degenerate quadratic form

.n 1/b 2 WD .y 1b/0.y 1b/ D y0 My; rkMD n1 subject to

1 b D 10y n 678 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions into the canonical form

b2 0 2 2 .n 1/ D z n1zn1 D z1 CCzn1:

The special Helmert transformation yn 7! Hn1;nyn D zn1 is represented by

2 Hn1;n WD 3 p1 p1 00 00 6 12 12 7 6 p1 p1 p2 0 007 6 23 23 23 7 6 7 : 6 7 6 7 p 1 p 1 p 1 p 1 p n1 0 4 .n1/.n2/ .n1/.n2/ .n1/.n2/ .n1/.n2/ .n1/.n2/ 5 p 1 p 1 p 1 p 1 p 1 p n n.n1/ n.n1/ n.n1/ n.n1/ n.n1/ n.n1/

0 0 The inverse Helmert transformation z 7! y D HRz D H z or yn D H n1nzn is 0 basedonitsright inverse which thanks to the right Hn1;nH n;n1 D In1 coincides with its transpose,

0 0 1 0 Rn.n1/ HR D H .HH / D H 2 :

Lemma B.4. (quadratic Helmert transformation):

The quadratic Helmert matrix H 2 Rnn, also called extended Helmert matrix or augmented Helmert matrix, transforms the quadratic form

1 1 .y 1/0.y 1/ D Œ.y 1b/ C 1.b /0Œ.y 1b/ C 1.b / 2 2 subject to

1 b D 10y n by means of

z D 1H.y 1/ or y D H0.z 1/ into the canonical form

1 Xn1 .y 1/0.y 1/ D z2 CCz2 C z2 D z2 C z2 2 1 n1 n j n j D1 2 b 2 zn D n. / : B-4 Sampling from the Gauss–Laplace Normal Distribution: 679

Such a Helmert transformation y 7! z D 1H.y 1/ is represented by displaylines

H WD 2 3 p1 p1 00 00 6 12 12 7 6 7 6 p1 p1 p2 0 007 6 23 23 23 7 6 7 6 p1 p1 p1 p3 007 6 34 34 34 34 7 6 7 6 7 6 7 6 7 6 p 1 p 1 p 1 p 1 p n1 0 7 6 .n1/.n2/ .n1/.n2/ .n1/.n2/ .n1/.n2/ .n1/.n2/ 7 6 7 6 p 1 p 1 p 1 p 1 p 1 p n 7 4 n.n1/ n.n1/ n.n1/ n.n1/ n.n1/ n.n1/ 5 p1 p1 p1 p1 p1 p1 n n n n n n

Since the quadratic Helmert matrix is orthonormal, the inverse Helmert transfor- mation is generated by

z 7! y 1 D H0z:

The proofs for Lemmas B.8 and B.9 are based on generalizations of the special cases for n D 2,ExampleB.11,andforn D 3,ExampleB.12. Any proof will be omitted here. The highlight of this paragraph is the following theorem.

Theorem B.10. (marginal probability distribution of .b; 2/ and b 2):

The cumulative pdf of a set of n observations is represented by

dF D f.y1;:::;yn/dy1 dyn 2 2 D f1.b/f4.b/dbdb D f1.b/f2.b /dbdb

1 as the product of the marginal pdf f1.b/ of the sample mean b D n 1y pand the marginal pdf f2.b/ of the sample standard deviation b D .y 1b/0.y 1b/=.n 1/, also called r.m.s.(root mean square error), or 2 2 the marginal pdf f2.b / of the sample variance b . Those marginal pdfs are represented by

dF1 D f1.b/db 2 2 dF4 D f4.b/db and dF2 D f2.b /db ; 680 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

(a) sample mean b 2 1 1 .b /2 f1.b/ D f1 bj; WD p exp n p 2 2 2=n n p n 1 1 2 z WD .b / W f1.z/dz D p exp z dz 2 2

(b) sample r.m.s. b

p WD n 1

dF4 D f4.b/db 2pp p b 2 f .b/ D b p1 4 p p=2 p exp 2 2 .2 / 2 p p b p x WD n 1 D b 2 1 f .x/dx D xp1 x2 dx 4 p=2 p exp 2 .2 / 2

dF4 D f4.x/dx

(c) sample variance b 2

p WD n 1 1 1 b 2 f .b 2/ D pp=2b p2 p ; 2 p p=2 p exp 2 2 .2 / 2 b 2 p x WD .n 1/ D b 2 W 2 2 1 p 1 1 f .x/dx D x 2 x dx: 2 p=2 p exp 2 .2 / 2

b 2 f1.j; n / as the marginal pdf of the sample mean BLUUE of is a Gauss- 2 p Laplace pdf with mean and variance =n. f2.x/; x WD pb=,isthestandard pdf of the normalized root-mean-square error with p degrees of freedom. In b2 2 2 contrast, f2.x/; x WDp = is a Helmert Chi Square p pdf with p D n 1 degrees of freedom. Before we present a sketch of a proof of Theorem B.10 which will be run with five action items and a special reference to the first and second vehicle, we give B-4 Sampling from the Gauss–Laplace Normal Distribution: 681

some historical comments. Kullback (1934) refers the marginal pdf f1.b/ of the “arithmetic mean” b to Poisson (1827), Haussdorff (1901) and Irwins (1937). He has also solved the problem to find the marginal pdf of the “geometric mean”. 2 2 The marginal pdf f2.b / of the sample variance b has been originally derived by Helmert (1875), Helmert (1876a), Helmert (1876b). A historical discussion of Helmert’s distribution is offered by David (1957), Kruskal (1946), Lancaster (1965), Lancaster (1966), Pearson (1931)andSheynin (1995). The marginal pdf f4.b/has not found any interest in practice so far. The reason may be found in the effect that b is not an unbiased estimate of the standard deviation , namely EfbgD. According to Cz¨uber (1891), p. 162, Roseen` (1948), p. 37, Schmetterer (1956), p. 203, Stoom (1967), p. 199, 218, Fisz (1971), p. 240 and Richter and Mammitzsch (1973), p. 42 have documented that r p p D 2 b D qb 2 p C 1 2

is an unbiased estimation of the standard deviation , namely EfbgD. p D n 1 again denotes the number of degrees of freedom. Schaffrin (1979), p. 240 has proven that p p r .y 1b/0.y 1/ 2p 1 b p WD r D b p p 1 2p 1 2 p 2 is an asymptotic (“from above”) unbiased estimation b p of the standard deviation . Let us implement BLUUE of into the marginal pdf f.b/:

Corollary B.8. (marginal probability distributions of for Gauss-Laplace i.i.d. observations, EfgD):

The marginal pdf of , an unbiased estimation of the standard deviation, is represented by

dF4 D f4./d 0 1 0 12 p p C 1 p C 1 p B B C C 2p 2 B 2 C f ./ D p1 exp B B C 2C 4 p p=2 p @ p A 2 p 2 p @ A pC1 2 2 2 682 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

Fig. B.6 Marginal pdf for the sample standard deviation (r.m.s.) and

dF4 D f4.x/dx p C 1 p 2 2 b x WD p 2 2 p1 1 2 f4.x/ D p x exp x 2p=2 2 2 subject to p C 1 p 2 EfxgD 2 p : 2

Figure B.6 illustrates the marginal pdf for “degrees of freedom” p 2f1; 2; 3; 4; 5g. B-4 Sampling from the Gauss–Laplace Normal Distribution: 683

Proof. Thefirstactionitem The pdf of n Gauss-Laplace i.i.d. observations is given by

Yn f.y1;:::;yn/ D f.y1/ f.yn/ D f.yi / iD1 1 f.y ;:::;y / D .2/n=2 n exp .y 1/0.y 1/ : 1 n 22

0 The coordinates of the observation space Y have been denoted by Œy1;:::;yn D y. Note dim Y D n. The second action item The quadratic form .y 1/0.y 1/ > 0 allows the fundamental decomposition

y 1 D .y 1b/ C 1.b /; .y 1/0.y 1/ D .y 1b/0.y 1b/ C 101.b /2 101 D n

.y 1/0.y 1/ D .n 1/b 2 C n.b /2:

Here, b is BLUUE of and b 2 BIQUUE of 2. The decomposition of the quadratic .y1/0.y1/ into the sample variance b 2 and the square .b/2 of the shifted sample mean b has already been proved for n D 2 and n=3. The general result is obvious. The third action item Let us transform the cumulative probability into its canonical forms.

dF D f.y1;:::;yn/dy1 dyn 1 D .2/n=2 n exp .y 1/0.y 1/ dy dy 22 1 n 1 D .2/n=2 n exp .n 1/b 2 C n.b /2 dy dy 22 1 n z D 1H.y 1/ or y 1 D H0z 1 .y 1/0.y 1/ D z2 C z2 CCz2 C z2 : 2 1 2 n1 n Here, we have substituted the divert Helmert transformation (quadratic Helmert matrix H) and its inverse. Again 1 is the scale factor, also called dilatation, 684 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

H an orthonormal matrix, also called ,and1 2 Rn the translation, also called shift. dF D f.y1;:::;yn/dy1 dyn 1 1 2 1 1 2 2 D p exp z exp .z CCz / dz1dz2 dzn1dzn 2 2 n .2/.n1/=2 2 1 n based upon

n dy1dy2 dyn1dyn D dz1dz2 dzn1dzn J D njH0jD njHjD n:

J again denotes the absolute value of the Jacobian determinant introduced by the first vehicle. The fourth action item First, we identify the marginal distribution of the sample mean b. 2 dF D f bj; db: 1 1 n

According to the specific structure of the quadratic Helmert matrix zn is gener- ated by 2 3 y1 1 1 1 6 : 7 1 y1 CCyn n zn D p ;:::; p 4 : 5 D p ; n n : n yn upon substituting

1 y CCy b D 10y D 1 n ) y CCy D nb ) n n 1 n

b b 2 1 n. / 2 . / 1 p zn D p ) z D n ;dzn D ndb: n n 2

Let us implement dzn in the marginal distribution. 1 1 2 dF1 D p exp z dzn 2 2 n B-4 Sampling from the Gauss–Laplace Normal Distribution: 685

ZC1 ZC1 1 .2/.n1/=2 exp .z2 CCz2 / dz dz ; 2 1 n1 1 n1 1 1 ZC1 ZC1 1 .2/.n1/=2 exp .z2 CCz2 / dz dz D 1 2 1 n1 1 n1 1 1 1 1 2 dF1 D p exp z dzn 2 2 n ! 1 1 1 .b /2 2 dF1 D p exp db D f1 bj; db: p 2 2 n 2 n n

The fifth action item Second, we identify the marginal distribution of the sample variance b 2. We depart the ansatz

2 2 dF2 D f2.b/db D f2.b /db in order to determine the marginal distribution f2.b/ of the sample root-mean- 2 2 square errors b and the marginal distribution f2.b / of the sample variance b . A first version of the marginal probability distribution dF2 is

Z1 1 1 2 dF2 D p exp z dzn 2 2 n 1 1 1 exp .z2 CCz2 / dz dz : .2/.n1/=2 2 1 n1 1 n1

n1 Transform the Cartesian coordinates .z1 C C zn1/ 2 R to spherical coordinates .˚1;˚2;:::;˚n2;rn1/. From the operational point of view, p D n1, the number of “degrees of freedom”, is an optional choice. Let us substitute the global hypersurface element !n1 or !p into dF2, namely

Z1 1 1 2 p exp z dzn D 1 2 2 n 1 1 1 dF D rn2 exp r2 dr 2 2.n1/=2 2 686 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

CZ=2 CZ=2 CZ=2 Z2 n3 n4 cos n2dn2 cos n3dn3 cos2d2 d1 =2 =2 =2 0 1 1 dF D rp1 exp r2 dr 2 .2/p=2 2

CZ=2 CZ=2 CZ=2 CZ=2 Z2 p2 p3 2 cos p1 cos p2dp2 cos 3d3 cos2d2 d1 =2 =2 =2 =2 0

2 2 ! D ! D .n1/=2 D p=2 n1 p n 1 p 2 2 Z=2 Z=2 p2 p3 D cos p1dp1 cos p2dp2 =2 =2

Z=2 Z=2 Z2 2 cos 3d3 cos2d2 d'1 =2 =2 0 ! 1 dF D p rp1 exp r2 dr 2 .2/p=2 2 2 1 dF D rp1 exp r2 dr : 2 p=2 p 2 2 2

The marginal distributionq of the r.m.s. f2.b/ is generated as soon as we substitute p 2 2 b the radius r D z1 CCzn1 D n 1 1=. Alternatively the marginal 2 distribution of the sample variance f2.b / is produced when we substitute the radius 2 2 2 b2 2 square r D z1 CCzn1 D .n 1/ = . Project A p p p b p r D n 1 b= D p ) dr D db

dF2 D f2.b/db 2pp 1 p f .b/ D b p1 exp b 2 : 2 p2p=2 2 2 B-4 Sampling from the Gauss–Laplace Normal Distribution: 687

Indeed, f2.b/ establishes the marginal distribution of the root-mean-square error b with p D n 1 degrees of freedom. Project B 2 dx D 2rdr b 2 b 2 6 x WD r2 D .n 1/ D p DW 2 ) 4 dx 1 dx 2 2 p dr D D p 2r 2 x

p1 1 p 1 r dr D x 2 dx 2

dF2 D f2.x/dx 1 p 1 1 f .x/ WD x 2 x : 2 p=2 p exp 2 .2 / 2

2 Finally, we have derived Helmert’s Chi Square p distribution f2.x/dx D dF2 by substituting r2, rp1 and dr in factor of x WD r2 and dx D 2rdr. Project C Replace the radical coordinate squared r2 D .n 1/b 2=2 D pb 2=2 by rescaling on the basis p=2

b 2 p x D r2 D z2 CCz2 D z2 CCz2 D .n 1/ D b 2 1 n1 1 p 2 2 p dx D db 2

2 within Helmert’s p with p D n 1 degrees of freedom

2 2 dF2 D f2.b /db 1 1 p f .b 2/ D pp=2b p2 b 2 : 2 p p=2 p exp 2 2 .2 / 2

2 2 Recall that f2.b / establishes the marginal distribution of the sample variance b with p D n 1 degrees of freedom. Both,themarginalpdf f2.b/ of the sample standard deviation b, also called root-mean-square error, and the marginal pdf 2 2 2 f2.b / of the sample variance b document the dependence on the variance and its power p . “Here is our journey’s end.”(W. Shakespeare: Hamlet) | 688 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

B-42 The Confidence Interval for the Sample Mean, Variance Known

An application of Theorem B.10 is Lemma B.12 where we construct the confidence interval for the sample mean b, BLUUE of ,variance 2 known, on the basis of its sampling distribution. Example B.14 is an example of a random sample of size n D 4.

Lemma B.12. (confidence interval for the sample mean, variance known):

The sampling distribution of the sample mean b D n1 10y, BLUUE of ,isGauss- 2 Laplace normal, N .bj; =n/, if the observations yi ;i 2f1;:::;ng,are Gauss-Laplace i.i.d. The “true” mean is an element of the two-sided confidence interval. 2b p c1˛=2; b C p c1˛=2Œ n n with confidence P b p c1˛=2 <

Example B.14. (confidence interval for the sample mean b, 2 known):

Suppose that a random sample 2 3 2 3 y1 1:2 6 7 6 7 6 y2 7 6 3:4 7 2 y WD 4 5 D 4 5 ; b D 2:7; D 9; r:m:s: W 3 y3 0:6 y4 5:6 of four observation is known from a Gauss-Lapace normal distribution with unknown mean and a known standard deviation D 3. b BLUUE of is the arithmetic mean. We intend to determine upper and lower limits which are rather certain to contain the unknowns parameter between them. Previously, for samples of size 4 we have known that the random variable

b b z D D p 3 n 2 B-4 Sampling from the Gauss–Laplace Normal Distribution: 689

b is normally distributedp with mean zero and unit variance. is the sample mean 2.7 and 3/2 is = n. The probability D 1 ˛ that z will be between any two arbitrarily chosen numbers c1 Dc and c2 D c is

Zc2

P fc1 < z < Cc2gD f.z/dz D D 1 ˛;

c1 ZCc P fc<2

c Zc ˛ f.z/dz D 1 ; 2 1 Zc ˛ f.z/dz D : 2 1

is the coefficient of confidence, ˛ the coefficient of negative confidence, also called complementary coefficient of confidence. The four representations of the probability D 1 ˛ to include z in the confidence interval c

Zc ˛ 1 C f.z/dz D 1 D : 2 2 1

Three values of the coefficient of confidence or its compliment ˛ are popular and listed in Table B.9. Table B.9 (Values of the coefficient of confidence):

0:950 0:990 0:999 ˛ 0:050 0:010 0:001 ˛ 2 0:025 0:005 0:000; 5 ˛ 1C 1 2 D 2 0:975 0:995 0:999; 5

In solving the linear Voltera integral equation of the first kind

Zz 1 1 f.z/dz D 1 ˛.z/ D Œ1 C .z/: 2 2 1

Table B.10 collects the quantiles c1˛=2 given the coefficients of confidence on their complements which we listed in Table B.10. 690 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

Table B.10 (Quantiles for the confidence interval of the sample mean, variance unknown): ˛ 1C 1 2 D 2 ˛c1˛=2 0:975 0:95 0:05 1:960 0:995 0:99 0:01 2:576 0:999; 5 0:999 0:001 3:291

Given the quantiles c1˛=2, we are going to construct the confidence interval for b 2 the sample mean , the variance pto be known. For this purpose, we convert the forward transformations b ! z D n.b /= to .

b p z D n b1 WD b p c1˛=2 <

The interval b1 <

p bC c1˛=2 Zb2 Zn cZ1˛=2 ˛ f.b/db D f.b/db D f.b/db D 1 : 2 1 1 1 An animation of the coefficient of confidence and the probability functions of a confidence interval is offered by Figs. B.7 and B.8. b1 D b c1˛=2 p ; b2 D b C c1˛=2 p n n

Let us specify all the integrals to our example

cZ1˛=2 f.z/dz D 1 ˛=2 1 B-4 Sampling from the Gauss–Laplace Normal Distribution: 691

Fig. B.7 Two-sided confidence interval 2 2b1;b2Œ; f .bj; =n/ σ2 pdf : f(mˆ | m, σ2) f(mˆ | m, ) a /2 g = 1-a a /2

μ mˆ mˆ1 2 mˆ1

σ σ = ˆ − m ˆ = ˆ + mˆ1 m c1−a/2 m1 m c1−a/2 n n

Fig. B.8 Two-sided confidence interval, quantile c1˛=2

1:960Z 2:576Z 3:291Z f.z/dz D 0:975; f.z/dz D 0:995; f.z/dz D 0:999; 5: 1 1 1

Those data lead to a triplet of confidence intervals.

case .a/ D 0:95; D 0:05; c1˛=2 D 1:960 3 3 P 2:7 1:96 < < 2:7 C 1:96 D 0:95 2 2 P f0:24 < < C5:64gD0:95

case .b/ D 0:99; D 0:01; c1˛=2 D 2:576 3 3 P 2:7 2:576<<2:7C 2:576 D 0:99 2 2 P f1:164 < < 6:564gD0:99

case .c/ D 0:999; D 0:001; c1˛=2 D 3:291 3 3 P 2:7 3:291 < < 2:7 C 3:291 D 0:999 2 2 P f2:236 < < 7:636gD0:999 :

With probability 95% the “true” mean is an element of the interval ]0.24, C5.64[. In contrast, with probability 99% the “true” mean is an element of the larger interval ]1.164, C6.564[. Finally, with probability 99.9% the “true” mean is an element of the largest interval [2.236, C7.636]. 692 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

B-5 Sampling from the GaussÐLaplace Normal Distribution: A Third Confidence Interval for the Mean, Variance Unknown

In order to derive the sampling distributions for the sample mean, variance un- known, of Gauss-Laplace i.i.d. observation B51 introduces two examples (two and three observations, respectively, for generating Student’s tp distribution. Lemma B.13 reviews Student’s t-distribution of the random variable n0.b /=b where the sample mean b is BLUUE of , whereas the sample variance b 2 is BIQUUE of 2. B52 by means of Lemma B.13 introduces the confidence interval for the “true” mean variance 2 unknown, which is based on Student’s probability distribution. For easy computation, Table B.12 is its flow chart. B53 discusses The Uncertainly Principle generated by The Magic Triangle of (a) length of confidence interval, (b) coefficient of negative confidence, also called the uncertainty number, and (c) the number of observations. Various figures and examples pave the way for the routine analyst’s use of the confidence interval for the mean, variance unknown.

B-51 Student’s Sampling Distribution of the Random Variable .b /=b

Two examples for n D 2 or n D 3 Gauss-Laplacepi.i.d. observations keep us to derive Student’s t-distribution for the random variable n.b /=b where b is BLUUE of , whereas p D n1 is BIQUUE of 2. Lemma B.12 and its proof is the highlight of this paragraph in generating the sampling probability distribution of Student’s t. Example B.15 (Student’s t-distribution for two Gauss-Laplace i.i.d. observa- tions):

First, assume an experiment of two Gauss-Laplace i.i.d. observations called y1 and y2: We want to prove that .y1 C y2/=2 and .y1 y2/2=2 or the sample mean b and 2 the sample variance b are stochastically independent. y1 and y2 are elements of the joint pdf.

f.y1;y2/ D f.y1/f .y2/ 1 1 f.y ;y / D exp Œ.y /2 C .y /2 1 2 22 22 1 2 1 1 f.y ;y / D exp .y 1/0.y 1/ : 1 2 22 22

The quadratic form .y 1/0.y 1/ is decomposed into the sample variance b 2, BIQUUE of 2, and the deviate of the sample mean b, BLUUE of , from by means of the fundamental separation B-5 Sampling from the Gauss–Laplace Normal Distribution: A Third Confidence 693

y 1 D y 1b C 1.b / .y 1/0.y 1/ D .y 1b/0.y 1b/ C 101.b /2 .y 1/0.y 1/ D b 2 C 2.b /2 1 1 2 f.y ;y / D exp b 2 exp .b /2 : 1 2 22 22 22

The joint pdf f.y1;y2/ is transformed into a special form if we replace

b D .y1 C y2/=2; 1 b 2 D .y b/2 C .y b/2 D .y y /2; 1 2 2 1 2 namely 1 1 1 1 y C y f.y ;y / D exp .y y /2 exp . 1 2 /2 : 1 2 22 22 2 1 2 2 2

Obviously the product decomposition of the joint pdf documented that (y1+y2)/2 b b2 and (y1-y2)2/2 or and are independent random variables. p Second, we intend to derive the pdf of Student’s random variable t WD 2.b /=b, the deviate of the sample mean b form the “true” mean , normalized by the sample standard deviations b. Let us introduce the direct Helmert transformation p 1 y1 y2 b 2 y1 C y2 2 b z1 D p D ; z2 D D p ; 2 2 2 or " # p1 p1 z1 1 2 2 y1 D 1 1 ; z2 p p y2 2 2 as well as the inverse " # p1 p1 y1 2 2 z1 D 1 1 ; y2 p p z2 2 2 which brings the jointpdf dF D f.y1;y2/dy1dy2 D f.z1; z2/dz1dz2 into the canonical form. 694 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

1 1 2 1 1 2 dF D p exp z p exp z dz1dz2 2 2 1 2 2 2 ˇ ˇ ˇ p1 p1 ˇ 1 ˇ 2 2 ˇ dy1dy2 D ˇ ˇ dz1dz2 D dz1dz2: 2 ˇ p1 p1 ˇ 2 2

2 p The Helmert random variable x WD z1 or z1 D x replaces the random variable z1 such that 1 1 dz1dz2 D p dxdz2 2 x 1 1 1 1 1 2 dF D p p exp x p exp z dxdz2 2 2 x 2 2 2 2 is the joint pdf of x and z2. Finally, we introduce Student’s random variable p b t WD 2 b p 2 z2 D .b / ) b D p z2 2 p b p z D x D ) b D z D x 1 1

z2 p 2 2 t D p , z2 D xt ) z D xt : x 2

Let us transform dF D f.x;z2/dxdz2 to dF D f.t;x/dtdx, namely from the joint pdf of the Helmert random variable x and the Gauss-Laplace normal variate z2 to the joint pdf of the Student random variable t and the Helmert random variable x. ˇ ˇ ˇ ˇ ˇ D z D z ˇ ˇ t 2 x 2 ˇ dz2dx D ˇ ˇ dt dx Dt xDxx ˇ ˇ ˇ p p ˇ ˇ 2 3=2 ˇ x 2 x t dz2dx D ˇ ˇ dt dx ˇ 01ˇ p dz2dx D xdtdx dF D f.t;x/dtdx 1 1 1 f.t;x/ D exp .1 C t 2/x : 2 2 2 B-5 Sampling from the Gauss–Laplace Normal Distribution: A Third Confidence 695

The marginal distribution of Student’s random variable t, namely dF3 D f3.t/dt, is generated by

Z1 1 1 1 f .t/ WD exp .1 C t 2/x dx 3 2 2 2 0 subject to the standard integral

Z1 1 1 1 exp.ˇx/dx D exp .ˇx/ D ˇ 0 ˇ 0 1 1 2 ˇ WD .1 C t 2/; D 2 ˇ 1 C t 2 such that

1 1 f .t/ D ; 3 2 1 C t 2 1 1 dF D dt 3 2 1 C t 2

2 and characterized by a pdf f3.t/ which is reciprocal to .1 C t /.

Example B.16. (Student’s t-distribution for three Gauss-Laplace i.i.d. obser- vations):

First, assume an experiment of three Gauss-Laplace i.i.d. observations called y1;y2 and y3: We want to derive the joint pdf f.y1;y2;y3/ in terms of the sample mean b, BLUUE of , and the sample variance b 2, BIQUUE of 2.

f.y1;y2;y3/ D f.y1/f .y2/f .y3/ 1 1 f.y ;y ;y / D exp Œ.y /2 C .y /2 C .y /2 1 2 3 .2/3=2 3 22 1 2 3 1 1 f.y ;y ;y / D exp .y 1/0.y 1/ : 1 2 3 .2/3=2 3 22

The quadratic form .y 1/0.y 1/ is decomposed into the sample variance b 2 and the deviate sample mean b from the “true” mean by means of the fundamental separation 696 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

y 1 D y 1b C 1.b / .y 1/0.y 1/ D .y 1b/0.y 1b/ C 101.b /2 .y 1/0.y 1/ D 2b 2 C 3.b /2

dF D f.y1;y2;y3/dy1dy2dy3 1 1 3 D exp 2b 2 exp .b /2 dy dy dy : .2/3=2 3 22 22 1 2 3 p Second, we intend to derive the pdf of Student’s random variable t WD 3.b/=b, the deviate of the sample mean b from the “true” mean , normalized by the sample standard deviation b. Let us introduce the direct Helmert transformation

1 1 z1 D p .y1 C y2 / D p .y1 C y2 2/ 2 2 1 1 z2 D p .y1 C y2 2y3 C 2/ D p .y1 C y2 2y3/ 2 3 2 3 1 1 z3 D p .y1 C y2 C y3 / D p .y1 C y2 C y3 3/ 3 3 or 2 3 2 3 p1 p1 0 2 3 z 12 12 y 1 1 6 7 1 4 5 6 p1 p1 p2 7 4 5 z2 D 4 5 y2 23 23 23 z3 p1 p1 p1 y3 3 3 3 as well as its inverse 2 3 2 3 p1 p1 p1 2 3 y1 6 12 23 3 7 z1 4 5 D 6 p1 p1 p1 7 4 5 y2 4 12 23 3 5 z2 y3 0 p2 p1 z3 23 3 in general

z D 1H.y / versus .y 1/ D H0z; whichhelpustobringthejoint pdf dF.y1;y2;y3/dy1dy2dy3 Df.z1; z2; z3/dz1dz2 dz3 into the canonical form. B-5 Sampling from the Gauss–Laplace Normal Distribution: A Third Confidence 697

1 1 1 dF D exp .z2 C z2/ exp z2 dz dz dz .2/3=2 2 1 2 2 3 1 2 3 ˇ ˇ ˇ p1 p1 p1 ˇ ˇ 12 23 3 ˇ 1 ˇ ˇ ˇ p1 p1 p1 ˇ dy1dy2dy3 D ˇ ˇ dz1dz2dz3 D dz1dz2dz3: 3 ˇ 12 23 3 ˇ ˇ 0 p2 p1 ˇ 23 3 q p The Helmert random variable x WD z2 Cz2 or x D z2 C z2 replaces the random q 1 2 1 2 2 2 variable z1 C z2 as soon as we introduce polar coordinates z1 D r cos 1, z2 D r 2 2 2 sin 1, z1 C z2 D r DW x and compute the marginal pdf

Z2 1 1 2 1 1 1 dF.z3;x/D p exp z dz3 exp x dx d1; 2 2 3 2 2 2 0 by means of

dx x WD z2 C z2 D r2 ) dx D 2rdr; dr D ; 1 2 2r 1 dz dz D rdrd D dxd ; 1 2 1 2 1 1 1 1 1 2 dF.z3;x/D exp x p exp z dxdz3; 2 2 2 2 3 the joint pdf of x and z. Finally, we inject Student’s random variable

p b t WD 3 ; b decomposed into p 3 z3 D .b / ) b D p z3 3 q q p p b p z2 C z2 D x D 2 ) b D p z2 C z2 D p x 1 2 2 1 2 2

p z3 1 p 2 1 2 t D p 2 , z3 D p xt ) z D xt : x 2 3 2 698 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

Let us transform dF D f.x;z3/dxdz3 todF D f.t;x/dtdx. Alternatively we may say that we transform the joint pdf of the Helmert random variable x and the Gauss- Laplace normal variate z3 to the joint pdf of the Student random variable t and the Helmert random variable x. ˇ ˇ ˇ ˇ ˇ D z D z ˇ ˇ t 3 x 3 ˇ dz3dx D ˇ ˇ dtdx Dt xDxx ˇ p ˇ ˇ x ˇ ˇ p p1 x3=2t ˇ dz3dx D ˇ 2 2 2 ˇ dtdx ˇ 01ˇ p x dz3dx D p dtdx 2 dF D f.t;x/dtdx 1 1 p 1 t 2 f.t;x/ D p p x exp .1 C /x : 2 2 2 2 2

The marginal distribution of Student’s random variable t, namely dF3 D f3.t/dt, is generated by

Z1 1 1 p 1 t 2 f3.t/ WD p p x exp 1 C x dx 2 2 2 2 2 0 subject to the standard integral

Z1 .˛C 1/ 1 1 t 2 x˛ exp.ˇx/dx D ;˛D ;ˇD 1 C ˇ˛C1 2 2 2 0 such that Z1 p 1 t 2 .3 / x exp 1 C x dx D 23=2 2 2 2 t 2 3=2 .1 C 2 / 0 3 1p D 2 2 3 p1 1 f3.t/ D 2 ; 2 2 .1C t /3=2 p 2 2 dF3 D dt: t 2 3=2 4.1 C 2 /

Again Student’s t-distribution is reciprocal t.1C t2=2/3=2. B-5 Sampling from the Gauss–Laplace Normal Distribution: A Third Confidence 699

Lemma B.13. Student’s t-distribution for the derivate of the mean .b /=b (Gosset, 1908)):

0 Let the random vector of observations y D Œy1;:::;yn be Gauss-Laplace i.i.d. Student’s random variable

b p t WD n; b where the sample mean b is BLUUE of and the sample variance b 2 is BIQUUE of 2; associated to the pdf

pC1 . 2 / 1 1 f.t/ D p p : . / p t 2 .pC1/=2 2 .1 C p / p D n 1 is the “degree of freedom” of Student’sp distribution fp.t/. Gosset (1908) published the t-distribution of the ratio n.b /=b under the pseudonym “Student”: The probable error of a mean. Proof. p The joint probability distribution of the random variable zn WD n.b /= and 2 2 b2 2 the Helmert random variable x WD z1 CCzn1 D .n 1/ = represented by

dF D f1.zn/f2.x/dzndx

2 2 b b2 due to the effect that zn and z1 CCzn1 or and .n 1/ are stochastically independent. Let us take reference to the specific pdfs with n and n 1 D p degrees of freedom

dF1 D f1.zn/dzn and dF2 D f2.x/dx; p=2 1 1 2 1 1 .p2/=2 1 f1.zn/ D p exp zn and f2.x/ D p x exp x ; 2 2 .2 / 2 2 or

2 2 dF1 D f1.b/db and dF2 D f2.b /db ;

2 1 p=2 p2 p f2.b / D p b n n .b /2 p2p=2.p=2/ f1.b/ D p exp and 2 2 2 1 p exp b 2 2 2 we derived earlier. Here, let us introduce Student’s random variable 700 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

p p zn p b p x x t WD p n 1 D n or zn D p t D p t: x b n 1 p

By means of the Jacobi matrix J and its absolute Jacobi determinant jJj dt D tDt dz dz D zn x n D J n dx Dzn xDxx dx dx

2 p 3 p 1 3=2 p p p p x zn p 4 x 2 5 p 1 x J D ; jJjD p ; jJj D p 01 x p

1 we transform the surface element dzndx to the surface element jJj dtdx, namely p x dz dx D p dtdx: n p

Lemma B.14. (Gamma Function):

Our final action item is to calculate the marginal probability distributions dF3 D f3.t/dt of Student’s random variable t, namely

dF3 D f3.t/dt Z1 p=2 2 1 1 1 .p1/=2 1 t f3.t/ WD p x exp 1 C x dx: 2p .p=2/ 2 2 p 0

Consult (Grobner¨ and Hofreiter, 1973, p. 55), for the standard integral

Z1 ˛Š .˛C 1/ x˛ exp.ˇx/dx D D and ˇ˛C1 ˇ˛C1 0 Z1 1 t 2 .pC1 / x.p1/=2 exp 1 C x dx D 2.pC1/=2 2 ; 2 p .1 C t 2 /.pC1/=2 0 p where p D n 1 is the rank of the quadratic Helmert matrix Hn. Notice a result pC1 p1 of the gamma function . 2 / D . 2 /Š. In summary, substituting the standard integral B-5 Sampling from the Gauss–Laplace Normal Distribution: A Third Confidence 701

dF3 D f3.t/dt pC1 . 2 / 1 1 f3.t/ D p p . / p t 2 .pC1/=2 2 .1 C p / resulted in Student’s t distribution, namely the pdf of Student’s random variable .b /=b.

B-52 The Confidence Interval for the Mean, Variance Unknown

Lemma B.12 is the basis for the construction of the confidence interval of the “true” mean, variance unknown, which we summarize in Lemma B.13,ExampleB.17 contains all details for computing such a confidence interval, namely Table B.11, a collection of the most popular values of the coefficient of confidence, as well as Tables B.12, B.13 and B.14, listing the quantiles for the confidence interval of the Student random variable with p D n 1 degrees of freedom. Figures B.9 and B.10 illustrate the probability of two-sided confidence interval for the mean, variance unknown, and the limits of the confidence interval. Table B.15 as a flow chart paves the way for the “fast computation” of the confidence interval for the “true” mean, variance unknown.

Lemma B.15. (confidence interval for the sample mean, variance unknown): p The random variable t D n.b /=b characterized by the ratio of the deviate of the sample mean b D n110y, BLUUE of , from the “true” mean and the standard deviation b, b 2 D .y 1b/0.y 1b/=.n 1/ BIQUUE of the “true” variance 2,hastheStudent t-distribution with p D n 1 “degrees of freedom”. The “true” mean is an element of the two-sided confidence interval

b b 2b p c1˛=2; b C p c1˛=2Œ n n with confidence b b P b p c1˛=2 <

Example B.17. (confidence interval for the example mean b, 2 unknown):

Suppose that a random sample 2 3 2 3 y1 1:2 6 7 6 7 6 y2 7 6 3:4 7 2 4 5 D 4 5 ; b D 2:7; b D 5:2; b D 2:3 y3 0:6 y4 5:6 b of four observations is characterized byp the sample mean D 2:7 and the sample variance b 2 D 5:2. 2.2:7 /=2:3 D n.b /=b D t has Student’s pdf with p D n1 D 3 degrees of freedom. The probability D 1˛ that t will be between any two arbitrarily chosen numbers c1 Dc and c2 DCc is

Zc2

Pfc1

c1 ZCc Pfc

Zc ˛ 1 f.t/dt D 1 D .1 C /: 2 2 1 Three values of the coefficient of confidence or its complement ˛ are popular and listed in Table B.10. Table B.11 (Values of the coefficient of confidence):

0:950 0:990 0:999 ˛ 0:050 0:010 0:001 ˛ 2 0:025 0005 0:000; 5 ˛ 1C 1 2 D 2 0:975 0:995 0:999; 5 B-5 Sampling from the Gauss–Laplace Normal Distribution: A Third Confidence 703

In solving the linear Volterra integral equation of the first kind

Zt 1 1 f.t/dt D 1 ˛.t/ D Œ1 C .t/; 2 2 1 which depends on thep degrees of freedom p D n 1, Tables B.12–B.14 collect the quantiles c1˛=2= n given the coefficients of confidence or their complements which we listed in Table B.11. p Table B.12 (Quantiles c1˛=2= n for the confidence interval of the Student random variable with p D n 1 degrees of freedom):

1 ˛=2 D .1 C /=2 D 0:975; D 0:95; ˛ D 0:05

pnp1 c pnp1 c n 1˛=2 n 1˛=2 1 2 8:99 14 15 0:554 2 3 2:48 19 20 0:468 3 4 1:59 24 25 0:413 4 5 1:24 29 30 0:373 5 6 1:05 39 40 0:320 6 7 0:925 49 50 0:284 7 8 0:836 99 100 0:198 8 9 0:769 199 200 0:139 9 10 0:715 499 500 0:088

p Table B.13 (Quantiles c1˛=2= n for the confidence interval of the Student random variable with p D n 1 degrees of freedom):

1 ˛=2 D .1 C /=2 D 0:995; D 0:990; ˛ D 0:010

pnp1 c pnp1 c n 1˛=2 n 1˛=2 1 2 45:01 14 15 0:769 2 3 5:73 19 20 0:640 3 4 2:92 24 25 0:559 4 5 2:06 29 30 0:503 5 6 1:65 39 40 0:428 6 7 1:40 49 50 0:379 7 8 1:24 99 100 0:263 8 9 1:12 199 200 0:184 9 10 1:03 499 500 0:116 704 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

p Table B.14 (Quantiles c1˛=2= n for the confidence interval of the Student random variable with p D n 1 degrees of freedom):

1 ˛=2 D .1 C /=2 D 0:999:5; D 0:999; ˛ D 0:001 p p pn c1˛=2 c1˛=2= np nc1˛=2 c1˛=2= n 1 2 636:619 450:158 14 15 4:140 1:069 2 3 31:598 18:243 19 20 3:883 0:868 3 4 12:941 6:470 24 25 3:725 0:745 4 5 8:610 3:851 29 30 3:659 0:668 5 6 6:859 2:800 30 41 3:646 0:655 6 7 5:959 2:252 40 41 3:551 0:555 7 8 5:405 1:911 60 61 3:460 0:443 8 9 5:041 1:680 120 121 3:373 0:307 9 10 4:781 1:512 113:291 0 p Since Student’s pdf depends on p D n 1, we have tabulated c1˛=2= n for thep confidence interval we are going to construct. The Student’s random variable t D n.b /=b is solved for , evidently our motivation to introduce the confidence interval b1 <

p b b b t D n ) b D p t ) D b p t b n n b b b1 WD b p c1˛=2 <

The interval b1 <

Zc cZ1˛=2 ˛ f.t/dt D f.t/dt D 1 : 2 1 1 B-5 Sampling from the Gauss–Laplace Normal Distribution: A Third Confidence 705

Fig. B.9 Two-sided confidence interval 2b1;b2Œ, Student’s pdf for p D 3 degrees of freedom f(t)

.n D 4/b1 D g = 1–a p a /2 a /2 b bc = n, 1 ˛=2 p b2 D b Cbc1˛=2= n

− + c1−a /2 t c1−a /2

ˆ ˆ ˆ ˆ m – sc1−a /2 / n m + sc1−a /2 / n m mˆ1 mˆ2

Fig. B.10 Two-sided confidence interval for the “true” mean , quantile c1˛=2

Figures B.9 and B.10 illustrate the coefficient of confidence and the probability function of a confidence interval. Let us specify all the integrals to our example.

cZ1˛=2 f.t/dt D 1 ˛=2 1

cZ0:975 cZ0:995 cZ0:999;5 f.t/dt D 0:975; f.t/dt D 0:995; f.t/dt D0:999; 5: 1 1 1

These data substituted into Tables B.12–B.14 lead to the triplet of confidence intervals for the “true” mean.

case .a/ W D 0:95; ˛ D 0:05; 1 ˛=2 D 0:975 p p D 3; n D 4; c1˛=2= n D 1:59

Pf2:7 2:3 1:59 < < 2:7 C 2:3 1:59gD0:95

Pf0:957 < < 6:357gD0:95:

case .b/ W D 0:99; ˛ D 0:01; 1 ˛=2 D 0:995 p p D 3; n D 4; c1˛=2= n D 2:92 706 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

Pf2:7 2:3 2:92<<2:7C 2:3 2:92gD0:99

Pf4:016 < < 9:416gD0:99:

case .c/ W D 0:999; ˛ D 0:001; 1 ˛=2 D 0:999; 5

p p D 3; n D 4;c1˛=2= n D 6:470 Pf2:7 2:3 6:470 < < 2:7 C 2:3 6:470gD0:999

Pf12:181 < < 17:581gD0:999:

The results may be summarized as follows: With probability 95% the “true” mean is an element of the interval 0:957, C6:357Œ. In contrast, with probability 99% the “true” mean is an element of the larger interval 4:016, C9:416Œ. Finally, with probability 99.9is an element of the largest interval 12:181, C17:581Œ. If we compare the confidence intervals for the mean , 2 known,versus 2 unknown,we realize much larger intervals for the second model. Such a result is not too much a surprise, since the model “ 2 unknown” is much weaker than the model “ 2 known”.

Table B.15 (Flow chart: Confidence interval for the mean , 2 unknown):

g

Choose a coefficient of confidence g according toTable B11.

Solve the linear Volterra integral equation of the first kind = − = + F(c1−a /2) 1 a /2 (1 g ) / 2 by Table B12, Table B13 or Table B14 for a Student pdf with p = n−1 degrees of freedom: read c1−α /2/ n.

Compute the sample mean mˆ and the sample standard deviation sˆ.

ˆˆˆˆˆ− + Compute sc1−a /2/ n and m sc1−a /2/ n, m sc1−a /2/ n. B-5 Sampling from the Gauss–Laplace Normal Distribution: A Third Confidence 707

B-53 The Uncertainty Principle

Figure B.11 is the graph of the function p .nI ˛/ WD 2bc1˛=2= n; where is the length of the confidence interval of the “true” mean ; 2 unknown. The independent variable of the function is the number of observations n. The function .nI ˛/ is plotted for fixed values of the coefficient of comple- mentary confidence ˛, namely ˛ D 10%;5%;1%: For reasons given later the coefficient of complementary confidence ˛ is called uncertainty number. The graph function .nI ˛/ illustrates two important facts. Fact #1: For a constant uncertainty number ˛, the length of the confidence interval is smaller the larger the number of observations n is chosen. Fact #2: For a constant number of observations n, the smaller the number of uncertainly ˛ is chosen, the larger is the confidence interval . Evidently, the diversive influences of (a) the length of the confidence interval ; (b) the uncertainly number ˛ and (c) the number of observations n, which we collected in The Magic Triangle of Figure B.12, constitute The Uncertainly Principle,informula

.n 1/ W k˛;

Fig. B.11 Length of the confidence interval for the mean against the number of observations 708 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

length of the confidence interval

uncertainty number a number of observations n

Fig. B.12 The Magic Triangle, constituents: (a) uncertainty number ˛ (b), number of observations n, (c) length of the confidence interval

where k˛ is called the quantum number for the mean which depends on the uncertainty number ˛. Table B.15.2 is a list of those quantum numbers. Let us interpret the uncertainty relation .n 1/ k˛. The product .n 1/ defines geometrically a hyperbola which we approximated out of the graph of Fig. B.12. Given the uncertainty number ˛, the product .n 1/ has a smallest number, here denoted by k˛. For instance, choose ˛ D 1% such that k˛=.n 1/ or 16:4=.n1/ . For n taken values 2, 11, 101, we get the inequalities 8:2 , 1:64 , 0:164 . Table B.15.2 (Coefficient of complementary confidence ˛, uncertainty number ˛, versus quantum number of the mean k˛ (Grafarend, 1970)):

˛k˛ 10% 6:6 5% 9:6 1% 16:4 ! 0 !1

B-6 Sampling from the GaussÐLaplace Normal Distribution: A Fourth Confidence Interval for the Variance

Theorem B.10 already supplied us with the sampling distribution of the sample variance, namely with the probability density function f.x/ of Helmert’s random variable x D .n 1/b 2=2 of Gauss-Laplace i.i.d. observations n of sample vari- ance b 2, BIQUUE of 2. B61 introduces accordingly the so far missing confidence interval for the “true” variance 2. Lemma B.15 contains the details, followed by Example B.16. Tables B.17–B.19 contain the properly chosen coefficients of complementary confidence and their quantiles

c1.pI ˛=2/; c2.pI 1 ˛=2/; B-6 Sampling from the Gauss–Laplace Normal Distribution: A Fourth 709 dependent on the “degrees of freedom” p D n 1. Table B.20 as a flow chart summarizes various steps in computing a confidence interval for the variance 2. B62 reviews The Uncertainty Principle which is built on (a) the coefficient of complementary confidence ˛, also called uncertainty number, (b) the number of observations n and (c) the length 2.nI ˛/ of the confidence interval for the “true” variance 2.

B-61 The Confidence Interval for the Variance

Lemma B.15 summaries the construction of a two-sided confidence interval for the “true” variance based upon Helmert’s Chi Square distribution of the random variable .n1/b 2=2 where b 2 is BIQUUE of 2.ExampleB.18 introduces a random sample of size n D 100 with an empirical variance b 2 D 20:6. Based upon coefficients of confidence and complementary confidence given in Table B.14, related confidence intervals are computed. The associated quantiles for Helmert’s Chi Square distribution are tabulated in Table B.15 . D 0:95/,TableB.18 . D 0:99/ and Table B.19 . D 0:998/: Finally, Table B.20 as a flow chart pares the way for the “fast computation” of the confidence interval for the “true” variance 2.

Lemma B.16. (confidence interval for the variance):

The random variable x D .n 1/b 2=2, also called Helmert’s 2, characterized by the ration of the sample variance b 2 BIQUUE of 2,andthe“true” variance 2 2 ,hasthe' pdf of p D n 1 degrees of freedom, if the random observations 2 yi ;i 2f1;:::ng are Gauss-Laplace i.i.d.The“true” variance is an element of the two-sided confidence interval

.n 1/b 2 .n 1/b 2 2 2 ; Œ c2.pI 1 ˛=2/ c1.pI ˛=2/ with confidence .n 1/b 2 .n 1/b 2 P <2 < D 1 ˛ D c2.pI 1 ˛=2/ c1.pI ˛=2/ of level 1 ˛. Tables D.8, D.18 and D.16 list the quantiles c1.pI 1 ˛=2/ and c2.pI ˛=2/ associated to three values of Table B.19 of the coefficient of complementary confidence 1 ˛. In order to make yourself more familiar with Helmert’s Chi Square distribution we recommend to solve the problems of Exercise B.1. 710 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

2 Exercise B.1. (Helmert’s Chi Square ' distribution):

Helmert’s random variable x WD .n 1/b 2=2 D pb 2=2 has the non-symmetric 2 ' pdf. Prove that the first four central moments are,

(a) 1 D 0,EfxgD D p 2 (b) 2 D x D 2p p 3=2 1=4 2 2 (c) 3 D .2p/ .8=p/ (coefficient of skewness 3 =2 D 8=p/ 4 2 (d) 4 D 6 .1 C 2p/ (coefficient of curtosis 4=2 3 D 3 C 12=p/. Guide 3 p EfxgD Efb 2g .a/ 2 5 ) EfxgDp Efb 2gD 2.unbiasedness/ 3 2 2 b2 4 4 Df gD D 7 n 1 p 7 .b/ 5 ) DfxgD2p: p2 DfxgD Dfb 2g 4 Example B.18. (confidence interval for the sample variance b 2):

Suppose that a random sample .y1;:::yn/ 2 Y of size n D 100 has led to an empirical variance b 2 D 20:6. xD .n1/b 2=2 or 99 20:6=2 D 2039:4=2 has Helmert’s pdf with p D n 1 D 99 degrees of freedom. The probability D 1 ˛ that x will be between c1.pI ˛=2/ and c2.pI 1 ˛=2/ is

Zc2

Pfc1.pI ˛=2/ < x < c2.pI 1 ˛=2/gD f.x/dx D D 1 ˛

c1

Zc2 Zc1

Pfc1.pI ˛=2/ < x < c2.pI 1 ˛=2/gD f.x/dx f.x/dx D D 1 ˛ 0 0

Zc2

f.x/dx D F.c2/ D 1 ˛=2 D .1 C /=2; 0

Zc1

f.x/dx D F.c1/ D ˛=2 D .1 /=2 0

Pfc1.pI ˛=2/ < x < c2.pI 1 ˛=2/gDF.c2/ F.c1/ D .1 C /=2 .1 /=2D b 2 c .pI ˛=2/

1 2 1 .n 1/b 2 .n 1/b 2 < < , <2 < 2 c2 .n 1/b c1 c2 c1 .n 1/b 2 .n 1/b 2 P <2 < D 1 ˛ D : c2.pI 1 ˛=2/ c1.pI ˛=2/

Since Helmert’s pdf f.xI p/ is now-symmetric there arises the question how to distribute the confidence or the complementary confidence ˛ D 1 on the confidence interval limits c1 and c2, respectively. If we setup F.c1/ D ˛=2,wedefine a cumulative probability half of the complementary confidence. If F.c2/ F.c1/ D Pfc1.pI ˛=2/ < x < c2.pI 1 ˛=2/gD1 ˛ D is the cumulative probability contained in the interval c1

Zc1 Zc2 f.x/dx D ˛=2 and f.x/dx D 1 ˛=2;

0 0 dependent on the degree of freedom p D n 1 of Helmert’s pdf f.x;p/. As soon as we have established the confidence interval c1.pI ˛=2/ < x < c2.pI 1 ˛=2/ for Helmert’s random variable x D .n1/b 2=2 D pb 2=2, we are left with the problem of how to generate a confidence interval for the “true” variance 2,the b2 1 1 1 sample variance given. If we take the reciprocal interval c2

Table B.16 (Values of the coefficient of confidence ,c1.pI ˛=2/ and c2.pI 1 ˛=2/):

˛ 0:950 0:990 0:998 ˛=2 0:050 0:010 0:002 ˛=2 0:025 0:005 0:001 1 ˛=2 0:975 0:995 0:999 712 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

In solving the linear Volterra integral equations of the first kind

Zc1 Zc2

f.x/dx D F.c1/ D ˛=2 and f.x/dx DF.c2/ D 1 ˛=2; 0 0 which depend on the degrees of freedom p D n 1, Tables B.17–B.19 collect the quantiles c1.pI ˛=2/ and c2.pI 1 ˛=2/ for given values p and ˛.

Table B.17 (Quantiles c1.pI ˛=2/, c2.pI 1 ˛=2/ for the confidence interval of the Helmert random variable with p D n 1 degrees of freedom):

˛=2 D 0:025; 1 ˛=2 D 0:975; ˛ D 0:05; D 0:95

pnc1.pI ˛=2/ c2.pI 1 ˛=2/ p n c1.pI ˛=2/ c2.pI 1 ˛=2/ 1 2 0:000 5:02 14 15 5:63 26:1 2 3 0:506 7:38 19 20 8:91 32:9 3 4 0:216 9:35 24 25 12:4 39:4 4 5 0:484 11:1 29 30 16:0 45:7 5 6 0:831 12:8 39 40 23:7 58:1 6 7 1:24 14:4 49 50 31:6 70:2 7 8 1:69 16:0 99 100 73:4 128 8 9 2:18 17:5 9 10 2:70 19:0

Table B.18 (Quantiles c1.pI ˛=2/, c2.pI 1 ˛=2/ for the confidence interval of the Helmert random variable with p D n 1 degrees of freedom):

˛=2 D 0:005; 1 ˛=2 D 0:995; ˛ D 0:01; D 0:99

pnc1.pI ˛=2/ c2.pI 1 ˛=2/ p n c1.pI ˛=2/ c2.pI 1 ˛=2/ 1 2 0:000 7:88 8 9 1:34 22:0 2 3 0:010 9 10 1:73 23:6 3 4 0:072 4 5 0:207 14 15 4:07 31:3 19 20 6:84 38:6 5 6 0:412 24 25 9:89 45:6 6 7 0:676 29 30 13:1 52:3 7 8 0:989 39 40 20 65:5 49 50 27:2 78:2 99 100 66:5 139 B-6 Sampling from the Gauss–Laplace Normal Distribution: A Fourth 713

0.5

f(x)

− 0 c1(p;a /2) c2 (p;1 a /2)

2 2 2 Fig. B.13 Two-sided confidence interval 2p =c2;p =c1Œ Helmert’s pdf, f(x)

Table B.19 (Quantiles c1.pI ˛=2/, c2.pI 1 ˛=2/ for the confidence interval of the Helmert random variable with p D n 1 degrees of freedom):

˛=2 D 0:001; 1 ˛=2 D 0:999; ˛ D 0:002; D 0:998

pnc1.pI ˛=2/ c2.pI 1 ˛=2/ p n c1.pI ˛=2/ c2.pI 1 ˛=2/ 1 2 0:00 10:83 9 10 1:15 27:88 2 3 0:00 13:82 14 15 3:04 36:12 3 4 0:02 16:27 19 20 5:41 43:82 4 5 0:09 18:47 24 25 8:1 51:2 5 6 0:21 20:52 29 30 11:0 58:3 6 7 0:38 22:46 50 51 24:7 86:7 7 8 0:60 24:32 70 71 39:0 112:3 8 9 0:86 26:13 99 100 60:3 147:4 100 101 61:9 149:4

Those data collected in Tables B.17–B.19 lead to the triplet of confidence intervals for the “true” variance

case .a/ W D 0:95; ˛ D 0:05; ˛=2 D 0:025; 1 ˛=2 D 0:975

p D 99; n D 100; c1.pI ˛=2/ D 73:4; c2.pI 1 ˛=2/ D 128 99 20:6 99 20:6 P <2 < D 0:95 128 73:4

Pf15:9 < 2 <27:8gD0:95: 714 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

2 Fig. B.14 Two-sided confidence interval for the “true” variance , quantiles c1.pI ˛=2/ and c2.pI 1 ˛=2/

case .b/ W D 0:99; ˛ D 0:01; ˛=2 D 0:005; 1 ˛=2 D 0:995

p D 99; n D 100; c1.pI ˛=2/ D 66:5; c2.pI 1 ˛=2/ D 139 99 20:6 99 20:6 P <2 < D 0:99 139 66:5

Pf14:7 < 2 < 30:7gD0:99:

case .c/ W D 0:998; ˛ D 0:002; ˛=2 D 0:001; 1 ˛=2 D 0:999

p D 99; n D 100; c1.pI ˛=2/ D 60:3; c2.pI 1 ˛=2/ D 147:3 99 20:6 99 20:6 P <2 < D 0:996 147:3 60:3

Pf13:8 < 2 < 33:8gD0:998:

The results can be summarized as follows. With probability 95%, the “true” variance 2 is an element of the interval [15.9, 27.8]. In contrast, with probability 99%, the “true” variance is an element of the larger interval [14.7, 30.7]. Finally, with probability 99.8% the “true” variance is an element of the largest interval [13.8, 33.8]. If we compare the confidence intervals for the variance 2, we realize much larger intervals for smaller complementary confidence namely 5%, 1% and 0.2%. Such a result is subject of The Uncertainty Principle. B-6 Sampling from the Gauss–Laplace Normal Distribution: A Fourth 715

Table B.20 (Flow chart – confidence interval for the variance 2):

Choose a coefficient of confidence g according to Table B16.

Solve thelinear Volterra integral equation of the first kind − − − F(c1(p;a /2)) – a / 2, F(c2(p;1 a /2)) 1 a /2 by Table B17, Table B18 or Table B19 for a Helmert pdf with p = n−1 degrees of freedom.

Compute the sample variance sˆ 2and the quantiles (n−1)sˆ 2 (n−1)sˆ 2 s2 ∈ ] [ . c2(p;a /2) c1(p;a /2)

B-62 The Uncertainty Principle

Figure B.15 is the graph of the function 1 1 2.nI ˛/ WD .n 1/b 2 ; c1.n 1I ˛=2/ c2.n 1I 1 ˛=2/ where 2 is the length of the confidence interval of the “true” variance 2. The independent variable of the functions is the number of observations n.The function 2.nI ˛/ is plotted for fixed values of the coefficient of complementary confidence ˛, namely ˛ D 5%, 1%, 0.2%. For reasons given later on the coefficient of complementary confidence ˛ is called uncertainty number. The graph of the function 2.nI ˛/ illustrates two important facts.

• Fact #1: For a contrast uncertainty number ˛; the length of the confidence interval 2 is smaller, the larger number of observations n is chosen. • Fact #2: For a contrast number of observations n, the smaller the number of uncertainty ˛ is chosen, the larger is the confidence interval 2.

Evidently, the divisive influences of (a) the length of the confidence interval 2, (b) the uncertainty number ˛ and (c) the number of observations n, which we collect in The Magic Triangle of Fig. B.16, constitute The Uncertainty Principle, formulated by the inequality

2 .n 1/ k 2˛; 716 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

Fig. B.15 Length of the confidence interval for the variance against the number of observations

length of the confidence interval

uncertainty number a number of observations n

Fig. B.16 The magic triangle, constituents: (a) uncertainty number ˛ (b), number of observations n, (c) length of the confidence interval 2

2 where k 2˛ is called quantum number for the variance . The quantum number depends on the uncertainty number ˛. Let us interpret the uncertainty relation 2 2 .n 1/ k 2˛. The product .n 1/ defines geometrically a hyperbola which we approximated to the graph of Fig. B.15. Given the uncertainty number 2 ˛, the product .n 1/ has a smallest number denoted by k 2˛.Forinstance, 2 2 choose ˛ D 1% such that k 2˛=.n 1/ or 42=.n 1/ .Forthe number of observations n, for instance n D 2; 11; 101,wefindtheinequalities 42 2;4:2 2;0:42 2. Table B.21 (Coefficient of complementary confidence ˛, uncertainty number ˛, versus quantum number of the mean k 2˛ (Grafarend, 1970):

˛k 2˛ 10% 19:5 5% 25:9 1% 42:0 ! 0 !1

At the end, pay attention to the quantum numbers k 2˛ listed in Table B.21. B-7 Sampling from the Multidimensional Gauss–Laplace Normal Distribution 717

B-7 Sampling from the Multidimensional GaussÐLaplace Normal Distribution: The Confidence Region for the Fixed Parameters in the Linear GaussÐMarkov Model

Example B.19. (special linear Gauss–Markov model, marginal probability distributions):

For a simple linear Gauss–Markov model EfygDA, A 2 Rnm,rkA D m, namely n D 3, m D 2, DfygDI 2 of Gauss-Laplace i.i.d. observations,weare going to compute • The sample pdf of b BLUUE of • The sample pdf of b 2 BIQUUE of 2. We follow the action within seven items. First, we identify the pdf of Gauss-Laplace i.i.d. observations y 2 Rn. Second, we review the estimations of b BLUUE of as well as b 2 BIQUUE of 2. Third, we decompose the Euclidean norm of the observation space ky Efygk2 into the Euclidean norms ky Abk2 and kb k2. Fourth, we present the eigenspace A0A analysis and the eigenspace synthesis of the 0 1 0 0 associated matrices M WD In A.A A/ A and N WD A A within the Eulidean 2 0 b 2 b 0 b norms ky A k D y My and k kA0A D . / N. /, respectively. The eigenspace representation leads us to canonical random variables .z1;:::;znm/ 2 0 relating to the norm ky Ak D y My and .znmC1;:::;zn/ relating to the norm b 2 k kN which are standard Gauss-Laplace normal. Fifth, we derive the cumulative probability of Helmert’s random variable x WD .n rkA/b 2=2 D .n m/b 2=2 and of the unknown parameter vector b BLUUE of or its canonical counterpartb BLUUE of , multivariate Gauss-Laplace normal. Action six generates the marginal pdf of b or b, both BLUUE of or , respectively. Finally, action seven leads us to 2 Helmert’s Chi Square distribution p with p D n rkA D n m (here: n m D 1) “degrees of freedom”. The first action item Let us assume an experiment of three Gauss-Laplace i.i.d. observations 0 Œy1;y2;y3 D y which constitute the coordinates of the observation space Y, dim The observationsyi, i 2f1; 2; 3g are related to a parameter space with coordinates Œ1;2 D in the sense to generate a straight line yfkgD1 C 2k. The fixed effects j ;j 2f1; 2g, define geometrically a straight line, statistically a special linear Gauss–Markov model of one variance component, namely 718 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

the first moment 82 39 2 3 2 3 < y1 = 1k1 10 4 5 4 5 1 4 5 1 EfygDA E y2 D 1k2 D 11 ; rkA D 2: : ; 2 2 y3 1k3 12

The central second moment 82 39 2 3 < y1 = 100 2 4 5 4 5 2 2 DfygDIn DfygDD : y2 ; D 010 ;<0: y3 001 k represents the abscissa as a fixed random, y the ordinate as the observation, naturally a random effect. Samples of the straight line are taken at k1 D 0, k2 D 1, k3 D 2, this calling for y.k1/ D y.0/ D y1, y.k2/ D y.1/ D y2, y.k3/ D y.2/ D y3, respectively. Efyg is a consistent equation. Alternatively, we may say Efyg2R.A/. The matrix A 2 R32 is rank deficient by p D nrkA D 1, also called “degree of freedom”. The dispersion matrix Dfyg, the central moment of second order, is represented as a linear model, too, namely by one-variance component 2. The joint probability function of the three Gauss-Laplace i.i.d. observations

dF D f.y1;y2;y3/dy1dy2dy3 D f.y1/f .y2/f .y3/dy1dy2dy3 1 f.y ;y ;y / D .2/3=2 3 exp .y Efyg/0.y Efyg/ 1 2 3 22 will be transformed by means of the special linear Gauss–Markov model with one- variance component. The second action item For such a transformation, we need b BLUUE of and b 2 BIQUUE 2. 2 b D .A0A/1A0y; 6 6 6 33 1 5 3 6 A0A D ;.A0A/1 D ; b 6 BLUUE of W 6 35 2 3 6 33 6 y 6 1 521 1 4b D 4 y 5 ; 6 30 3 2 y3 2 1 b2 0 6 D .y A / .y A / 6 n rkA 6 2 2 6 1 b BIQUUE of W 6 D y0.I A.A0A/1A0/y; 6 n rkA n 4 1 b 2 D .y2 4y y C 2y y C 4y2 4y y C y2/: 6 1 1 2 1 3 2 2 3 3 B-7 Sampling from the Multidimensional Gauss–Laplace Normal Distribution 719

The third action item The quadratic form .y Efyg/0.y Efyg/ allows the fundamental decomposition

y EfygDy A D y A C A.b / .y Efyg/0.y Efyg/ D .y A/0.y A/ D .y A/0.y A/ C .b /0A0A.b /

.y Efyg/0.y Efyg/ D .n rkA/b 2 C .b /0A0A.b / 33 .y Efyg/0.y Efyg/ D b 2 C .b /0 .b /: 35

The fourth action item In order to bring the quadratic form .y Efyg/0.y Efyg/ D .n rkA/b 2C C.b /0A0A.b / into a canonical form, we introduce the generalised forward and backward Helmert transformation

0 HH D In z D 1H.y Efyg/ D 1H.y A/ and y EfygDH0z

.y Efyg/0.y Efyg/ D 2z0HH0z D 2z0z

1 .y Efyg/0.y Efyg/ D z0z D z2 C z2 C z2: 2 1 2 3

How to relate the sample variance b 2 and the sample quadratic form .b /0A0A.b / to the canonical quadratic form z0z? Previously, for the example of direct observations in the special linear Gauss– 2 2 2 Markov model EfygD1, DfygDIn we succeeded to relate z1 CCzn1 b2 2 b 2 b2 2 to and zn to . / . Here the sample variance , BIQUUE , as well as the quadratic form of the deviate of the sample parameter vector b from the “true” parameter vector have been represented by

1 1 b 2 D .y A/0.y A/ D y0ŒI A.A0A/1A0y n rkA n rkA n 0 1 0 rkŒIn A.A A/ A D n rkA D n m D 1 versus .b /0A0A.b /; rk.A0A/ D rkA D m: 720 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

The eigenspace of the matrices M and N, namely

0 1 0 M WD In A.A A/ A and N WD A A 2 3 1 21 1 33 D 4 242 5 D ; 6 35 1 21 will be analyzed.

The eigenspace analysis of the The eigenspace analysis of the

matrix M j 2f1;:::;ng matrices N; N1i2f1;:::;mg 0 0 V MV" # U NU D Diag.1;:::;m/ D N 0 V 1 0 1 D 0 M ŒV1; V2 U N U D Diag.1;:::;m/ D N 1 V 2 1 1 1 D ;:::;m D 1 m D Diag. ;:::; ;0;:::;0/D 1 n m M 1 1 1 D ;:::;m D 1 m rkM D n m rkN D rkN1 D m

Orthonormality of the eigencolumns Orthonormality of the eigencolumns

0 0 V 1V1 D Inm; V 2V2 D Im

0 .nm/m V 1V2 D 0 2 R 0 2 3 2 3 U U D Im 0 h i 4 V 1 5 4 Inm 0 5 V V D 0 1 2 V 2 0 Im

0 0 v1v1 D 1 u1u1 D 1 0 0 v1v2 D 0 u1u2 D 0 ::: ::: 0 0 vn1vn D 0 um1um D 0 0 0 vnvn D 1 umum D 1

V 2 SO.n/ W eigencolumns W U 2 SO.m/ W eigencolumns W .M j In/vj D 0 .N j In/uj D 0 eigenvalues eigenvalues jM j InjD0 jN i ImjD0 in particular B-7 Sampling from the Multidimensional Gauss–Laplace Normal Distribution 721

eigenspace analysis of the matrix M; eigenspace analysis of the matrix N; rkM D n m; M 2 R33; A 2 R32;rkM D 1 rkN D m; N 2 R22; rkN D 2 D Diag.1;0;0/ M2 3 N D"Diag.0:8377; 7:1623/# 6 0:4082 0:7024 0:5830 7 6 7 0:8112 0:5847 V D ŒV1; V2 D 4 0:8165 0:5667 0:1109 5 U D 0:5847 0:8112 0:4082 0:4307 0:8049 U 2 R22 31 32 V1 2 R V2 2 R to be completed by

eigenspace synthesis of the matrix M 0 M D V MV" # eigenspace synthesis of the matrix N; N 1 0 0 1 0 V N D U U ; N D U 1 U 1 N N M D ŒV1; V2 M 0 V 2 " # 0 0 V 1 N D U Diag.1;:::;m/U D ŒV1; V2 Diag.1;:::;n m;0;:::;0/ 0 0 V 2 N 1 D U Diag.1;:::;m/U 0 M D V1 Diag.1;:::;nm/V 1 in particular " #" # 2 3 0:8112 0:5847 1 0 0:4082 h i 6 7 " 0:5847 0:8112 # 02 M D 4 0:8165 5 1 0:4082 0:8165 0:4082 N D 0:8112 0:5847 0:4082 0:5847 0:8112

1 D 1 versus 1 D 0:8377; 2 D 7:1623

0:8112 0:5847 0 0:8112 0:5847 N1 D 1 0:5847 0:8112 02 0:5847 0:8112 1 1 1 D 1 versus 1 D 1 D 1:1937; 2 D 2 D 0:1396:

The non-vanishing eigenvalues of the matrix M have been denoted by .1;:::;nm/, m eigenvalues are zero such that eigen, 0;:::;0/. The eigenvalues of the regular matrix N span eigen .N/ D .1;:::;m/. Since the dispersion matrix DfbgD.A0A/1 2 D N1 2 is generated by the inverse of the matrix A0A D N, we have computed, in addition, the eigenvalues of the matrix N1 by means of 1 1 eigen.N / D .1;:::;m/. The eigenvalues of N and N , respectively, are related by

1 1 1 1 1 D 1 ;:::;m D m or 1 D 1 ;:::;m D m : 722 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

In the example, the matrix M had only one non-vanishing eigenvalue 1 D 1.In contrast, the regular matrix N was characterized by two eigenvalues 1 D 0:8377 1 and 2 D 7:1623, its inverse matrix N by 1 D 1:1937 and 2 D 0:1396. The two quadratic forms, namely

0 0 0 b 0 b b 0 0 b y My D y VMV y versus . / N. / D . / UMU . /; build up the original quadratic form

1 1 1 .y Efyg/0.y Efyg/ D y0My C .b /0N.b / 2 2 2 1 1 D y0V V0y C .b /0U U0.b / 2 M 2 N in terms of the canonical random variables

V0y D y , y D Vy and U0.b / D b such that 1 1 1 .y Efyg/0.y Efyg/ D .y/0 y C .b / .b / 2 2 M 2 N 1 1 nXm 1 Xm .y Efyg/0.y Efyg/ D .y/2 C .b /2 2 2 j j 2 i i i j D1 iD1 1 .y Efyg/0.y Efyg/ D z2 CCz2 C z2 CCz2 : 2 1 nm nmC1 n

The quadratic form z0z splits up into two terms, namely

2 2 2 2 z1 CCznm znmC1 CCzn nXm and Xm 1 2 1 2 D .y / j D .b / 2 j 2 i i j j D1 iD1 here

1 b 2 z2 D y2 D and 1 2 1 2 1 z2 C z2 D Œ.b /2 C .b /2 ; or 2 3 2 1 1 1 2 2 2 1 z2 D .y2 4y y C 2y y C 4y2 4y y C y2/ and 1 62 1 1 2 1 3 2 2 3 3 B-7 Sampling from the Multidimensional Gauss–Laplace Normal Distribution 723 1 1 33 z2 C z2 D Œ0:8377.b /2 C 7:1623.b /2 D .b /0 .b /: 2 3 2 1 1 2 2 2 35

The fifth action item

We are left with the problem to transform the cumulative probability dF D f.y1;y2; y3/dy1dy2dy3 into the canonical form dF D f.z1; z2; z3/dz1dz2dz3. Here we take 2 advantage of Corollary B.3. First, we introduce Helmert’s random variable x WD z1 b b b and the random variables 1 and 2 of the unknown parameter vector of fixed b 0 0 b 2 2 2 0 effects . / A A. / D z2 C z3 DkzkA0A if we denote z WD Œz2; z3 . p p 0 b b b b dz1dz2 D det A A d1d2 D 6d1d2; according to Corollary B.3 is special representation of the surface element by means of the matrix of the metric A0A. In summary, the volume element

p dx 0 b b dz1dz2dz3 D p det A A d1d2 x leads to the first canonical representation of the cumulative probability 0 1=2 1 1 dx jA Aj 1 b 0 0 b b b dF D p exp x p exp . / A A. / d1d2: 2 2 x 22 22

2 b2 2 2 b2 The left pdf establishes Helmert’s pdf of x D z1 D = , dx D d .In contrast, the right pdf characterizes the bivariate Gauss-Laplace pdf of kb k2. Unfortunately, the bivariate Gauss-Laplace A0A normal pdf is not given in the b 2 canonical form. Therefore, second we do correlate k kA0A by means of eigenspace synthesis. 0 0 0 1 1 0 A A D UA0AU D U Diag.1;2/U D U Diag ; U 1 2 1 1 b 2 b 0 0 b b 0 0 b k kA0A WD . / A A. / D . / U Diag ; U . / 1 2

0 1=2 p 1 jA Aj D 12 D p 12 b WD U0.b / , b D U.b / 1 1 b 2 b 0 b b 2 k kA0A D . / Diag ; . / Dk kD 1 2 724 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

b 2 b 0 33 b k kA0A D . / . / 2 35 3 1 6 0 7 D .b /0 4 1:1937 5 .b / Dkb k2 : 1 D 0 0:1396

By means of the canonical variables b D U0b we derive the cumulative probability 1 1 1 1 dF D p p exp x dx p 2 2 x 2 2 12 1 .b /2 .b /2 1 1 C 2 2 db db or exp 2 1 2 2 1 2

dF D f.x/f.b1/f .b2/dxdb1db2:

Third, we prepare ourselves for the cumulative probability dF D f.z1; z2; z3/dz1 dz2dz3. We depart from the representation of the volume element p dx 0 b b dz1dz2dz3 D p det A Ad1d2 2 x subject to

1 1 x D z2 D b 2 D y0My 1 2 2 b D .A0A/1A0y:

The Helmert random variable is a quadratic form of the coordinates .y1;y2;y3/ of the observation vector y. In contrast, b BLUUE of is a of the coordinates .y1;y2;y3/ of observation vector y. The transformation of the volume element b b dxd1d2 DjJxjdy1dy2dy3 is based upon the Jacobi matrix Jx.y1;y2;y3/ 2 3 " # D1xD2xD3x 6 7 a0 1 3 J D 4 b b b 5 D x D11 D21 D31 0 1 0 b b b .A A/ A 2 3 D12 D22 D32 B-7 Sampling from the Multidimensional Gauss–Laplace Normal Distribution 725 2 3 2 3 D x y 2y C y 1 2 1 1 2 3 a D 4 D x 5 D My D 4 2y C 4y 2y 5 2 2 32 1 2 3 D3x y1 2y2 C y3

1 1 x D y0My D .y2 4y y C 2y y C 4y2 4y y C y2/ 2 62 1 1 2 1 3 2 2 3 3 1 521 .A0A/1A0 D 6 30 3 2 3 2y 4y C 2y 4y C 8y 4y 2y 4y C 2y 1 1 2 3 1 2 3 1 2 3 J D 4 521 5 x 62 30 3 p 0 1 0 0 0 1 0 det Jx D det.A A/ detŒa a a A.A A/ A a p detŒa0a a0A.A0A/1A0a det Jx D p det.A0A/

4 4 a0a D y0M0My D y0My 4 4 4 a0A.A0A/1A0a D y0M0A.A0A/1A0My 4 4 D y0ŒI A.A0A/1A0A.A0A/1A0ŒI A.A0A/1A0y D 0 4 3 3 p 2 y0My det Jx D p 2 det.A0A/ p 2 0 1 det.A A/ j det JyjDjdet Jxj D p : 2 y0My

The various representations of the Jacobian will finally lead us to the special form of the volume element p 1 1 y0My dx db db D dy dy dy 2 1 2 2 jA0Aj1=2 1 2 3 and the cumulative probability 726 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

1 1 dF D exp .z2 C z2 C z2/ dz dz dz 3.2/3=2 2 1 2 3 1 2 3 0 1=2 1 1 dx jA Aj 1 b 0 0 b b b D p exp x p exp . / A A. / d1d2 2 2 x 22 22 1 1 D exp .y Efyg/0.y Efyg/ dy dy dy : 3.2/3=2 2 1 2 3

The sixth action item

The first target is to generate the marginal pdf of the unknown parameter vector b, BLUUE of .

Z1 0 1=2 1 1 dx jA Aj 1 b 0 0 b b b dF1 D p exp x p exp . / A A. / d1d2 2 2 x 22 22 0 Z1 ! 1 1 dx 1 1 X2 .b /2 dF D p exp x p p exp i i db db 1 2 2 1 2 2 2 x 2 12 2 i 0 iD1

Let us substitute the standard integral

Z1 1 1 dx p exp x p D 1; 2 2 x 0 in order to have derived the marginal probability

b 0 1 2 b b dF1 D f1.j;.A A/ /d1d2 jA0Aj1=2 1 f .b/ WD exp .b /0A0A.b / 1 22 22 b 2 b b dF1 D f1. j ; N1 /d1d2 ! 1 1 1 X2 .b /2 f .b/ D p exp i i : 1 22 2 12 iD1 i

The seventh action item The second target is to generate the marginal pdf of Helmert’s random variable b2 2 b2 2 2 x WD = , BIQUUE , namely Helmert’s Chi Square pdf p with p D n rkA (here p D 1)“degree of freedom”. B-7 Sampling from the Multidimensional Gauss–Laplace Normal Distribution 727

ZC1 ZC1 0 1=2 1 1 dx jA Aj 1 b 2 b b dF2 D p exp x p exp k k 0 d1d2: 2 2 x 22 22 A A 1 1

Let us substitute the integral

ZC1 ZC1 0 1=2 jA Aj 1 b 2 b b exp k k 0 d d D 1 22 22 A A 1 2 1 1 in order to have derived the marginal distribution

dF2 D f2.x/dx; 0 x 1 1 p2 1 f .x/ D x 2 exp x ; subject to 2 2p=2.p=2/ 2 1 p p D n rkA D n m; here W p D 1; D 2 1 1 1 f2.x/ D p p exp x : 2 x 2

The results of the example will be generalized in Lemma B.

Theorem B.11. (marginal probability distributions, special linear Gauss- Markov model):

" EfygDA A 2 Rnm; rkA D m; Efyg2R.A/ subject to 2 2 C DfygDIn 2 R defines a special linear Gauss–Markov model of fixed effects 2 Rm and 2 2 RC 0 based upon Gauss-Laplace i.i.d. observations y WD Œy1;:::;yn . " EfbgD b D .A0A/1A0y subject to DfbgD.A0A/1 2 and 2 Efb 2gDb 2 2 1 0 4 b D .y A/ .y A/ subject to 24 n rkA Dfb 2gD n rkA 728 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions identify b BLUUE and b 2 BIQUUE of 2.Thecumulative pdf of the multidi- mensional Gauss-Laplace probability distribution of the observation vector y D 0 Œy1;:::;yn 2 Y

2 f.yjEfyg;DfygDIn /dy1 dyn 1 1 D exp .y Efyg/0.y Efyg/ dy dy .2/n=2 n 22 1 n

b 2 b b 2 D f1./f2.b /d1 dmdb

b b 2 2 can be split into two marginal pdfs f1./ of , BLUUE of ,andf2.b / of b , BIQUUE of 2. (i) b BLUUE of The marginal pdf of b; BLUUE of , is represented by (1st version) b dF1 D f1./d1 dm ˇ ˇ 1 1=2 1 f .b/ D ˇA0Aˇ exp .b /0A0A.b / d d or 1 .2/m=2 m 22 1 m

(2nd version)

dF1 D f1.b/d1 dm ! 1 1 Xm .b /2 f .b/ D . /1=2 exp i ; 1 .2/m=2. 2/m=2 1 2 m1 m 22 iD1 i

by means of Principal Component Analysis PCA also called Singular Value Decomposition (SVD) or Eigenvalue Analysis (EIGEN) of .A0A/1, " 0 0 0 1 D U U .A A/ U D D Diag. ; ;:::; ; / subject to 1 2 m 1 m b 0 b 0 D U U U D Im; det U DC1

2 f1.bj; / D f.b1/f .b2/ f.bm1/f .bm/ 1 1 .b /2 f.b / D p i i 8i 2f1;:::;mg: i p exp 2 i 2 2 i

The transformed fixed effects .b1;:::;bm/, BLUUE of .1;:::;m/,aremutu- ally independent and Gauss-Laplace normal

2 bi N .i j i / 8i 2f1;:::;mg: B-7 Sampling from the Multidimensional Gauss–Laplace Normal Distribution 729

(third version) b 1 1 pi 2 zi WD W f1.zi /dzi D p exp zi dzi 8i 2f1;:::;mg: 2 i 2 2 (ii) b 2 BIQUUE 2 The marginal pdf of b 2, BIQUUE 2, is represented by (first version)

p D n rkA 2 2 dF2 D f2.b /db 1 1 b 2 f .b 2/ D pp=2b p2 exp p : 2 p 2p=2.p=2/ 2 2 (second version)

dF2 D f2.x/dx b 2 p 1 x WD .n A/ D b 2 D .y A/0.y A/ rk 2 2 2 1 p 1 1 f .x/ D x 2 exp x : 2 2p=2.p=2/ 2 f2(x) as the standard pdf of the normalized sample variance is a Helmert Chi 2 Square p pdf with p D n rkA “degree of freedom”. Proof. Thefirstactionitem First, let us decompose the quadratic form kyEfygk2 into estimates E1fyg of Efyg.

y EfygDy E1fygC.E1fygEfyg/ y EfygDy Ab C A.b / and

.y Efyg/0.y Efyg/ D .y E1fyg/0.y E1fyg/ C .E1fygEfyg/0.E1fygEfyg/ ky Efygk2 Dky E1fygk2 CkE1fygEfygk2 .y Efyg/0.y Efyg/ D .y A/0.y A/ C .b /0A0A.b / 2 2 b 2 ky Efygk Dky A k Ck kA0A :

Here, we took advantage of the orthogonality relation. 730 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

b 0 0 0 b 0 0 0 1 0 . / A .y A/ D . / A .In A.A A/ A /y D .b /0.A0 A0A.A0A/1A0/y D 0:

The second action item Second, we implement b 2 BIQUUE of 2 into the decomposed quadratic form.

2 0 0 0 1 0 ky Ak D .y A/ .y A/ D y .In A.A A/ A /y D y0My D .n rkA/b 2

ky Efygk2 D .n rkA/b 2 C .b /0A0A.b /

ky Efygk2 D y0My C .b /0N.b /:

The matrix of the normal equations N WD A0A; rkN D rkA0A D rkA D m,and 0 1 0 the matrix of the variance component estimation M WD In A.A A/ A ,rkM D n rkA D n m have been introduced since their rank forms the basis of the generalized forward and backward Helmert transformation.

0 HH D In z D 1H.y Efyg/ D 1H.y A/ and y EfygDH0z 1 .y Efyg/0.y Efyg/ D z0H0Hz D z0z 2 1 ky Efygk2 Dkzk2: 2

The standard canonical variable z 2 Rn has to be associated with norms ky Abk b and k kA0A. The third action item Third, we take advantage of the eigenspace representation of the matrices .M; N/ and their associated norms.

0 0 0 b 0 b b 0 0 b y My D y VMV y versus . / N. / D . / UNU . /

D Diag. ;:::; ;0;:::;0/ D Diag. ;:::; /: M 1 n m versus N 1 m 2 Rn D Rnm Rm 2 Rm m eigenvalues of the matrix M are zero, but nrkA D nm is the number of its non- vanishing eigenvalues which we denote by .1;:::;nm/. In contrast, m D rkA is B-7 Sampling from the Multidimensional Gauss–Laplace Normal Distribution 731 the n-m number of eigenvalues of the matrix N, all non-zero. The canonical random variable

V0y D y , y D Vy and U0.b / D b lead to 1 1 1 .y Efyg/0.y Efyg/ D .y/ y C .b /0 .b / 2 2 M 2 N 1 1 nXm 1 Xm .y Efyg/0.y Efyg/ D .y/2 C .b /2 2 2 j j 2 i i i j D1 iD1 1 .y Efyg/0.y Efyg/ D z2 CCz2 C z2 CCz2 2 1 nm nmC1 n subject to

2 2 2 2 z1 CCznm and znmC1 CCzn nPm Pm 1 2 1 b 2 D 2 .yj / j D 2 .i i / i j D1 iD1

2 0 2 2 2 2 kzk D z z D z1 CCznm C znmC1 CCzn 1 1 D y0My C .b /0N.b / 2 2 1 1 D ky Efygk2 D .y Efyg/0.y Efyg/: 2 2

0 Obviously, the eigenspace synthesis of the matrices N D A A and M D In A.A0A/1A0 has guided us to the proper structure synthesis of the generalized Helmert transformation. The fourth action item Fourth, the norm decomposition unable us to split the cumulative probability

dF D f.y1;:::;yn/dy1 dyn

2 2 2 into the pdf of the Helmert random variable x WD z1 CCznm D .n rkA/b 2 D 2.n m/b 2 and the pdf of the difference random parameter vector 2 2 2 b 0 0 b znmC1 CCzn D . / A A. /.

dF D f.z1;:::;znm; znmC1;:::;zn/dz1 dznmdznmC1dzn 732 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

1 1 f.z ;:::;z / D exp z0z 1 n .2/n=2 2 nm m 2 2 1 1 2 2 1 D exp .z1 CCznm/ 2 2 2 1 exp .z2 CCz2 / : 2 nmC1 n

Part A

2 2 2 x WD r D z1 CCznm ) dx D 2.z1dz1 CCznmdznm/

z1 D r cos nm1 cos nm2 cos 2 cos 1

z2 D r cos nm1 cos nm2 cos 2 sin 1

znm1 D r cos nm1 sin nm2

znm D r sin nm1 2 3 z 1 1 p p 4 5 D Diag. ;:::; /V0 y 1 nm 1 znm 0 0 0 V D ŒV1; V2; V 1V1 D Inm; V 2V2 D Im; V 1V2 D 0

0 nn n.nm/ nm VV D In; V 2 R ; V1 2 R ; V2 2 R and 2 3 z nmC1 1 p p 4 5 D Diag. ;:::; /U0.b / 1 m zn altogether 2 3 z 6 1 7 6 ::: 7 " # 6 7 p p 0 6 z 7 Diag. 1;:::; nm/V 1y 6 nm 7 D 1 : 6 7 p p 0 b 6 znmC1 7 Diag. 1;:::; m/U . / 4 ::: 5 zn

The partitioned vector of the standard random variable z is associated with the norm 2 2 kznmk and kzmk , namely B-7 Sampling from the Multidimensional Gauss–Laplace Normal Distribution 733

2 2 kznmk Ckzmk 2 2 2 2 D z1 CCznm C znmC1 CCzn 1 p p p p D y0V Diag. ;:::; /Diag. ;:::; /V0 y 2 1 1 nm 1 nm 1 1 p p p p C .b /0U Diag. ;:::; /Diag. ;:::; /U0.b / 2 1 m 1 m 1 1 D y0V Diag. ;:::; /V0 y C .b /0U Diag. ;:::; /U0.b / 2 1 1 nm 1 2 1 m

nm1 nm1 nm2 D dz1dz2 dznm1dznm D r dr.cos nm1/ .cos nm2/ 2 cos 3 cos 2dnm1dnm2 d3d2d1:

The representation of the local .n m/ dimensional hypervolume element in terms of polar coordinates .1;2;:::;nm1;r/has already been given by Lemma B.4. Here, we only transform the random variable r to Helmert’s random variable x. dx x WD r2 W dx D 2rdr; dr D p ;rnm1 D x.nm1/=2 2 x

1 rnm1dr D x.nm1/=2dx: 2

Part A concludes with the representation of the left pdf in terms of Helmert’s polar coordinates

nm 1 2 dF D exp 1 .z2 CCz2 /dz dz ` 2 2 1 nm 1 nm nm 2 1 1 nm2 nm1 nm2 D x 2 dx.cos / .cos / 2 2 nm1 nm2 2 cos 3 cos 2dnm1dnm2 d3d2d1:

Part B Part B focuses on the representation of the right pdf, first in terms of the random variables b, second in terms of the canonical random variables b.

m 1 2 1 dF D exp .z2 CCz2 / dz dz r 2 2 nmC1 n nmC1 n 1 z2 CCz2 D .b /0A0A.b / nmC1 n 2 1 dz dz D jA0Aj1=2db db : nmC1 n m=2 1 m 734 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

The computation of the local m-dimensional hyper volume element dznmC1 dzn has followed Corollary B.3 which is based upon the matrix of the metric 2A0A. The first representation of the right pdf is given by

m 1 2 1 dF D exp .z2 CCz2 / dz dz r 2 2 nmC1 n nmC1 n m 1 2 jA0Aj1=2 1 D exp .b /0A0A.b / db db : 2 m=2 22 1 m

Let us introduce the canonical random variables .b1;:::;bm/ which are generated b 2 by the correlating quadratic form k kA0A. 1 1 .b /0A0A.b / D .b /0U Diag ;:::; U0.b /: 1 m Here, we took advantage of the eigenspace synthesis of the matrix A0A DW N and .A0A/1 DW N1. Such an inverse is the representing dispersion matrix DfbgD.A0A/1 2 D N1 2.

0 nm 0 UU D Im U 2 SO.m/ WD fU 2 jUU D Im; jUjDC1g 0 0 N WD A A D U Diag.1;:::;m/U versus 1 0 1 0 N WD .A A/ D U Diag.1;:::;m/U subject to 1 1 1 1 1 D 1 ;:::;m D m or 1 D 1 ;:::;m D m

0 1=2 p 1 jA Aj D 1 m D p 1 m

b WD U0.b / , b WD U0.b / 1 1 b 2 b 0 0 b b 0 b k kA0A DW . / A A. / D . / Diag ;:::; . /: 1 m b b The local m-dimensional hypervolume element d1 dm is transformed to the local m-dimensional hypervolume element db1 dbm by b b d1 dm DjUjdb1 dbm D db1 dbm:

Accordingly we have derived the second representation of the right pdf f.b/.

m 1 2 1 dFr D p 2 m=2 1 m 1 1 1 .b /0Diag ;:::;y .b / db db : exp 2 1 m 2 1 m B-7 Sampling from the Multidimensional Gauss–Laplace Normal Distribution 735

Part C Part C is an attempt to merge the left and right pdf

nm 2 1 1 .nm2/=2 dF D dF dF D x dxd! ` r 2 2 n m 1 m 0 1 2 jA Aj1=2 1 exp .b /0A0A.b / db db or 2 m 2 1 m nm 2 1 1 .nm2/=2 dF D dF dF D x dxd! ` r 2 2 n m 1 m 1 2 1 1 1 1 p exp .b /0Diag ;:::; .b / db db : m 2 1 m 2 1 m 2 1 m

The local .n m 1/-dimensional hypersurface element has been denoted by d!nm1 according to Lemma B.4. The fifth action item

Fifth, we are going to compute the marginal pdf of b BLUUE of . b b b dF1 D f1./d1 dm as well as

dF1 D f1.b/db1 dbm b include the first marginal pdf f1./ and f1.b/, respectively. The definition

Z1 Z nm 1 1 2 f .b/ WD dx d! x.nm2/=2 1 nm1 2 2 0 m 1 2 jA0Aj1=2 1 exp .b /0A0A.b / 2 . 2/m=2 2 subject to

Z1 Z nm 1 1 2 dx d! x.nm2/=2 D 1 nm1 2 2 0 leads us to

m 1 2 jA0Aj1=2 1 f .b/ D exp .b /0A0A.b / : 1 2 m 2 736 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

Unfortunately, such a general multivariate Gauss-Laplace normal distribution cannot be tabulated. An alternative is offered by introducing canonical unknown parameters b as random variables. The definition

Z1 Z nm 1 1 2 f .b/ WD dx d! x.nm2/=2 1 nm1 2 2 0 m 1 2 1 . /1=2 2 m 1 2 m1 m 1 1 1 .b /0Diag ;:::; .b / exp 2 2 1 m subject to

Z1 Z nm 1 1 2 dx d! x.nm2/=2 D 1 nm1 2 2 0 alternatively leads us to ! m Xm 1 2 1 1 1 .b /2 f .b/ D p exp i 1 2 m 22 1 m iD1 i f1.b1;:::;bm/ D f1.b1/ f1.bm/ 2 1 1 .bi / f1.bi / WD p p exp 8i 2f1;:::;mg: i 2 2 i

Obviously the transformed random variables .b1;:::;ybm/ BLUUE of .1;:::;m/ are mutually independent and Gauss-Laplace normal. The sixth action item Sixth, we shall compute the marginal pdf of Helmert’s random variable x D .n rkA/b 2=2 D .n m/b 2=2, b 2 BIQUUE 2,

dF2 D f2.x/dx includes the second marginal pdf f2.x/. The definition

Z nm ZC1 ZC1 m 1 1 2 1 2 jA0Aj1=2 f .x/ WD d! x.nm2/=2 db db 2 nm1 2 2 1 m 2 m 1 1 1 exp .b /0A0A.b / 22 B-7 Sampling from the Multidimensional Gauss–Laplace Normal Distribution 737 subject to Z 2 .nm1/=2 !nm1 D d!nm1 D nm1 ; . 2 / according to Lemma B.4

ZC1 ZC1 m 1 2 jA0Aj1=2 1 db db exp .b /0A0A.b / 1 m 2 m 22 1 1

ZC1 ZC1 m 1 2 1 D dz dz exp .z2 CCz2 / 1 m 2 2 1 m 1 1 leads us to

p WD n rkA D n m p n m 1 1 n m 1 n m p D D D 2 2 2 2 2 1 p 1 1 f .x/ D x 2 exp x ; 2 2p=2.p=2/ 2 namely the standard pdf of the normalised sample variance, known as Helmert’s Chi 2 Square pdf p with p D n rkA D n m “degree of freedom”. If you substitute x D .nrkA/b 2=2 D .nm/b 2=2, dx D .nrkA/ 2db 2 D .nm/2db 2 we arrive at the pdf of the sample variance b 2, in particular

dF D f .b 2/db 2 2 2 1 1 b 2 f .b 2/ D pp=2b p2 exp p : 2 r 2p=2.p=2/ 2 2

Here is our proof’s end.

Theorem B.12. (marginal probability distributions, special linear Gauss– Markov model with datum defect):

A 2nm;rWD rkA < minfn; mg EfygDA subject to Efyg2R.A/ DfygDV 2 V 2nn;rkV D n 738 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions defines a special linear Gauss–Markov model with datum defect of fixed effects m 2 R and a positive definite variance- DfygD˙ y of 0 multivariate Gauss-Laplace distributed observations y WD Œy1;:::;yn . 2 b D Ly “linear” 6 b C 2 D A y subject to 4 kLA Imk D min “minimum bias” b 0 trDfgDtr L˙ y L D min “best” and 2 Efb 2gD 2 1 6 b2 b 0˙ 1 b 4 D .y A / y .y A / subject to 24 n rkA Dfb 2gD n rkA identify b BLIMBE of and b 2 BIQUUE of 2. Part A The cumulative pdf of the multivariate Gauss-Laplace probability distribution of 0 the observation vector y D Œy1;:::;yn 2 Y

f.yjEfyg;DfygD˙ y /dy1 dyn 1 1 1 D .y Efyg/0˙ 1.y Efyg/ dy dy n=2 1=2 exp y 1 n .2/ j˙ y j 2 is transformed by

0 0 p p p p ˙ y DW Diag.1;:::;n/W D W Diag. 1;:::; n/ Diag. 1;:::; n/W p p ˙ 1=2 y WD Diag. 1;:::; n/W ˙ ˙ 1=2 0˙ 1=2 y D . y / y versus 1 1 ˙ 1 0 y D W Diag ;:::; W 1 n 0 1 1 1 1 D W Diag p ;:::; p Diag p ;:::; p W 1 n 1 n 1 1 ˙ 1=2 WD Diag p ;:::; p W 1 n ˙ 1 ˙ 1=2 0˙ 1=2 D . y / y subject to the orthogonality condition

0 WW D In 2 0˙ 1 ky Efygk˙ 1 WD .y Efyg/ y .y Efyg/ y B-8 Multidimensional Variance Analysis, Sampling from the Multivariate 739 1 1 1 1 D .y Efyg/0W0Diag p ;:::;p Diag p ;:::;p 1 n 1 n W.y Efyg/0 .y E y /0.y E y / y E y 2 D f g f g DW k f gkIn subject to the star or canonical coordinates 1 1 ˙ 1=2 y D Diag p ;:::;p Wy D y y 1 n f.yjEfy g;Dfy gDIn/dy1 dyn 1 1 D exp .y Efyg/0.y Efyg/ dy dy .2/n=2 2 1 n 1 1 D exp ky Efygk2 dy dy .2/n=2 2 1 n into the canonical Gauss-Laplace pdf. Part B The marginal pdf of b BLUUE of , is represented by (1st version) b dF1 D f1./d1 dn:

B-8 Multidimensional Variance Analysis, Sampling from the Multivariate GaussÐLaplace Normal Distribution

Let x1;:::;xN denote a random sample from as k-variate Gauss-Laplace normal distribution with as the mean vector and ˙ as the variance-covariance matrix, such that

0 .B 370/ xi WD .Xi;1;:::;Xi;k/

1 for i 2f1;:::;Ng.LetX WD .x1;:::;xN /.Thejoint density of the random sam- ple is generated by the product of N multivariate normal densities. Let us denote the parameter space by f; ˙ I 2 Rk; ˙ positive definitegDW˝. Here we describe estimation of the parameters from a multivariate Gauss-Laplace normal distribution and describe properties of these estimates. In addition, we care for inference for a simple, multiple, and partial correlation coefficients based on the normal random sample. Of course, we have to proof that we can assume a multivariate Gauss- Laplace normal distribution. We add some methods for assessing Gauss-Laplace normality and describe suitable transformation to normality. 740 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

B-81 Distribution of Sample Mean and Variance-Covariance

By the representation of the sample mean of the random sample x1;:::;xN by (B371) and the sample variance-covariance matrix by (B372)–(B375), namely the k k dimensional matrix SN =.N 1/ DfSjlg for all j; l 2f1;:::;kg subject PN to X D Xi;j =N . The sample variance-covariance matrix has k variances Sjj for iD1 j 2f1;:::;kg and k.k 1/=2 possibly distinct covariances. Sjl for j; l; j; l 2 f1;:::;kg.Thegeneralized sample variance is the scalar quality jSN =.N 1/j which determines the degree of “peakedness” of the joint density of x1;:::;xN and is a normal summary measure of variability in the sample. § ¤ ¦ Table B.1 Sample mean, sample variance-covariance matrix ¥ Sample mean PN ^ xN WD xi (B371) iD1 Sample variance-covariance matrix PN PN ^ ^ 0 ^ ^0 SN WD .xi xN /.xi xN /0D xi xi N xi xN xi xN (B372) iD1 iD1 SN =.N a/ DW fSjlg for j; l 2f1;:::;kg (B373) PN ^ Sjl WD .Xi;j Xj /.Xil Xl /=.N 1/ (B374) iD1 Subject to PN ^ Xj D Xi;j N (B375) iD1

2 Given a univariate random sample X1;:::;XN from a N.; / population, that the sample mean X^ has a normal distribution with mean and variance 2=N , the static .N 1/S2= 2 is distributed as a 2 variable and the two distributions are independent. The corresponding distributional result for the k-variable situations is given by our previous result. We first define a multivariate distribution called the Wishart distribution which is derived from the multivariate Gauss-Laplace normal distribution as its sampling distribution of the sample statistics

XN ^ ^ 0 .Xi XN /.Xi XN / .B 376/ iD1

The Wishart distribution is a multivariate extension of the chi-square distribution.

Definition B.18. Wishart distribution

A random k-dimensional matrix W is said to follow a k-dimensional noncentral Wishart distribution. Wk.˙ ;m;x/ with m degrees of freedom, parameter ˙ , B-8 Multidimensional Variance Analysis, Sampling from the Multivariate 741 P and noncentrality parameter WD 0 1 0=2 if W can be represented as, Pm P W WD xi xj where xj for all j 2f1;:::;mg are i:i:i:Nk.; / vectors. Provide j D1 m:k the density function of W is

jWj.mk1/=2 expftr.˙ 1W=2/g f.WI ; ˙ / D . / km=2 m=2 B 377 2 j˙ j k.m=2/

k.k1/=4 k 1 where k.m=2/ D ˘j D1.2 .m C 1 j// is the multivariate Gamma functions.If D 0, we say that W follows a central Wishart distribution Wk.˙ ;m/; since ˙ is p.d., it is clear that D 0 if and only if D 0. The additivity ind ˙ property of Wishart matrices states that if Wj Wk. ;mj /; j D 1;:::;J,then PJ PJ Wj Wk ˙ ; mj . j D1 j D1

End of Definition B.18: Wishart distribution

Intermezzo

Before we proceed we must introduce results about the Fourier transform of a random vector, namely called “characteristic function” being generalized in Appendix C to the “characteristic functional” for random functions, namely stochastic processes. We will introduce some lemmas and definitions.

Definition B.19. Characteristic function of a random vector

The characteristic function of a random vector X is Efexp it0xg define for every vector t.

Definition B.20. Decomposition of a complex-valued function

Let the complex-valued function g.x/ be written as

g.x/ D g1.x/ C ig2.x/.B 378/ where g1.x/ and g2.x/ are real-valued. Then the expected value of g.X/ is

Efg.X/gDEfg1.x/gCiEfg2.x/g .B 379/ in particular,

Efexp.it 0x/gDEfcos.t 0x/gCiEfsin.t 0x/g .B 380/ 742 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

Lemma B.18. Product rule for independent variables

Let X0 WD .X.1/0X.2/0/.IfX.1/ and X.2/ are independent and g.x/ D g.1/.x.1//g.2/ .x.2//,then

Efg.X/gDEfg.1/.X.1//gEfg.2/.X.2//g .B 381/

Lemma B.19. Components of independent distribution data

If the component of X are independently distributed, then

YN 0 ^ Efexp.it XN /gD Efitj Xj g .B 382/ j D1

Theorem B.20. Characteristic function of a vector-valued random variant of type Gauss-Laplace distribution

The characteristic function of X which is Gauss-Laplace distribution according to N.; ˙ / is 1 Efexp.it 0X/gDexp t 0 C t 0˙ t .B 383/ 2 for any real vector t.

Theorem B.21. Characteristic function .t/

If the random vector X has the density f.x/ and the characteristic function f.t/, then

ZC1 ZC1 1 0 N f.x/ D ::: exp.it x/ .t/d! :::d! .B 384/ .2/ 1 1 1 and

ZC1 ZC1 N 0 0 f .!/ D EfCi! XgD ::: exp.Ci! x/f .x/dx1 :::dx .B 385/ 1 1 illustrating synthesis and analysis

Here ends our intermezzo B-8 Multidimensional Variance Analysis, Sampling from the Multivariate 743

ZC1 ZC1 N 0 0 f .!/ D EfCi! XgD ::: exp.Ci! x/f .x/dx1 :::dx .B 386/ 1 1

^ Results: Distribution of xN and SN

Let x1;:::;xN denote a random sample from the Gauss-Laplace normal distribu- tion Nk.; /. ^ (a) The distribution of xN is Nk. =N / ˙ 0 (b) For N 2, SN follows a Wishart distribution Wk. 1N 1/ ^ (c) xN and SN are independently distributed. Proof

YN 1 Efexp.it 0x^ /gD Efexp.it 0 x /=N gDexp.t 0 C t 0.˙ =N /t .B 387/ N j j 2 j D1 for N D 2 it follows 1 1 0 1 1 0 S D x .x C x / x .x C x / C x .x C x / x .x C x / 2 1 2 1 2 1 2 1 2 2 2 1 2 2 2 1 2 1 ) S D .x x /.x x /0 .B 388/ 2 2 1 2 1 2 p Obviously .x1 x2/ 2 is distributed according to Nk.0; ˙ / and S2 according to Wk.˙ ;1/ 1 1 0 S D x .x C x C x / x .x C x C x / 3 1 3 1 2 3 1 3 1 2 3 1 1 0 C x .x C x C x / x .x C x C x / 2 3 1 2 3 2 3 1 2 3 1 1 0 C x .x C x C x / x .x C x C x / .B 389/ 3 3 1 2 3 3 3 1 2 3 2 S D S C .x x^/.x x^/0 .B 390/ 3 2 3 3 2 3 2 subject to

1 x^ D .2x^ C x /.B 391/ 2 3 2 3 744 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions in general

1 x^ D .mx^ C x / and m m C 1 m mC1 m S D S C .x x^/.x x^/0 .B 392/ mC1 m m C 1 mC1 m mC1 m

B-82 Distribution Related to Correlation Coefficients

Since xi for all i 2f1;:::;m C 1g are mutually independent and therefore ^ ^ xmC1; Sm are functions only of xi for i 2f1;:::;mg, it follows that xmC1; Sm ^ are independent of xmC1. ^ By the hypothesis of induction we enjoy the independence of xm and Sm

^ xmC1; Sm and xmC1 .B 393/ ^ are mutually independent. Thus, Sm is independent of xm;xmC1 and therefore ^ mC1 mC1 ^ independent of xmC1xm which follows a Nk 0; m ˙ m xmC1 xm .xmC1 ^ 0 xm/ are distributed as Wk .˙; 1/. Note that ^ ^ cov xi xm; xn D 0 (B 394) h i 0 ^ ^ 0 Which implies that x1 xN ;:::; xN xN is uncorrelated and therefore ^ ^ independent of xN . In consequence, Sn is distributed independently of xN . P Results: Maximum likelihood estimation if and Based on a random sample x1;:::;P xN from a Nk . ;˙/distribution, the maximum likelihood estimates of and are

1 XN b D x D x^ ;.B 395/ ML N i N iD1 and

XN 1 ^ 0 N 1 ˙b D x x^ x X D S .B 396/ ML N i N i N N N iD1

Proof

The L .;˙I x1;:::;xN / has the form shown on the right b b side. The MLE’s of and ˙ are denoted by ML and ˙ ML, and are the B-8 Multidimensional Variance Analysis, Sampling from the Multivariate 745

1 values that maximize L .;˙I x1;:::;xN /.Since˙ is p.d., the distance ^ 0 1 ^ xN ˙ xN in the exponent of the likelihood function is positive ^ unless D XN .TheMLEof is then xN , since it is the value of that maximizes the likelihood function. We next maximize the following function with respect to ˙: P 0 1 1 N ^ ^ exp 2 tr ˙ iD1 xi xN xi XN b L.ML;˙/D .B 397/ .2/Nk=2 j˙jN=2 P ^ 0 With A D ˙;B D N x x^ x X ,andb D N=2, we can show that iD1 i N i N P 0 b 1 N ^ ^ b ˙ ML D N iD1 xi xN xi XN maximizes L.ML;˙/. The maximum likelihood is exp Nk b b 2 L ; ˙ ML D 0 .B 397/ ML Nk=2 b N=2 .2/ j˙ MLj which completes the proof. Corollary: Invariance property of MLE Using the invariance property of MLE’s which states that the MLE of a function b g./of a parameter is g ML , we see that

1 0 b1 1. The MLE of the function 0˙ is b ˙ bML, p MLP ML p 2. The MLE of lj , the (l,j)th element of is given by b lj , the square root of Pb the MLE of the(l,j)th entry in ML b Although the estimator bML is an unbiased estimator of ; ˙ ML is a biased estimator of ˙. analogous to the univariate case, an unbiased estimator of ˙ is b 1 b b ˙ D N 1 SN . The unbiased estimators of abd ˙ denoted by and ˙ respectively are complete sufficient statistics. Of course, you have realized that we gave no space to derive the Wishart distri- bution. Instead we refer to his works in Wishart (1928), Wishart (1931), Wishart (1955)aswellasWishart and Bartlett (1932). the general theory of multivariate statistical analysis including the Gauss-Laplace multivariate normal distribution, the estimation of the mean vector and the variance-covariance matrix the distribution of sample correlation coefficients, the generalized t 2 statistics and the distribution of the sample covariance matrix can be taken from the excellent review of Anderson (1958) including 413 references. finally we advice the readers to consider the works of Koch (1988a), Koch (1988b), pp. 160–173 B.8 Distributions related to correlation coefficients Traditionally we divide simple, multiple and partial correlations. Here we restrict our study to the analysis of the simple correlation based on iid bivariate Gauss-Laplace normal samples. 746 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions Xi;j; Xi;l for all i 2f1;:::;Ng .B 399/

th th where Xi;j and Xi;l denote the j and l components of the k - l dimensional z z vector x. Suppose E Xi;j D j ;E.Xi;l/ D l , var Xi;j D j ; var .Xi;l/ D l and corr Xi;j; Xi;l D jl. The exact sampling distributionp of wasp first derived by Fisher (1955) who showed that for D 0 the statistic N 2^ 1 is distributed as t with (N-2) degrees of freedom. He introduced the Z-transformation,

1 Z WD 1 C ^=1 ^ .B 400/ 2 and proved that even for relative small samples it is approximately Gauss-Laplace normally distributed, and that as N increases the variance of the Z-transformation rapidly becomes nearly independent of converging to 1=.N 3/. In 1938, F. N. Da v id (1938) published tables of the exact sampling distribution of ^ for D 0.0:1/0:9, N D B.1/25; 50; 100; 200; 400; ^ D1.0:01/C1, and investigated the accuracy of the approximate distributions suggested by R.H. Fisher. She found approximate formulas for the mean/variance of Z: They were “extraordinarily accurate even for the low values of N provided jj is not too near unity”. Hotdling (1953) intensively studied the mathematical properties of the distribution function of ^ and the suggested improvements of the Z-transformation in terms of a hypergeometric function. Beside discussing methods of interpolating the density he also calculated moments of ^. From the vast reference list of the subject we like to mention the contribution of Soper et al. (1955), Kraemer (1973), Wilcox (1997) and Green (1952) as well as Khan (1994). Example B: Correlation coefficient, “iid” Gauss-Laplace two dimensional normal

We start from the two dimensional Gauss-Laplace normal observations .xi ;yi / for N-independent identical distributed data .“iid00/ estimated by BLUUE and BIQUUE. By a special decomposition we shift the sample distribution into two normal distributions relating to b b b2b2b b2b2 .1; 2/ on the one side and to 1 2 12 or 1 212 on the other side. b12 indicates the sample correlation coefficient via the characteristic function based on Fourier-Stieltjes integration we derive the sampling distribution of the correlation coefficient b12 .12/ using tables of David (1954). “N independently, identically distributed observations : iid” “Gauss-Laplace normal, two-dimensional observations: .xi ;yi / for all i 2 f1;:::;Ng” B-8 Multidimensional Variance Analysis, Sampling from the Multivariate 747

“Probability density”

1 1 1 f.x;y/D p exp 2 2 2 12 1 2.1 / " # .x / .xi /.y / .y /2 1 C 2 1 2 C 2 . / 2 2 B31 1 12 2

YN f.x1;:::;xN ;y1;:::;yN / D f.xi ;yi / D f.x1;y1/ .xN ;yN / iD1 ! N 1 D p 2 212 1 !! 1 XN .x /2 .x /.y / .y i mu /2 exp i 1 2 i 1 i 2 C 2 2.1 2/ 2 2 iD1 1 1 2 2 .B32/

1 XN BLUUE W ^ D x Dk0x=N .B33/ 1 N i iD1

1 XN BLUUE W ^ D y Dk0y=N .B34/ 2 N i iD1

BIQUUE:

XN 1 2 0 ^2 D x ^ D x k^ x k^ =.N 1/ .B35/ 1 N 1 i 1 1 1 iD1 XN 1 2 0 ^2 D y ^ D y k^ y k^ =.N 1/ .B36/ 2 N 1 i 1 1 2 iD1

1 XN ^ D .x ^/.y ^/ D .x k^/0.y k^/=.N 1/ .B37/ 12 N 1 i 1 i 2 1 2 iD1

“Decomposition” 748 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

XN XN 2 b ^ 2 ^2 ^ 2 .xi 1/ D Œ.xi 1/.1 1 / D .N1/1 CN.1 1 / .B39/ iD1 iD1

XN XN 2 b ^ 2 ^2 ^ 2 .yi 2/ D Œ.yi 2/.2 2 / D .N 1/2 C N.2 2 / .B40/ iD1 iD1 XN ^ ^ ^ ^ ^ .xi 2/.yi 2/ D .N 1/121 2 C N.1 1 /.2 2 /.B41/ iD1

! N 1 f.x1;:::;xN ;y1;:::;yN / D p 2 212 1 N . b /2 2 . b /. b / . b /2 1 1 12 1 1 2 2 C 2 2 exp 2 2 2 2.1 / 1 12 2 b2 b b b b2 N 1 1 21212 1 2 2 exp 2 2 C 2 .B42/ 2.1 12/ 1 12 2

“Product of two normal distributions” First part, marginal distribution 0 1 ZC1 ZC1 " B 1 C N . b /2 @ q A 1 1 exp 2 2 2 2.1 12/ 1 1 1 212 1 12 # ! b b b 2 212.1 1/.2 2/ .2 2/ b b C 2 d1d2 .B43/ 12 2

“Fourier-Stieltjes analysis”

Z f .!/ D .exp i!x/f.x/dx , .B44/

ZC1 1 , f.x/ D .exp i!x/f.x//f ^.!/d! .B45/ 2 1

First part of the marginal normal distribution B-8 Multidimensional Variance Analysis, Sampling from the Multivariate 749

Z ZC1 1 N 1 it p db db 1 . b /2 1 2 exp 2 2 1 1 212 1 12 2.1 12/ 1 1 N 1 it 2 b b 2 exp C 2 212 .1 1/.2 2/ 2.1 12/ 12 N 1 it 3 . b /2 . / exp 2 2 2 2 B46 2.1 12/ 2

“abbreviations”

b 2 N .1 1/ b 1 WD 2 2 D 1.1/ .B47/ 2.1 12/ 1

2 N .1 b1/ exp Cit11 D exp it1 2 2 2.1 12/ 1 b b N .1 1/.2 2/ b b 2 WD 2 212 D 2.1; 2/ .B48/ 2.1 12/ 12

N .1 b1/.2 b2/ exp Cit22 D exp Cit2 2 212 2.1 12/ 12

“First part of the marginal normal distribution”

Z ZC1 1 N 1 i! q 1 b 2 exp 2 2 .1 1/ 2 2.1 12/ 1 212 1 12 1 2 .1 C i! / 12 2 . b /. b / 1 1 2 2 1 2 1 i! 3 b 2 b c C 2 .2 2/ d1dmu2 2 .1 2 /1=2 D 12 .B49/ 2 2 1=2 Œ.1 i!1/.1 i!3/ 12.1 C i!2/ ’ “Check yourself the integral expŒ˛x2 C ˇxy y2dxdy”

“Second part of the marginal normal distribution” 750 B Sampling Distributions and Their Use: Confidence Intervals and Confidence Regions

N 1 2 2 b2 b b b b2 .1 12/ N 1 1 21212 1 2 2 N 1 exp 2 2 C 2 2 2 2.1 / 12 Œ.1 it1/.1 it3/ 12.1 C it2/ 12 1 2 .B50/

f.x1;:::;nN ;y1;:::;yN /dx1 :::dxN dy1 :::dyN

) f.x1;y1/:::f.xN ;yN /dx1dy1 :::dxN dyN

f.b1; b2/f .b 1;b 2;b 12/db1db2db 1db 2db 12 .B51/ f.x1;:::;xN ;y1;:::;yN / D p1.b1; b2/p2.b 1;b 2;b 12/ “first”

N b b f1 .t1;t2;t3/ f1.1; 2/ 2 N 1 .1 / 2 pN .t ;t ;t / D 12 .B52/ 1 1 2 3 2 2 Œ.1 it1/.1 it3/ 12.1 C it2/

“second”

ZZ ZC1 2 N 1 .1 / 2 exp.i! i!/ i! / p.g ;g ;g / D 12 1 1 2 2 3 3 1 2 3 3 2 2 .2n/ Œ.1 it1/.1 it3/ 12.1 C it2/ 1

d!1d!2d!3 0 1.B53/ N 1 N 2 2 2 N 2 b .1 12/ 2 N 4 d Barccos.12 12/C p.b / D .1 b / 2 @ q A 12 12 b (B.1) .N 3/Š d.12/ 2 b2 1 1212

End of Lemma Example As a specific example, we consider the confidence interval of the confidence coefficient 0.95 on the correlation of 0.782 observed by a sample of ten. Using Graph 4 of David (1954) we find the two limits are 0.34 and 0.98 . This result leads us to the interval 0:34 < 12 <0:98(Anderson 1958, p 72). Lemma B (probability interval for the correlation coefficient, functional determi- nant: David 1954, pp. xxxv–xxxviii): ˇ ˇ ˇ ˇ ˇ @.x1;:::;xN ;y1;:::;yN / ˇ ˇ ˇ D N @.b1; b2I 1;:::;N 1;1;:::;N 1/

subject to the Helmert transformation B-8 Multidimensional Variance Analysis, Sampling from the Multivariate 751

1 1 1 x1 D b1 C p 1 C p 2 CC p N 1 2 1 3 2 N.N 1/ 1 1 1 x2 D b1 p 1 C p 2 CC p N 1 2 1 3 2 N.N 1/ 2 1 x3 D b1 p 2 CC p N 1 3 2 N.N 1/ ::: 1 xN D b1 p N 1 N.N 1/ 1 1 1 y1 D b2 C p 1 C p 2 CC p N 1 2 1 3 2 N.N 1/ 1 1 1 y2 D b2 p 1 C p 2 CC p N 1 2 1 3 2 N.N 1/ 2 1 y3 D b2 p 2 CC p N 1 3 2 N.N 1/ ::: 1 yN D b2 p N 1 N.N 1/ ˇ ˇ ˇ ˇ ˇ @.xi ;yi / ˇ p.b1; b2;j ;j / D p.xi ;y;i/ˇ ˇ @.b1; b2;j ;j / for all j D 1;2;:::;N 1I i D 1;2;:::;N Appendix C Statistical Notions, Random Events and Stochastic Processes

Definitions and lemmas relating to statistics, random events as well as stochastic processes are given, neglecting their proofs. First, we review statistical moments of a probability distribution of random vectors and list the Gauss-Laplace normal distribution by introducing the notion of a quasi-normal distribution. As the end of Appendix C1 we take reference to two lemmas about the Gauss-Laplace 3 rule, namely the Gauss-Laplace inequality and the Vysochainskii-Potunin inequality. Appendix C2 reviews the spatial linear error propagation as well as the general nonlinear error propagation based on y D g.x/ introducing the moments of second, third and fourth order. The special role Jacobi matrix as well as the Hesse matrix is classified. Appendix C3 reviews useful identities like Efyy0 ˝j g and Efyy0 ˝yy0g as well as D Ef.y Efyg/.y Efyg/0 ˝ .y Efyg/g relating to the matrix of obliquity and WD Ef.y Efyg/.y Efyg/0 ˝ .y Efyg/.y Efyg/0gC::: relating to the matrix of courtosis.

Appendix C.4 newly introduces scalar-valued stochastic processes of one param- eter enriched by Appendix C.5 reviewing characteristics of a one parameter stochastic processes like non-stationary, stationary and cryodic stochastic pro- cesses. Extensive simple examples are presented in Appendix C.6 including ARIMA processes namely. Appendix C.7 introduce the important WIENER process of type ORNSTEIN- UHLENBECK, WIENER process with drift integrated WIENER process. The spectral analysis of one parameter is enriched by 14 examples like the DIRAC representation, spectral densities, band limited white noise.An extensive introduction into scalar-, vector-, and tensor-valued stochastic processes in Appendix C.9 refers to the characteristic functional the moment representations of stochastic processes for scalar-valued and vector-valued qualities, for statis- tical homogeneous and isotropic fields of multi-point systems. The Appendix is specified by Example C.9.1 on the topic of two-dimensional Euclidean networks under the postulates of homogeneity and isotropy in the statistical sense,by Example C.9.2 on criterion matrices for absolute coordinates in a space time astro- nomic frame of reference, for instance represented in scalar-valued spherical har- monic, by Example C.9.3 on space gravity spectroscopy illustrating the benefits of

E. Grafarend and J. Awange, Applications of Linear and Nonlinear Models, 753 Springer Geophysics, DOI 10.1007/978-3-642-22241-2, © Springer-Verlag Berlin Heidelberg 2012 754 C Statistical Notions, Random Events and Stochastic Processes

TAYLOR-KARMAN structured criterion matrices, by Example C.9.4 on Nonlocal prediction and Example C.9.5 on Nonlocal Time Series Analysis.

C-1 Moments of a Probability Distribution, the GaussÐLaplace Normal Distribution and the Quasi-Normal Distribution

First,wedefinethemoments of a probability distribution of a vector valued random function and explain the notion of a Gauss-Laplace normal distribution and its moments. Especially we define the terminology of a quasi - Gauss-Laplace normal distribution.

Definition C.1. (statistical moments of a probability distribution):

(1) The expectation or first moment of a continuous random vector ŒXi for all i D 1;:::;n of a probability density f.x1;:::xn/ is defined as the mean vector WD Œ1;:::;n of EfXi gD i Z Z C1 C1 i WD EfXi gD ::: xi f.x1;:::;xn/dx1 :::dxn: (C1) 1 1

The first moment related to the random vector Œei WD ŒXi EfXi g is called first central moment i WD EfXi i gDEfXi g i D 0: (C2)

(2) The second moment of a continuous random vector ŒXi for all i D 1;:::;nof a probability density f.x1;:::;xn/ is the mean matrix Z Z C1 C1 ij WD EfXi Xj gD ::: xi xj f.x1;:::;xn/dx1 dxn: (C3) 1 1

The second moment related to the random vector Œei WD ŒXi EfXi g is called variance - covariance matrix or dispersion matrix Œij , especially variance or dispersion 2 for i D j or covariance for i ¤ j :

2 2 ii D i D V fXi gDDfXi gWDEf.Xi i / g (C4) ij D ij D C fXi ; Xj gWDEf.Xi i /.Xj j /g (C5) 0 DfxgDŒij D ŒC fXi ; Xj g D Ef.x Efxg/.x Efxg/ g: (C6)

0 x WD ŒX1;:::;Xn is a collection of the n 1 random vector. The random variables Xi ; Xj for i ¤ j are called with respect to the central moment of second order uncorrelated if ij D 0fori ¤ j .(3)Thethird central moment with respect to the random vector Œei WD ŒXi EfXi g defined by C-1 Moments of a Probability Distribution, the Gauss–Laplace Normal 755

ij k WD Efei ej ekgDEf.Xi i /.Xj j /.Xk k/g (C7) contains for i D j D k the vector of obliquity with the components

3 i WD Efei g (C8)

Uncorrelation with respect to the central moment up to third order is defined by 2 Y3 81 i1 ¤ i2 ¤ i3 n n Efen1 en2 en3 gD Efe j g 4 (C9) i1 i2 i3 ij and j D1 0 n1 C n2 C n3 3:

(4) The fourth central moment relative to the random vector Œei WD ŒXi EfXi g

ij k ` WD Efei ej eke`gDEf.Xi i /.Xj j /.Xk k/.X` `/g (C10) leads for i1 D i2 D i3 D i4 to the vector of curtosis with the components

4 2 2 i WD Efei g3fi g (C11)

Uncorrelation with respect the central moments up the fourth order is defined by 2 Y4 81 i1 ¤ i2 ¤ i3 ¤ i4 n n Efen1 en2 en3 en4 gD Efe j g 4 (C12) i1 i2 i3 i4 ij und j D1 0 n1 C n2 C n3 C n4 4:

(5) The central moments of the nth order relative to the random vector Œei WD ŒXi EfXi g are defined by

i1:::in WD Efei1 :::ein gDEf.Xi1 i1 /:::.Xin in /g (C13)

A special distribution is the Gauss-Laplace normal distribution of random vectors in Rn: Note that alternative distributions on exist in large numbers, for instance the von Mises distribution on S2 or the Fisher distribution on S3 of Chap. 7.

Definition C.2. (Gauss-Laplace normal distribution):

0 An n 1 random vector x WD ŒX1;:::;Xn is a Gauss-Laplace normal distribution if its probability density f.x1;:::xi / has the representation

1 f.x/ D .2/n=2j˙ j1=2 expŒ .x Efxg/0˙ 1.x Efxg/ (C14) 2 756 C Statistical Notions, Random Events and Stochastic Processes

Symbolically we can write x N .; ˙ / (C15) with the moment of first order or mean vector WD Efxg and the central moment of second order or variance – covariance matrix ˙ WD Ef.x Efxg/.x Efxg/0g: The moments of the Gauss-Laplace normal distribution are given next.

Lemma C.3. (moments of the Gauss-Laplace normal distribution):

0 Let the n 1 random vector x WD ŒX1;:::;Xn follow a Gauss-Laplace normal distribution. Then all central moments of odd order disappear and the central moments of even order are product sums of the central moments of second order exclusively.

Efei1 :::ein gD08n D 2m C 1; m D 1;:::;1 (C16) Efe :::e gDfct. 2 ; ;:::;2 ;:::;2 /8n D 2m;m D 1;:::;1 (C17) i1 in i1 i1i2 i2 in 2 ij D ij ;ii D i ; (C18)

ij k D 0; (C19)

ij k ` D ij k` C ikj` C i`jk; (C20) 2 2 2 2 2 iijj D iijj C 2ij ij D i j C 2ij ;iiii D 3.i / (C21)

ij k `m D 0; (C22)

i1i2:::i2m2i2m1i2m D i1i2:::i2m2 i2m1i2m C i1i2:::i2m3i2m1 i2m2i2m C :::

Ci2i3:::i2m1 i1i2m: (C23)

0 The vector of obliquity WD Œ 1;:::; m and the vector of curtosis WD 0 Œ1;:::;m vanish. A weaker assumption compared to the Gauss-Laplace normal distribution is the assumption that the central moments up to the order four are of the form (C18)– (C21). Thus we allow for a larger class of distributions which have a similar structure compared to (C18)–(C21).

Definition C.4. (quasi-Gauss-Laplace normal distribution):

A random vector x is quasi-Gauss-Laplace normally distributed if it has a contin- uous symmetric probability distribution f.x/ which allows a representation of its central moments up to the order four of type (C18)–(C21). Of special importance is the computation of error bounds for the Gauss-Laplace normal distribution, for instance. As an example, we have the case called the 3 C-2 Error Propagation 757 rule which states that the probability for the random variable for X falling away, from its mean by more than three standard deviations (SDs) is at most 5%,

4 P fjX j3g < 0:05: (C24) 81 Another example is the Gauss-Laplace inequality, that bounds the probability for the deviation from the mode .

Lemma C.5. (Gauss inequality):

The expected squared deviation from the mode is

4 2 p P fjX jrg forallr 4=3 (C25) 9r2 p p P fjX jrg1 .r= 3/forallr 4=3 (C26) subject to 2 WD Ef.X /2g. Alternatively, we take advantage of the Vysochanskii–Potunin inequality.

Lemma C.6. (Vysochanskii–Potunin inequality):

The expected squared deviation from an arbitrary point ˛ 2 is

42 p P fjX ˛jrg forallr 8=3 (C27) 9r2 42 1 p P fjX ˛jrg forallr 8=3 (C28) 3r2 3 subject to 2 WD Ef.X ˛/2g: References about the two inequalities are Gauss (1823), Pukelsheim (1994).

C-2 Error Propagation

At the beginning we note some properties of operators “expectation E” and “dis- persion D”. Those derivatives can be taken from Pukelsheim (1993) and Teuniseen (1989b, 1990). Afterwards we review the special and general, in particular nonlinear error propagation.

Lemma C.7. (expectation operators EfXg ):

E is defined as a linear operator in the space of random variables in Rn, also called expectation operator. For arbitrary constants ˛; ˇ; ı 2 R there holds the identity 758 C Statistical Notions, Random Events and Stochastic Processes

Ef˛Xi C ˇXi C ıg: (C29)

Let A and B be two m n and m ` matrices and ı an m 1 vector of constants 0 0 x WD ŒXi ;:::;Xn and y WD ŒYi ;:::;Yn two n 1 and ` 1 random vectors such that EfAX C BX C ıgDAEfxgCBEfygCı (C30) holds. The expectation operator E is not multiplicative that is

EfXi Xj gDEfXi gEfXj gCC fXi ; Xj g¤EfXi gEfXj g; (C31) if Xi and Xj are correlated.

Lemma C.8. (special error propagation):

Let y be an n 1 dimensional random vector which depends linear of the m 1 dimensional random vector x by means of a constant n m dimensional matrix A and of a constant dimensional vector ı of the form y WD Ax C ı. Then hold the “error propagation law”

DfygDDfAx C ıgDADfxgA0: (C32)

The dispersion function D is not addition, in consequence a nonlinear operator that is

DfXi C Xj gDDfXi gCDfXj gC2C fXi ; Xj g¤DfXi gCDfXj g; (C33) if Xi and Xj are correlated. The “special error propagation law” holds for a linear transformation x ! y D Ax C ı.The“general nonlinear error propagation” will be presented by Lemmas C.7 and C.8. The detailed proofs are taken from Chap. 8, Examples.

Corollary C.9. (“nonlinear error propagation”):

Let y D g.x/ be a scalar valued function between one random variable x and one random variable y. g(x) is assumed to allow a Taylor expansion around the fixed approximation point 0 W

0 1 00 2 O g.x/ D g.0/ C g .0/.x 0/ C 2 g .0/.x 0/ C .3/ 2 (C34) D 0 C 1.x 0/ C 2g.0/ C O.3/ : C-2 Error Propagation 759

Then the expectation and dispersion identities hold

1 EfygDg. / C g00. / 2 C O.3/ D g. / C 2 C O.3/; (C35) x 2 0 x x 2 x

2 2 2 2 2 2 4 DfygD1 x C 4x Œ12.x 0/ C 2 .x 0/ 2 x 3 2 4 2 O CEf.x x/ gŒ212 C 42 .x 0/ C Ef.x x/ g2 C .3/: (C36)

For the special case of a fixed approximation point 0 chosen to coincide with mean value x D 0 and x being quasi - Gauss-Laplace normal distributed we arrive at the identities 1 EfygDg. / C g00. / 2 C O.4/; (C37) x 2 x x 1 DfygDŒg0./2 2 C Œg00. /2 4 C O.3/: (C38) x 2 x x The representation (C37)and(C38) characterize the nonlinear error propagation which is in general dependent of the central moments of the order two and higher, especially of the obliquity and the curtosis.

Lemma C.10. (“nonlinear error propagation”):

Let y D f.x/ be a vector-valued function between the m 1 random vector x and the n 1 random vector y. g.x/ is assumed to allow a Taylor expansion around the m 1 fixed approximation vector 0 W

0 1 00 O g.x/ D g. 0/ C g . 0/.x 0/ C 2 g . 0/Œ.x 0/ ˝ .x 0/ C .3/ 1 O D 0 C J.x 0/ C 2 HŒ.x 0/ ˝ .x 0/ C .3/: (C39)

2 With the n m Jacobi matrix J WD ŒJj gi . 0/ and the n m Hesse matrix H WD 0 ŒvecH1;:::;vecHn ;

Hi WD Œ@j @k gi . 0/.i D 1;:::;nI j; k D 1;:::;m/ (C40) there hold the following expectation and dispersion identities (“nonlinear error propagation”) 1 EfygD D g. / C Hvec˙ C O.3/ (C41) y x 2 760 C Statistical Notions, Random Events and Stochastic Processes

1 DfygD† D J †J 0 C J Œ† ˝ . /0 C . /0 ˝ †H0 y 2 x 0 x 0 1 C HŒ† ˝ . / C . / ˝ †J0 2 x 0 x 0 1 C HŒ† ˝ . /. /0 C . /. /0 ˝ † 4 x 0 x 0 x 0 x 0 † 0 0 † 0 C. x 0/ ˝ ˝ . x 0/ C . x 0/ ˝ ˝ . x 0/H 1 C J Ef.x /.x /0 ˝ .x /0gH0 2 x x x 1 C H Ef.x / ˝ .x /.x /0gJ0 2 x x x 1 C H ŒEf.x /.x /0 ˝ .x /g. /0 4 x x x x 0 0 0 C. x 0/ Ef.x x/ ˝ .x x/.x x/ g 0 0 C.I ˝ . x 0// Ef.x x/.x x/ ˝ .x x/ g 0 0 0 CEf.x x/ ˝ .x x/.x x/ g.. x 0/ / ˝ I/H 1 C H f.x /.x /0 ˝ .x /.x /0g 4 x x x x vec†.vec†/0H0 C O.3/:

(C42)

In the special case that the fixed approximations vector 0 coincides to the mean vector x D 0 and the random vector x is quasi-Gauss-Laplace normally distributed the following identities hold:

1 † O EfygD y D g. x/ C 2 Hvec C .4/ .C 43/ † J 0 1 † † 0 0 DfygD y D †J 4 Hvec .vec / H 1 C H Ef.x /.x /0 ˝ .x /.x /0gH0 C O.3/ 4 x x x x 1 D J†J0 C HŒ† ˝ † C Ef.x /0 ˝ † ˝ .x /g H0 C O.3/: 4 x x (C44)

C-3 Useful Identities

Notable identities about higher order moments are the following. C-3 Useful Identities 761

Lemma C.11. (identities: higher order moments):

(a) Kronecker-Zehfuss products #1

Efyy0gDEf.y Efyg/.y Efyg/0gCEfygEfyg0 (C45) Efyy0 ˝ ygDEf.y Efyg/.y Efyg/0 ˝ .y Efyg/g C Efyy0g˝EfygCEfy ˝ Efyg0 ˝ yg CEfyg˝Efyy0g2Efyg˝Efyg0 ˝ Efyg (C46) Efyy0 ˝ yy0gDG ‰ ˝ Efyg0 Efyg0 ˝ ‰ ‰0 ˝ EfygEfyg˝‰ 0 C Efyy0g˝Efyy0g CEfy0 ˝ Efyy0g˝ygCEfy ˝ ygEfy ˝ yg0 2EfygEfyg0 ˝ EfygEfyg0: (C47)

(b) Kronecker products #2

‰ WDEf.y Efyg/.y Efyg/0 ˝ .y Efyg/g (C48) G WDEf.y Efyg/.y Efyg/0 ˝ .y Efyg/.y Efyg/0g Ef.y Efyg/.y Efyg/0 ˝ Ef.y Efyg/.y Efyg/0g Ef.y Efyg/0 ˝ Ef.y Efyg/.y Efyg/0g˝.y Efyg/g Ef.y Efyg/ ˝ .y Efyg/gEf.y Efyg/0 ˝ .y Efyg/0g: (C49)

The n2 n matrix ‰ contains the components of obliquity,then2 n2 matrix G the components of curtosis relative to the n 1 central random vector y Efyg. (c) Covariances between linear and quadratic forms

C fF1y C d1; F2y C d2gWDEf.F1y C d1 EfF1y C d1g/.F2y C d2 0 (C50) EfF2y C d2g/ gDF1†F 2

(linear error propagation)

CfFy C d;y0HygWDEf.Fy C d EfFy C dg/.y0Hy Efy0Hyg/g D FŒEfyy0 ˝ y0gEfygEfy0 ˝ y0gvecH 1 D F‰ 0vec.H C H0/ C F†.H C H0/Efyg (C51) 2 762 C Statistical Notions, Random Events and Stochastic Processes

C fy0Gy; y0HygWDEf.y0Gy Efy0Gyg/.y0Hy Efy0Hyg/g D .vecG/0ŒEfyy0 ˝ yy0gEfy ˝ ygEfy0 ˝ y0gvecH 1 D Œvec.G C G0/0Gvec.H C H0/ 4 1 Œvec.G C G0/0.‰ 0 ˝ EfygC‰ ˝ Efyg0/vec.H C H0/ 2 1 C trŒ.G C G0/†.H C H0/† C Efyg0.G C G0/†.H C H0/Efyg: 2 (C52)

(d) quasi-Gauss-Laplace-normally distributed data

C fF1y C ı;F2y C ı2gDF1†F 2 (C53) (independent from any distribution)

C fFy C ı; y0HygDF †.H C H0/Efyg (C54) 1 C fy0Gy; y0HygD trŒ.G C G0/˙ .H C H0/˙ 2 CEfyg0.G C G0/˙ .H C H0/Efyg: (C55)

C-4 Scalar Ð Valued Stochastic Processes of One Parameter

We have previously reviewed the moments of a probability distribution up to order four. The deviation was based on integration from minus infinity to plus infinity, A different concept is needed if we work with distributions on manifolds. For instance, we are confronted with the problem to find a distributions for data on a circle or a sphere or on a hypersphere. As mentioned before, directional measurements,also called angular observations or longitudinal data are not Gauss-Laplace distributed, but enjoy a von Mises-Fisher distribution in S RC1 Example C.4.1: p=1 (von Mises, 1918)

1 f.j; / D Œ2I0./ expŒ cos. / (C56)

Example C.4.2: p=2, (Fisher, 1953) C-4 Scalar – Valued Stochastic Processes of One Parameter 763

f.;˚ k ; ;/D expŒcos ˚ cos cos. / C sin ˚ sin ˚ 4 sinh ˚ ˚ D exp <jX > (C57) 4 sinh

Here, we have introduced the circular normal distribution CN.;/ parameterized by the mean direction .0 2/ and by the concentration parameter . > 0/, the reciprocal of a dispersion measure. The spherical normal distribu- tion CN. ;˚ ;/ is parameterize by the “longitudinal direction, lateral mean direction . ;˚ /” and the concentration parameter , the reciprocal dispersion measure. We note that the p-spherical normal distribution is an element of the exponential class. Most important examples of the circular normal (R. von Mises) distributions are phase observation within the Global Positioning System (“Global Problem Solver”) according to Cai et al.(2007) and the spherical normal (Fisher) distribution for spherical -synthesis (Fourier-Legendre functions) describing the gravitational field within gravities, electrostatics and magnetostaties according to Fisher et al. (1981), Kent (1983), Mardia (1972), Man (2005), Mc Fadden and Jones (1981) and Roberts and Ursell (1960). There have been made studies to consider an ellipsoidal reference to analyze the proper reference field of celestial bodies like the Earth, the Moon, or any other planetary body. The -of-revolution is the equilibrium figure of type MacLaurin which represents to first order of the Earth,theMoon, Mars or other planets even the Jacobi triaxial reference figure is a better approximation following, for instance Chandra Sekhar (1969). We leave the question: what is the characteristic distribution of a ellipsoid-of-revolution or a triaxial ellipsoid open! A random event X is the result of a random experiment under a given condition. If these conditions change it might have an influence on the result of random experiment, namely to the probability distribution. If we consider the varying conditions on the random quantities X D X.t/, we arrive at the random effects which depend on the deterministic parameter t. We illustrate the new detailed definition of one parameter . Example C.4.1 We measure the temperature of a point continuously by a sensor for 3 years. Naturally we model the sensor recording by a graph shown in Fig. C.1. Actually we find a random variable which is function of the continuous parameter “time t”, namely X.t/. Every year we receive a temperature profile which is a deterministic function of time t W x D x.t/;0 t 1. In this form x.t/ is understood as realization of the random variable X.t/. Neglecting the influence of climate changes the function x D x.t/ is cyclic. We introduce the generalized random experiment “continuous measurement of temperature over one year” and refer it to fX.t/j0 t tg. Actually one could represent climate changes by a trend function. The character of a generalized random experiment is very obvious since for closely measuring points ti and tiC1 range in the second up to the minute. 764 C Statistical Notions, Random Events and Stochastic Processes

Fig. C.1 Graph of the function f(t) over a period of 1 year or 12 months. Two years recording: trajectories of the stochastic process

Example C.4.2

Alternatively we consider the length L=60 mm of Nylon wires and the design condition of a variance of 0.5 mm produced by one machine under equal conditions. If we analyzed the dependence of the diameter of a function of the distance t from the initial point, we receive for any measurement of the wire a function x D x.t/;0 t L. These functions differ from wire to wire, but these is no significant difference between the functional different wires. Indeed we assume changes to the constant condition of the wire. The random variations of the diameter are in the range of ˙0.02 mm and caused by the experimental conditions. Let us refer to the random wire diameter as a function of the one parameter t,weare able to define by a “continuous measurement of the various diameter of a wire as a dependence of the initial point” the generalized random experiment and formalize it by fX.t/; 0 t Lg. In contrast to random experiments which resulted in real numbers, such as general- ized random experiment generates random functions, also called stochastic process or random process. We have called our parameter “t” derived from the term “time”, but it can be any parameter for instance “position”, “placement”,“pressure”etc. Finally we are able to define a stochastic process of one parameter.

Definition C.4.2: Stochastic process C-5 Characteristic of One Parameter Stochastic Processes 765

A stochastic process of one parameter t 2 T ,theparameter space, and the state z 2 Z,thestate space, is defined as the set of random quantities fX.t/; t 2 T g .

If the set of parameter is finite or measurable infinite, we refer to a stochastic process with discrete time. Such processes are summarized as a sequence of random quantities fX1; X2;:::g. If the parameter t 2 T is interval, we refer to stochastic process with continuous time. A stochastic process fX.t/; t 2 Tg is called discrete if the state space z is a finite or measurable infinite. In contrast we refer to a continuous stochastic process if he state space is an interval.

Stochastic process ¨¨ @HH ¨¨ @HH ¨¨ @ HH ¨¨ @ HH ¨ H ¨¨ © @R HHj discrete stochastic discrete stochastic continuous stochastic continuous stochastic process with process with process with process with discrete time continuous time discrete time continuous time

If we consider various realization of X.t/ for all t 2 T , we call them trajectory of the stochastic process. For a discrete stochastic process with continuous time the trajectories are “step functions”

C-5 Characteristic of One Parameter Stochastic Processes

The most important function in with stochastic process is the distribution function of Xt ;t 2 T, namely F.x/ D P.Xt x/. But with the set of the distributions fFt .x/; t 2 Tg a stochastic ic process is not uniquely determined. A complete characterization of a stochastic process it is necessary to have information on all n-type ft1;t2; ;tn1;tng for the discrete set N WD f1; 2; ;n 1; ng with ti 2 T and the information of the distribution function of random vectors fX.t1/; X.t2/; ; X.tn1/; X.tn/g, namely

Ft1;t2;tn1;tn .x1;x2; ;xn1;xn/ WD P.X.t1/ x1; ; X.tn/ xn/ The set of distribution functions will be introduced by Table C.5.1 as well as the trend function, the covariance function, the variance function, the correlation function and the symmetry condition. 766 C Statistical Notions, Random Events and Stochastic Processes

Table C.5.1 Characteristics of one parameter stochastic process “Distribution functions of an n-dimensional random vector”

Ft1;t2;tn1;tn .x1;x2; ;xn1;xn/ WD P fX.t1/ x1; X.t2/ x2; ; X.tn1/ xn1; X.tn/ xng (C58)

“Trend function” EfXt gD.t/ for t 2 T (C59) C1R .t/ D xft .x/dx (C60) 1

“Covariance function and stochastic process”

Cov.s; t/ WD CovfXs; Xt g D EfŒXs EfXsgŒXt EfXt gg for all s; t 2 T (C61)

Cov.s; t/ D EfXs; Xt g.s/.t/ (C62)

“Variance function”

VarfXsgDWCov.t; t/ (C63)

“Correlation function” p p .s; t/ DW CovfXs; Xt g. VarfXsg VarfXt g/ (C64)

“Symmetry”

Cov.s; t/ DW Cov.t; s/ (C65) lim Cov.s; t/ D lim .s; t/ D 0 (C66) jtsj!1 jtsj End of Table C.5.2 Of special importance are those stochastic processes which do not depend on the absolute values of ti , but are functions of the distances between the points. They are considered as functions of the relative positions.

Definition 5.1 (Stationary in the narrow sense)

A stochastic process fXt ;t 2 Tg is stationary in the narrow sense if for all n 2 f1; 2; gfor arbitrary subject to ti 2 T and ti C h 2 T holds C-5 Characteristic of One Parameter Stochastic Processes 767

Ft1;t2;tn1;tn .x1;x2; ;xn1;xn/ D Ft1Ch;t2Ch;tn1Ch;tnCh.x1;x2; ;xn1;xn/ (C67) A special property is for

.t/ D EfX.t/gD.const/ (C68) VarfX.t/gD.const/ (C69)

End of Definition 5.1

Special case n D 2, for instance, t1 D 0; t2 D t s; h D s will lead us to

F0;ts.X1x2/ D Fs;t .x1x2/ D F./for WD t s (C70) Cov.s; t/ D Cov.s; s C / D Cov./ for WD t s (C71) “Symmetry”:Cov./ D Cov./ D Cov.jj/ (C72) lim Cov./ D 0 (C73) jj!1

Another generalization is achieving of the treat stochastic process ”of higher order” Definition 5.2: (stationary in the wider sense): A stochastic process of second order is stationary in the wider sense if the conditions 1. .t/ D const and 2. Cov.jj/ D CovfXs; Xt g End of Definition 5.2 Besides the condition of stationary another support property of a stochastic process is the set of conditions which hold for increments of stochastic process fX.t/; t 2 Tg in the interval Œt1;t2 for t1

Xt2 Xt1 In general such increments may be negative. The concept of incremental stochastic processes will lead us later to the concept of Kolmogov’s structure functions which is very popular in the applied sciences. Definition 5.3: (Stationary increments): A stochastic process fX.t/; t 2 Tg is called homogenous or stationary incremental, if the increments fX.t2 C /gfX.t1 C /g for all have identical probability distributions for any fixed t1 and t2 End of Definition 5.3 The great advantage of the incremental stochastic process in applications has the origin in the fact that a stationary stochastic process is not necessary. 768 C Statistical Notions, Random Events and Stochastic Processes

Definition 5.4: (Stochastic processes with incremental properties): A stochastic process fX.t/; t 2 Tg has independent increment for all n D 3; 4; and values ft1;t2; ;tn1;tng subject to the order ft1

Xt2 Xt1 ; Xt3 Xt2 ; ; Xtn1 Xtn2 ; Xtn Xtn1 (C74) being independent. End of Definition 5.4

Try to consider that the point tn1 is placed in the future the point tn at present time, is general for n>1all points ft1;t2; ;tn1;tng in the past.TheeventattnC1 for a Markov process depends only on the events at tn: Definition 5.5: (Simple Markov process): A stochastic process fX.t/jt 2 Tg has the property of a Markov process is for all n 2f1; 2; ; g if for all n 2f1; 2; g.n C 1/ tuple ft1;t2; ;tn1;tng ordered according to ft1

Z Z Z Z P fXtnC1 2 nC1jX.tn/ 2 n; X.tn1/ 2 n1; ; X.t1/ 2 1g

D P fX.tn1/ 2 Zn1jX.tn/ 2 Zng (C75)

End of Definition 5.5 Stochastic processes with the property of a simple Markov process is characterized by independent increments.

Lemma 5.6: Markov process A Markov process is in narrow sense stationary if and only if the one-dimensional probability is independent of the time such that

F.x/ D P fXt tgDx for all t 2 T (C76)

End of Lemma 5.6 Markov process with a finite state space are called Markov chains, otherwise they are called continuous Markov chains. Definition 5.7: (Continuity in the squared mean):

A stochastic process of second order fX.t/jt 2 Tg located in the point t0 is in the squared mean continuous if C-6 Simple Examples of One Parameter Stochastic Processes 769

2 lim E.ŒX.t0 C h/ X.t0/ / D 0 (C77) h!0

The stochastic process fX.t/jt 2 Tg is in the domain T0 D T in the quadratic mean continuous if the stochastic process has this property for all t 2 T0 End of Definition 5.7

Lemma 5.8: Squared mean and its covariance function

A stochastic process of second order fX.t/jt 2 Tg is continuous in the point t0 if its covariance function Cov.s; t/ is characterized by .s; t/ D .t0t0/ and its trend function .t/ is continuous in the point t D t0.

End of Lemma 5.8

C-6 Simple Examples of One Parameter Stochastic Processes

Simple examples of one parameter stochastic process are introduced divided in two types of stochastic processes, first with continuous time and second with discrete time: (i) Process with linear realizations (ii) Cosine oscillations with random amplitude (iii) Cosine oscillations with random amplitude and random phase (iv) Superposition of two uncorrelated random functions (v) Impulse modulation (vi) Randomly retarded pulse modulation (vii) Random sequences with discrete signals (viii) Random sequences of moving averages of order n: MA.n/ (ix) Random sequences of moving averages of order n: M A.n/ (x) Random sequences of unlimited order (xi) Autoregressive sequences of first order AR.1/ (xii) Autoregressive sequences of first order r: AR.r/ (xiii) ARMA (r,s) models. We present here simple examples of stochastic processes. Statements with respect to stationarity relate always to stationarity in the wide sense.

Ex 1: Processes with Linear Scalisations

Examples of stochastic processes with continuous time 770 C Statistical Notions, Random Events and Stochastic Processes

Example 6.1 Process with linear realizations

Many linear models can be characterized by the simple linear model X.t/ D Vt C W , V and W are random effects with the mean EfX.t/jt 0g called trend functions and the variance-covariance function EfŒX.s/ EfX.s/gŒX.t/ EfX.t/g D EfŒVs C W ŒV t C wg.s/.t/ DW ˙.s;t/. A first result is the variance-covariance function oriented to our model.

˙.s;t/ D st Var.V / C .s C t/ Cov.V; W / C Var.W / (C78)

A second result is the special case W = constant. In such a case we find the variance- covariance function ˙.s;t/ D st Var.V / End of Example 6.1

Ex 2: Cosine Oscillations with Random Amplitudes

Example 6.2 Cosine oscillation with random amplitude Here we assume the cosine model X.t/ D A cos !t, where A is a non-negative random effect, the amplitude subject to EfAg < 1. Here we realize the trend function of oscillations of type EfX.t/gDEfAg cos !t. The variance-covariance function for such a simple model is given by EfŒX.s/EfX.s/gŒX.t/EfX.t/g D 2 EfŒA cos !sŒA cos !tg.s/.t/ D ŒEfAg2 EfAg .cos !s/.cos !t/ DW ˙.s;t/ Let us denote the variance 2 D Var.A/ such that we receive the variance- covariance function ˙.s;t/, namely

˙.s;t/ D 2.cos !s/.cos !t/ (C79)

End of Example 6.2

Ex 3: Cosine Oscillations with Random Amplitudes and Phase

Example 6.3 Cosine oscillation with random amplitude and random phase

This time we assume the cosine model X.t/ D A cos.!t C ˚/, where A is a non- negative random effect and finite variance. The phase is a random effect, equally distributed ˚ 2 Œ0; 2, The two random effects A and ˚ are independently from each other in the statistical sense. Such a stochastic process fX.t/ 2 .1; C1/g can be considered as the outputs of the larger number of similar oscillators, arbitrarily chosen when applied at different time instances. Because of C-6 Simple Examples of One Parameter Stochastic Processes 771

Z2 1 Efcos.!t C ˚/gD cos.!t C ˚/d˚ 2 0 1 D Œsin.!t C ˚/2 D 0 (C80) 2 0 We experience a zero trend function. According the variance-covariance function we may represent by

˙.s;t/ D EfŒA cos.!s C ˚/ŒA cos.!t C ˚/gd˚ Z2 1 D EfA2g cos.!s C ˚/cos.!t C ˚/d˚ 2 0 Z2 1 1 D EfA2g fcos.t s/cosŒ!.s C t/C 2˚gd˚ (C81) 2 2 0

The first term characterizes a constant, while the second term approaches zero such the resulting variance-covariance function is proportional to the difference DW t s

1 ˙./ D ˙.t s/ D EfA2g cos !t (C82) 2

Such a process is stationary. End of Example 6.3

Ex 4: Superposition of Two Uncorrelated Random Function

Example 6.4 Superposition of two uncorrelated random functions

Let A and B be two uncorrelated random functions characterized by EfAgD EfBgD0 and var.A/ D var.B/ D 2 < 1, The derived stochastic process is defined by fX.t/; t 2 .1; C1/g, namely by

X.t/ D A cos !t C B sin !t (C83)

Because of var.X.t// D 2 < 1 we have an example of random process of second order. Due to EfX.t/gDEfAg cos !t C EfBg sin !t D 0 (C84) 772 C Statistical Notions, Random Events and Stochastic Processes

Fig. C.2 Pulse demodulation of a binary system

We are able to compute the variance-covariance function ˙.s;t/ D EfX.t/X.s/g assuming EfA; BgDEfAgEfBgD0 due to uncorrelation

˙.s;t/ D EfA2 cos !s cos !t C B2 sin !s sin !tg C EfAB cos !s sin !t C sin !s cos !tg D 2.cos !s cos !t C sin !s sin !t/ C EfABg.cos !s sin !t C sin !s cos !t/ (C85) ˙.s;t/ D 2 cos !t for DW t s (C86)

Again we gain a stochastic process which depends only on the difference t s DW which is stationary. End of Example 6.4

Ex 5: Pulse Modulation

Example 6.5 Pulse modulation

A source generates at each time interval T time units of independent from each other a sign “1” or “0” with the probability 1-p or . The transfer of a “1” or “0” appears in this way that T time units produce a pulse with the amplitude A. In this way they generate a random signal, namely a stochastic process fX.t/; t 2 .1; C1/g, with this property: 0 with probability X.t/ D A with probability .1 /:

We start from the partial sequence, for instance 101101, illustrated by Fig. C.2. We have chosen the initial value t D 0 in such a way that we start the transmission of a message. Finally we review the trend function of the process as a constant and the covariance function as a non stationary process. C-6 Simple Examples of One Parameter Stochastic Processes 773

Fig. C.3 Randomly retarded pulse demodulation of a binary system

EfX.t/gDAP fX.t/ D AgCOP fX.t/ D 0gDA.1 p/ (C87) nT s; t < .n C 1/T; n D 0; ˙1; ˙2; EfX.s/; X.t/gDEfX.s/; X.t/jX.s/ D AgP fX.s/jX.s/ D Ag C EfX.s/; X.t/jX.s/ D 0gP fX.s/jX.s/ D 0g D A2.1 p/ (C88)

For m ¤ n, the process X.s/ and X.t/ are independent due to mT s .m C 1/T and nT t<.nC 1/T . Accordingly the variance-covariance function is not stationary:

˙.s;t/ D Cov.s; t/ A2p.1 p/ for all nT t<.nC 1/T; for all n D 0; ˙1; ˙2; D 0 otherwise: (C89)

End of Example 6.5

Ex 6: Random Retarded Pulse Modulation

Example 6.6: Randomly retarded pulse modulation

With regard to our previous example of a stochastic process fX.t/; t 2 .1; C1/g, we consider another stochastic process fY.t/ DfX.t 1/g subject to t 2 .1; C1/ assuming that D 2 Œ0; T is a random variable of a trajectory fX.t/; t 2 .1; C1/g shifted to the right producing the other stochastic process fY.t/; t 2 .1; C1/g. We illustrate the transfer by a random number 101101 under the constraint D D 0.Thetrend function of such a process is characterized by EfX.t D/gDA.1 p/ as we have seen before. X.s/ and X.t/ are independent if and only if when the inequality jt sj >T holds or if s and t at the points nT C D for n D 0; ˙1; ˙2; are disjunct. Let us call the random event by B.Thecomplementary event is denoted by B. The related 774 C Statistical Notions, Random Events and Stochastic Processes

Fig. C.4 Covariance function of a randomly retarded pulse modulation

probability values are called P.B/ D .t s/=T and P.B/ D 1 .t s/=T.For all jt sjT to variance-covariance function is represented by

˙.s;t/ D EfX.s/; X.t/jBgP fBgCEfX.s/; X.t/jBgEfX.s/gEfX.t/g D EfX.s/; X.t/jBgP fBgCEfŒX.s/2gP fBgEfX.s/gEfX.t/g D ŒA.1 p/2jt sj=T C A2.1 p/.1 jt sj=T/ ŒA.1 p/2 (C90) A2p.1 p/.1 jj=T/ forjjT ˙. WD t s/ D (C91) 0 otherwise:

The random process of second order fY.t/; t 2 .1; C1/g is therefore stationary illustrated by its variance covariance-function of Fig. C.4

Example of stochastic processes with discrete time

Stochastic processes with discrete time scale can be understood as a random sequence. Here we restrict us to stationary random sequences as a first order model. They play a dominant role in signal transform and signal transfer. End of Example 6.6

Ex 7: Random Sequences with Discrete Signals

Example C6.7 Random sequences with discrete signals

Let f ; X2; X1; X0; X1; X2; gbe a random sequence of uncorrelated identical distributed random events characterized by 2 EfXi gD0; VarfXi gD < 1;i2f0; ˙1; ˙2; Due to the restricted range of variances we model a random process of second order, its trend function is zero. C-6 Simple Examples of One Parameter Stochastic Processes 775

EfXi gD0; for all i 2f0; ˙1; ˙2; 2 for all D 0I cov./ D (C92) 0 for ¤ 0:

Its covariance function with odd numbers s and t is characterized by the form Cov.s; t/ D EfXsXt g such that Cov.s; t/ D EfXsgEfXt gD0 for s ¤ t and Cov.s; t/ D EfX2gD 2 for s D t. Obviously beside the property of stationarity of random sequences it is important the property of independent increments. End of Example 6.7

Ex 8: Random Sequences of Moving Averages of Order n W MA.n/

Example C.6.8 Random sequences of moving averages of order n: MA(n) A random signal may be given by Xn Yt D ci Xt1for allt 2f0; ˙1; ˙2;g iD0 where fXi g is a random sequence of independent effects with parameter. The natural number n and the sequence of real restricted real numbers c0;c1; ;cn1;cn are given. The construction of the Yt are influenced by the momentary date Xt as well as n previous values f ; X2; X1; X0; X1; X2; g. Such a relation is called Principle of moving averages characterized by the process of second order Xt ;t 2f0; ˙1; ˙2;g.

Xn 2 VarfYt gD ci ci < 1 for all t 2f0; ˙1; ˙2;g (C93) iD0 “trend function” EfXt gD0forallt2f0; ˙1; ˙2;g .C93/ “covariance function” 8" # 9 < Xn Xn = cov.s; t/ D EfYsYt gDE : ci Xsi Œ cj Xtj ; iD0 j D0 82 39 < X Xn = 4 n 5 D E : i D 0 ci cj Xsi Xtj ; (C94) j D0 776 C Statistical Notions, Random Events and Stochastic Processes

“if jt sj >n, then EfXsi Xtj gD0 subject to s i ¤ t j ”, “if s i D t j , then”

Xn 2 cov.s; t/ D Ef ci cjtsjCi Xsi g 0in;0jtsjin njXtsj 2 D ci cjtsjCi (C95) iD0

As a summary, the covariance function cov.s; t/ D cov.t/ subject to WD t s is as a sequence of moving average stationary 2.c c C c c Cc c /for 0jjnI cov./ D 0 jj 1 jjC1 njj n (C96) 0forjj >n:

End of Example C 6.8

Ex 9: Random Sequences with Constant Coefficients of Moving Averages of Order n W MA.n/

Example C.6.9 Random sequences of moving averages of order n: MA(n)

A special case if the coefficient ci in our previous example is the setup c D 1=.nC1/ for i 2f0; 1; ;n 1; ng. The sequence of moving average of order n can be defined by

1 Xn Y D X for all t 2f0; ˙1; ˙2;g (C97) t n C 1 ti iD0 " 2 1 jj for 0 jjnI cov./ D nC1 nC1 (C98) 0 otherwise:

“MA” summarizes “moving average”ofordern.

End of Example C 6.9 C-6 Simple Examples of One Parameter Stochastic Processes 777

Ex 10: Random Sequences of Unlimited Order

Example C.6.10 Random sequences of unlimited order

Let be given the random sequence of unlimited order of type

X1 Yt D ci Xti for all t 2f0; ˙1; ˙2;g (C99) iD0 for real numbers ci . In order to guarantee the convergence of the series we assume

X1 ci < 1 (C100) iD0 its related covariance function can be represented

X1 2 Cov.; t/ D ˙./ D ci cjjCi for all Df0; ˙1; ˙2;g (C101) iD0 XJ 2 Var.Yt / D ˙.0/ D lim ci for all t Df0; ˙1; ˙2;g (C102) J !1 iD0

Yt D ˙.0/ D lim ci Xti for all t Df0; ˙1; ˙2;g i!1;C1 2 Cov.s; t/ D ˙./ D lim ci cjjCi J 2Œ1;C1 The result is a two-sided sequence of moving averages

End of Example C 6.10

Ex 11: Autoregression Sequence of First Order: AR.1/

Example C.6.11 Autoregressive sequences of first order: AR(1)

The starting point is the autoregressive sequence of first order AR(1)oftype

Yt D aYt1 C bXt for all t Df0; ˙1; ˙2;g (C103) 778 C Statistical Notions, Random Events and Stochastic Processes limited by jaj <1and b as well as the random sequence fXg.Theinstant state Yt depends only of the previous state Yt1 as well as a random disturbance Xt subject 2 2 2 to fXgD0 and Ef.Xt EfXt g/ gDb . Applying n times of the series we gain

Xn1 n i Yt D a Ytn C b a Xti (C104) iD0 X1 n i lim a D 0.C 105/ ) Yt D b a Xt (C105) n!1 iD0

“Special Case”

XJ XJ 2 i i 2 2 2i b ci DW ba W lim ba D b lim a D forJ < 1 J !1 J !1 1 a2 iD0 iD0 (C106)

For an autoregressive sequence of first order of a stationary random process we arrive a the characteristic covariance function

XJ XJ Cov./ D .b/2 lim ai ajjCi D ajj.b/2 lim a2i (C107) J !1 J !1 iD0 iD0

.b/2 Cov./ D ajj for D 0; ˙1; ˙2; (C108) 1 a2

End of Example C 6.11

Ex 12: Autoregression Sequence of First Order r: AR.r/

Example C 6.12 autoregressive sequences of order r: AR(r) An autoregressive sequence of order r called “AR(r)” is the random sequence Yt ;t D 0; ˙1; ˙2; over the set of real numbers a1;a2; ;ar1;ar namely

Yt C a1Yt1 C a2Yt2 CCar1Yt.r1/ C ar Ytr D bXt (C109)

The set Xi is a random sequence of parameters C-6 Simple Examples of One Parameter Stochastic Processes 779

PJ P1 Is the setup Yt D lim ct Xt1 for ci < 1 for a stationary sequence J !1 iD1 iD0 transformable in an autoregressive sequence of order r ? For solving this problem we have to solve for the relation of constants

c0 D b

c1 C a1c0 D 0

c2 C a1c1 C a2c0 D 0

cr C a1cr1 CCar c0 D 0

ci C a1ci1 CCar cir D 0 (C110)

A non-trivial solution of the equation leads us to the algebraic equation

r r1 y D a1y CCar1y C ar D 0 (C111)

2 Example: y C a1y C a2 D 0 For an autoregressive sequence of second order, namely r=1, we study the equation of quadratic order, namely by the eigen values 1 and 2. For the case 1 ¤ 2 we compute the covariance function.

.1 2/jjC1 .1 2/jjC1 Cov./ D Cov.0/ 1 2 2 1 (C112) .2 1/.1 12/

Alternatively, for the case 1 D 2 D we calculate the covariance function: 1 2 Cov./ D Cov.0/ 1 C jj jj for D 0; ˙1; ˙2; (C113) 1 C 2

subject to

Cov.0/ D VarfYt g

1 C a Cov.0/ D 2 (C114) 2 2 .1 a2/Œ.1 C a2/ a1

If 1 and 2 are complex, then there exist and ! subject to

1 D exp.i!/;2 D exp.i!/ (C115) 780 C Statistical Notions, Random Events and Stochastic Processes

Cov./ D Cov.0/˛jj sin.!jjCˇ/ for D 0; ˙1; ˙2; (C116) 1 1 C 2 ˛ WD ;ˇD arctan tan ! (C117) sin ˇ 1 2

Example: Numerical example

Let us introduce the numerical example for the autoregressive sequence

Yt 0:6 Yt1 C 0:05 Yt2 D 2Xt for t D 0; ˙1; ˙2; (C118)

subject to

VarfXt gD1 (C119) Obviously the impact of the term at the time instant t-2 on Y is small, at least compared to term on the time instant t-1. The related algebraic equation of second order can be represented by

Y2 0:6 y C 0:05 D 0 (C120)

Their solution is 1 D 0:1 and 2 D 0:5. Indeed compared to one, they are small than one. The solution leads to a stationary autoregressive sequence characterized by the covariance functions

Cov./ D 7:017 .0:5/jj 1:063 .0:1/jj (C121)

subject to

D 0; ˙1; ˙2; Cov.0/ D VarfYt gD5:954 More details can be taken from Andel (1984)

End of Example C.6.12

Ex 13: ARMA (r,s) Models

Example C.6.13 ARMA(r,s) models C-7 Wiener Processes 781

As a combination of random sequences of moving averages and of auto regressive sequences we introduce the ARMA(r,s) of the order Yt Ca1Yt1CCar1Yt.r1/Car Ytr D b0Xt Cb1Xt1CCbs1Xt.s1/Cbs Xts (C122) In practice, ARMA model we used to model time series as a sequence of real numbers determined by observing the state variables in discrete time instants. Very often, time series are not realizations of stationary random sequences of type fYt ;t D 0; ˙1; ˙2;g with constant trend functions EfYt gD.t/,butthe transformation Z.t/ D EffY.t/gEfY.t/gg (C123) reduced mean

EfZi gDEŒfYt gEfYt g D 0 (C124) reduced covariance matrix

DfZgDEŒfYt1 gEfYt1 g D ŒYt2 EfYt2 g D cov.t1;t2/ (C125) leads approximately to proper fit of ARMA models. They are called trend reduced moving average interregressive sequences being “nearly stationary”. Very efficient software exist nowadays.

End of Example C.6.13: ARMA(r,s)

C-7 Wiener Processes

First,wedefineaWiener Process by three axioms, namely by stationary increments of a random function, together with path continuity. The relation to a random walk is outlined. Especially the probability density of an ordered n-dimensional Wiener Process is reviewed. Secondly, special Wiener A Process of type (a) Ornstein- Uhlenbeck (b) WIENER Process with drift and (c) integrated WIENER Process are introduced

C-71 Definition of the Wiener Processes

The English botanician R. Brown published in the year 1828 the random movement of microscopic small organic and inorganic particles suspended in liquids illustrated in Fig. C.3. We observe a totally irregular motion of particles, nowadays called Brownian motion. Its first analytical treatment, we owe Bachelier (1900)and 782 C Statistical Notions, Random Events and Stochastic Processes

Fig. C.5 Trajectory of a two dimensional Brownian motion of 30 s distance (Perrin 1916)

Einstein (1905). Both found that a two-dimensional Gauss-Laplace distribution can model the typical Brownian motion. They spoke a chaotic movement of microscopic small particles. Wiener (1923) built up his theory of stochastic process with independent increments to model this Brownian motion we will define first.

Definition C.7.1: Wiener Process A stochastic process fX.t/; t 0g with continuous time and the state space Z D .1; C1/ is called Wiener Process when it can be described as a path-continuous process by the following axioms. (i) X.0/ D 0 (C 126) (ii) fX.t/; t 0g has stationary increments (C 127) (iii) for all t>0, X.t/ is Gauss-Laplace normally distributed (C 128)

End of Definition C.7.1: Wiener Because of the stationarity of the increments, the difference X.t/ X.s/ for all s; t 0 are Gauss-Laplace normally distributed with expectation EfX.t/ X.s/gD0 and variance 2jt sj. Since the increments are independent the increments are a Markov-Wiener process. If D 1, then we call the process “standard Wiener”. Continuity and differentiability

EfjX.t/ X.s/j2gDVarfX.t/ X.t/gD 2jt sj (C129) lim EfjX.t C h/ X.t/j2gDlim 2jhjD0 (C130) h!0 h! “In the mean square sense the Wiener Process is continuous” Wiener Process and the random walk C-7 Wiener Processes 783

There is a intimate contact of Wiener Process and “a random walk” of a particle. The random walk of a particle can be described by

X.t/ D .X1 C X2 CCXŒt=t/x (C131)

“In the time interval starting by x D 0, a particle moves in the time difference t by x as a length unit to the left and the right with probability 1/2”. C1 if the jump is to the right X.t/ D (C132) 1 if the jump is to the left

“t=t” is the largest even number smaller or equal “t=t”

P.Xt D 1/ D P.Xt D1/ D 1=2 (C133)

EfXi gD0 and VarfXi gD1 )

) EfX.t/gD0 and VarfX.t/gD.x/2Œt=t

t ! 0 ) EfX.t/gD0, VarfX.t/gD 2t

Multidimensional distribution and conditional probability

Let fX.t/g for t 0 be a Wiener Process. We ask the question what is distribution of the sum of independent Gauss-Laplace normally distributed incremental qualities of type

X.ti / D X.t1/ C .X.t2/X.t1// CC.X.ti /X.ti1// subject to

i D 2;3; ;n 1; n

The result will lead us to the Special Wiener Process of type Gauss Process

Lemma C.7.2: Probability density of an n-dimensional Wiener Process

Let us assume 0

ft1;t2; ;tn1;tn .X1; X2; ; X.tn1/; X.tn//

D ft1 .X1/ft2t1 .X2 X1/ ftn1tn2 .Xn1 Xn2/ftntn1 .Xn Xn1/ (C134) and has the structure

ft1;t2; ;tn1;tn .X1; X2; ; X.tn1/; X.tn// 1 x2 .x x /2 .x x /2 .x x /2 D expf Π1 C 2 1 CC n1 n2 C n n1 g 2 t1 t2 t1 tn1 tn2 tn tn1 p n=2 n .2/ t1.t2 t1/ .tn1 tn2/.tn tn1/ (C135)

End of Lemma C.7.2: n-dimensional Wiener Process

Proof of Lemma 7.2

For the proof we depart from the one dimensional probability density of fXt g of type Wiener Process.

First assumption

p 2 2 ft .x/ DexpŒx =.2 t/ 2t (C136)

Second assumption

Let fs;t .x1x2/ the probability density of the random vector fX.s/X.t/g subject to the order 0

fs;t .x1x2/dx1dx2 D P.X.s/ D x1; X.t/ D x2/dx1dx2 (C137)

P.X.s/ D x1; X.t/ D x2/ D P.X.s/ D x1; X.t/ X.s/ D x2 x1/dx1dx2 (C138)

fs;t .x1x2/dx1dx2 D P.X.s/ D x1/P.X.t/ X.s/ D x2 x1/dx1dx2 (C139)

“independent increments”

fs;t .x1x2/ D fs .x1/ft .x2 x1/ (C140)

Third assumption

p 2 2 2 fs;t .x1x2/ D expfŒtx1 2sx1x2 C sx1 g2 s.t s/ (C141) C-7 Wiener Processes 785

“correlation coefficient, covariance function” p s; t DC s=t (C142) CovfX.s/; X.t/gD 2s for 0

CovfX.s/; X.t/ X.s/gD0 (C143) CovfX.s/; X.t/gDCovfX.s/; X.s/ C X.t/ X.s/g D CovfX.s/; X.s/gCCovfX.s/; X.t/ X.s/g D CovfX.s/; X.s/gDVarfX.s/gD 2 (C144)

“conditional probability density” Condition: X.t/ D b

fX.s/.xjX.t/ D b/ D fs;t .x; t/ ft .b/ (C145) r s 2 s f .xjX.t/ D b/ D expf.x b/ 2 .t s/g (C146) X.s/ t t

s s EfX.s/jX.t/ D bgD b; VarfX.s/jX.t/ D bgD 2 .t s/ (C147) t t max VarfX.s/jX.t/ D bg,s D t=2 (C148)

Finally, a generalization from ft .t/; fs;t .s; t/ to ft1t2tn1tn leadsustoLemma C 7.2 End of proof for Lemma C.7.2 At this end we will define the Gauss process.

Definition C.7.3: Gauss process A stochastic process X.t/; t 2 T is a Gauss Process of type (C135), if for arbitrary vectors .t1;t2; ;tn1;tn/ ordered as t1

End of Definition C.7.3: Gauss process

C-72 Special Wiener Processes: OrnsteinÐUhlenbeck, Wiener Processes with Drift, Integral Wiener Processes

Here we only introduce special Wiener Process of type 786 C Statistical Notions, Random Events and Stochastic Processes

(i) Ornstein-Uhlenbeck (ii) Wiener Process with drift and (iii) integrated Wiener Process It has to be remembered that the trajectories of a Wiener Process are nowhere differentiable. Particles in motion have an infinite velocity when modeled a Wiener Process. In order to overcome this difficulty, Ornstein and Uhlenbeck developed a stochastic model for modeling the velocity of particles, an important issue in Continuum mechanics. Definition 7.3: Ornstein-Uhlenbeck Process Let fX.t/; t 0g be a Wiener Process with the parameter . Then we call

V.t/ D Œexp.˛t/X.exp.˛t// (C149) subject to ˛>0, a stochastic process fV.t/;1

p 2 2 fV.t/.x/ D Œexp.x =2 / . 2/ (C150) Property 1: Expectations

EfV.t/gD0; VarfV.t/gD 2 (C151) Cov.s; t/ D 2Œexp.2˛.t s// for s t (C152)

Proof for the covariance function

Cov.s; t/ D Cov.V .s/; V .t// D EfV.s/V.t/g D expŒ˛.s C t/EfX.exp2˛s/X.exp2˛t/g D expŒ˛.s C t/Cov.X.exp2˛s/X.exp2˛t// D expŒ˛.s C t/2Œexp.2˛.t s// (C153)

It has to be mentioned that the Ornstein-Uhlenbeck Process is stationary in the wider sense.AsaGauss Process it is also stationary in the narrow sense.Insum- mary, the Ornstein-Uhlenbeck Process is an instationary Wiener Process which is stationary process due to the action of time transformation and normalization. In comparison to the Wiener Process,theOrnstein-Uhlenbeck has the following differences C-7 Wiener Processes 787

1. The Ornstein-Uhlenbeck Process has no independent increments 2. The trajectories of an Ornstein-Uhlenbeck Process are in the quadratic mean differentiable

Wiener Process with drift Another example for the transformation of an instationary process to a stationary process is the Wiener Process with drift.

Definition 7.4: Wiener Process with drift A stochastic process fW.t/; t 0g with independent increments is called a Wiener Process with drift, if the following properties hold: (i) W.0/ D 0 (C154) (ii) Each increment has the property W.t/ W.s/ is Gauss-Laplace normally distributed with second order statistics (iii) EfW.t/gD.t s/ (C155) (iv) VarfW.t/gD 2jt sj (C156)

End of Definition 7.4: drifted Wiener Process An equivalent formulation is next:

“fW.t/; t 0g is a Wiener Process with drift, if it has the structure

W.t/ D t C X.t/ (C157) where fX.t/; t 0g is a Wiener Process subject to 2 D VarfX.1/g and an arbitrary constant, called as drift parameter”.

Obviously, a Wiener Process with drift is generated by the super position of type “additive” of a Wiener Process with a deterministically growing decreasing part. The deterministic part is a trend function of type .t/ D t. The one dimension probability density distribution of a “Wiener Process with drift” can be characterized by p 2 fW.t/.x/ D expŒ.x t/ =.2/ Œ 2t; 1;x;C1 (C158) 788 C Statistical Notions, Random Events and Stochastic Processes

In practice, drift parameters are daily experience. We restrict ourselves with only one example. Example: Geometric Wiener Process with drift Let us introduce a stochastic process of type fZ.t/; t 0g characterized by

Z.t/ D expW.t/ (C159) called “geometric Wiener Process with drift”. Since the model W.t/ has by definition a Gauss-Laplace normal distribution the expectation of .Z.t// equals the moment generating function of W.t/. For instance,

EfexpW.t/gDexpfst. C 1=22s/g (C160) s D 1 W) EfZ.t/gDexpŒt. C 2=2/ (C161) s D 2 W

) EfZ2.t/gDexpŒ2t. C 2/ (C162) ) VarfZ.t/gDexpŒt.2 C 2/Œexp.t 2/ 1 (C163)

Integrated Wiener Process By transforming of a Wiener Process we receive a stochastic process which is very important in the analysis. We will summarize these transformations in three cases in our

Lemma 7.5: Elementary transformations os a Wiener Process Let fX.t/; t 0g be a standard Wiener Process such that the following stochastic processes are as well standard Wiener Processes: (i) fU.t/; t 0g subject to U.t/ D cX.t=c2/; c > 0 (C164) (ii) fV.t/; t 0g subject to V.t/ D X.t C h/ X.h/; h > 0 (C165) (iii) fV.t/; t 0g subject to X.t/ for all t>0 W.t/ D (C166) 0 for all t>0

End of Lemma 7.5

We skip the proof. Instead let fX.t/; t 0g be a Wiener Process: Accordingly “near all” trajectories x D x.t/ are continuous in the squared mean. In consequence, there C-7 Wiener Processes 789

Rt exist the integrals u.t/ D x.y/dy for “nearly all” trajectories x D x.t/.These 0 integrals are realizations of the random integral.

Zt u.t/ D x.y/dy (C167)

0 u.t/ is the symbol for the integral acting on “nearly all” trajectories of a Wiener Process subject to the probability distribution fU.t/; t 0g defines a stochastic process called integrated Wiener Process.

Stochastic integration

Assume the Riemenn integration for 0 D t0

Xn u.t/ D lim f ŒX.ti / X.ti1/ti (C168) n!1;ti !0 iD1 u.t/ is the lines of a sum of independent Gauss-Laplace normally distributed random variables as well Gauss-Laplace normally distributed:Anintegrated Wiener Process is being analyzed by .a/ Trend function:

Zt Zt Ef X.y/dygD EfX.y/gdy D E.t/ D 0 (C169)

0 0 .b/ Covariance function:

Zs Zt Zs Zt Covfu.s/; u.t/gDEf X.z/dz X.y/dygD EfX.z/X.y/gdyd z

0 0 0 0 Zs Zt Zs Zy Zs Zt D 2 min.y; z/dydz D 2 zdzdy C 2 ydzdy

0 0 0 0 0 y Zs Zs 1 D 2 y2dy C 2 y.t y/dy (C170) z 0 0 790 C Statistical Notions, Random Events and Stochastic Processes

2 Covfu.s/; u.t/gD .3t s/s2 for s t (C171) 6 2 Varfu.t/gD t 3 for s D t (C172) 3

An integrated wiener Process is not stationary, in general. But it can be proven that the stochastic process V.t/ WD u.t C/u.t/ for V.t/ 2fV.t/; t 0g is stationary for all >0.

White noise A stochastic process, Z.t/ 2fZ.t/; t 0g subject to

Z.t/ WD dX.t/ dt D X.t/ (C173)

or

dX.t/ WD Z.t/dt (C174)

cannot be computed by standard differentiation: We have to introduce stochastic integration, for instance

Zb Xn f.t/dX.t/ D lim f f.ti1/ŒX.ti / X.ti1/g (C175) n!1;ti !0 a iD1 Zb Zb f.t/dX.t/ D f.b/X.b/ f.a/X.a/ X.t/df.t/ (C176) a a

The representation reminds us to “partial integration”. As the limit of the sum of independent Gauss-Laplace normally distributed random variables we have to compute the expectation of type

Zb Ef f.t/dX.t/gD0 (C177) a C-7 Wiener Processes 791

Xn Varf f.ti1/ŒX.ti / X.ti1/ iD1 Xn 2 D f .ti1/VarfX.ti / X.ti1/g iD1 Xn Xn 2 2 2 2 D f .ti1/.ti ti1/ D f .ti1/ti (C178) iD1 iD1

The limit approaches the variance of the stochastic integral of type

Zb Zb Varf f.t/dX.t/gD 2 f 2.t/dt (C179) a a

This result leads to the definition of White Noise

Definition C.7.6: White Noise A stochastic process fZ.t/; t 0g is called “White Noise” if for any arbitrary interval Œa; b of continuously differentiable functions f.t/, namely

Zb Zb f.t/dZ.t/ D f.b/X.b/ f.a/X.a/ X.t/df.t/ (C180) a a where fX.t/; t 0g is a Wiener Process.

End of Definition C.7.6: White Noise ?Why we call stochastic process “White Noise”? The origin of the question is the definition of the “generalized derivative”. To this end we define ”the Dirac Delta function”asa“generalized function” 1=h for h=2 t Ch=2 ı.t/ WD lim (C181) h!0 0 otherwise

or

1 for t D 0 ı.t/ WD (C182) 0 otherwise 792 C Statistical Notions, Random Events and Stochastic Processes

Properties of Dirac’s Delta function (i)

ZC1

f.t/ı.t t0/dt D f.t0/ (C183) 1

(ii) Heaviside functions 1 for t 0 H.t/ WD (C184) 0 for t<0

“The Dirac’s Delta function is the formal derivative of the Heavide function”

ı.t/ D @H.t/=@t (C185)

(iii) Covariance function

CovfZ.s/; Z.t/gDCovŒ@X.s/=@s; @X.t/=@t @ @ @ @ D CovfX.s/; X.t/gD min.s; t/ @s @t @s @t @ D H.s t/ (C186) @s

CovfZ.s/; Z.t/gDı.s t/ (C187) the covariance function is a measure of the statistically independence between Z.s/ and Z.t/, have a function of the small distances between the point s and the point t, namely js tj. “How can we illustrate the Dirac function?” Let fN.t/;t 0g be an arbitrary numbering process following our Definition C.7.6. The instants of the process at the points T1;T2; ; admit the representation in terms of the Heavide function N 0.t/ in terms of the Dirac function:

X1 X1 N.t/ D H.t Ti /; @N.t/=@t D ı.t Ti / (C188) iD1 iD1

Figure C.6 an illustration of the numbering process. The theory of stochastic integration has led us to the concept of generalized function, namely the Dirac function and Heaviside function, and to the notion of White Noise. More general notions like the concept of Colored Noise and finally to the notion of its stochastic processes. C-8 Special Analysis of One Parameter Stationary Stochastic Process 793

Fig. C.6 Dirac numbering system

C-8 Special Analysis of One Parameter Stationary Stochastic Process

C.8: Spectral analysis of one parameter stationary stochastic processes

Statistic or stochastic processes are conventionally divided into three classes we have already touched: Class one Class two Class three general instationary stationary ergodic stationary process process process

In real life, of course, we have live the property that all natural process are instationary. It is the task of modeling real world process, for instance by a first order trend model or by taking increments of higher order to come more closely to the case of stationary processes for higher order increments. We will come back to this problem. For formal reasons we introduce first real-valued and complex-valued stochastic process. Second we study the structure of process with a discrete spectrum.Atthe end, we introduce stochastic process with a continuous spectrum enriched by examples.

C-81 Foundations: Ergodic and Stationary Processes

C.8.1: Foundations: Ergodic and stationary processes

We move on towards complex-valued stochastic processes defined by the following axioms: 794 C Statistical Notions, Random Events and Stochastic Processes

p .a/ X.t/ D Y.t/C iZ.t/ subject to i D 1 (C189) .b/ “Real” WfY.t/; t 2 Œ1; C1g .c/ “Imaginary” WfZ.t/; t 2 Œ1; C1g p p ZN D a b; jzjD zzN D a2 C b2 “absolute value” (C190) .d/ “Trend function” W EfX.t/gEfY.t/gCiEfZ.t/g .e/ “Covariance function” W CovfX.s/; X.t/gDEfŒX.s/ EfX.s/gŒX.t/ EfX.t/gg(C191) .f / Stationary in the wider sense W .vi1/ EfX.t/gD.t/ D (constant) (C192) .vi2/ CovfX.s/; X.t/gDCov.oI s t/; WD t s (C193) .g/ Complex-valued stochastic process of second order: EfjX.t/j2g < 1 forall t 2 Œ1; C1 (C194) (C195)

Ergodicity

A stochastic process EfX.t/; t 2 Œ1; C1 is stationary in the narrow sense if for all trajectories x.t/ D y.t/ C iz.t/ there hold

ZCT 1 EfX.t/gDEfX.t0/gDW lim x.t/dt for t0 2 R (C196) T !1 2 T

In this integral relation, in order to compute the expectation value Efx.t0/g we use only all the information which is located in one realization of the stochastic process. In contrast to the general case, we have used up to zero the information of all realizations of the stochastic process. In stationary ergodic process we used only one instant.Anexcellent approximation is the presentation.

1 XN EfX.t0/gD D lim xk.t0/ (C197) N !1 N RD1

Such a definition has a simple physical interpretation: The mean of a fixed instant equals the mean of a long time interval: The mean location is identical to the time C-8 Special Analysis of One Parameter Stationary Stochastic Process 795 average. In essence, This is the property of ergodic stationary processes. Analogue we can define the covariance function for a such processes namely

ZCT 1 p Cov./ D lim Œx.t/ x.t C / dt (C198) T !1 2 T

The treatment of ergodic stationary processes is reasonable for cases in which we have only one time like realization of the stochastic process. Of course increasing the length of the interval ŒT;CTimproves the estimation of EfX.t0/gD.

Here we also take reference the Euler’s representations:

exp ˙ix D cos x ˙ i sin x (C199) 1 sin x D Œexp.ix/ exp.ix/ (C200) 2i 1 cos.x/ D Œexp.ix/ C exp.ix/ (C201) 2

C-82 Processes with Discrete Spectrum

C.8.2: Processes with discrete spectrum

We start with general structure of stationary processes with discrete spectrum: we assume that all stationary process are ergodic.

Ex 1: Special Stationary Ergodic Processes

Example 8.1: Special stationary ergodic processes

Let fX.t/; t 0g be a stochastic process structure by

lrX.t/ D X˝.t/; X a complex random variable (C202) EfXgD0; E.jXj2/<1;EfX.t/X.t C /gD˝.t/˝.t C /EfX 2g (C203) D 0 W ˝.t/˝.t/ Dj˝.t/j2 D constant (C204) “ansatz” W ˝.t/ Dj˝.t/expŒi!.t/ for !.t/ real function (C205) “ansatz” W !.t C / !.t/ ¤ f.t/ W dŒ!.t C / !.t/=dt D 0 (C206) 796 C Statistical Notions, Random Events and Stochastic Processes

or d!.t/=dt D constant (C207) “ansatz” W !.t/ is a function of two constants; I ! and W (C208)

˝.t/j˝.t/j expŒi.! C / (C209)

End of Example 8.1: Special stationary ergodic processes

Lemma 8.1: decomposition of a complex stationary ergodic process

A stochastic process fX.t/; t 0g of the structure X.t/ D X˝.t/ is stationary in the wider sense if and only if

X.t/ D X exp.i!t/ (C210) subject to EfXgD0; Efjxj2g < 1;sDW EfjXj2g; Cov./ D s exp.i!/ End Lemma 8.1 The real part of a complex stochastic process describes a cosine oscillation with a random amplitude and phase

y.t/ D a cos.!t C / (C211)

The parameter ! is called frequency.

We generalize to two stationary processes as a linear combination: we refer to X1 and X2 as two complex random variables with zero expectation and two constant ı ı parameter f!1;!1 D 0; !2;!2 D 0g. We assume that the two complex random functions X1 and X2 are uncorrelated such that EfX1X2gD0 or EfX1 X2gD0. Our intention is to get the form of the covariance function:

X.t/ D X1 exp.i!1t/ C X2 exp.i!2t/ (C212) covfX.t/X.t C /g

D EfŒX1 exp.i!1t/ C X2 exp.i!2t/ŒXN1 exp.i!1t/ C XN2 exp.i!2t/g

D EfŒX1XN2 exp.i!1/ C X1XN2 exp.i.!1 !2/t i!2/g

C EfŒX2XN1 exp.i!2/ C X2XN2 exp.i.!2 !1/t i!1/g (C213)

2 2 s1 DW EfjX1j g;s2 DW EfjX2j g (C214)

Cov./ D s1 exp.i!1/C s2 exp.i!2/ (C215) C-8 Special Analysis of One Parameter Stationary Stochastic Process 797

Ex 2: Special Correlation Function of a Stationary Stochastic Processes

Example 8.2: Special correlation function of a stationary stochastic process

A special complex stationary stochastic process may be real-valued. For instance we define 1 1 X D .A C iB/ and X DW XN D .A ıB/ (C216) 1 2 2 1 2 AandBaretwo real-valued functions. In consequence of our representation X.t/ D X1 exp.i!1t/C X2 exp.i!2t/ we specialize here to

X.t/ D A cos !t B sin !t (C217)

A, B are uncorrelated. We received the covariance function Cov./ D 2s cos ! (C218)

2 2 subject to s WD EfjX1j gDEfjX2j g End of Example 8.2: Special correlation function

For pairwiseP uncorrelated stationary stochastic processes the general ansatz of type n X.t/ D kD1 exp.i!kt/subject to !j ¤ !k for j ¤ k and i;j D 1;2;:::;n1; n and EfXkgD0 will lead us to the covariance function

Xn 2 Cov./ D sk .i!k/ and sk D EfjXkj g for k 2f1;2;:::;n 1; ng kD1 (C219) in particular

Xn 2 Cov. D 0/ D EfjX.t/j gD sk (C220) kD1 In summary, the oscillation X.t/ is an additive superposition of a harmonic oscillation. This average energy per time unit is the same of circle average energies per time unit, an appropriate interpretation of our last representation. In order to achieve a real-valued function,wehavespecializeto (a) an even number n, (b) and a pair of values Xk being conjugate complex.

Let the set f!1;!2;:::g define the spectrum. We have to divide the various spectrum into two classes: small band processes and broad band processes, an entry into filter theory with many application in all sciences. 798 C Statistical Notions, Random Events and Stochastic Processes

Ex 3: Dirac Representation of a Covariance Function

Example 8.3: Dirac representation of covariance function

We use the infinitely generalized covariance function for application of a Dirac function representation.

XK ZC1 Cov./ D lim sk exp.i!/s.! !k/d! (C221) K!1 kD1 1 ZC1 Cov./ D exp.i!/s.!/d! (C222) 1 subject to XK s.!/ D lim sk ı.! !k / (C223) K!1 kD1

The generalized function s.! is denoted by “spectral density” of a stationary stochastic process, formally equivalent to the Fourier transform. End of Example 8.3: spectral density

C-83 Processes with Continuous Spectrum

C.8.3 Processes with continuous spectrum

Here we present first the spectral decomposition of the covariance function of a stochastic process with continuous spectrum. Second we present Kolmogorov’s spectral decomposition theorem.

C8-31 Spectral decomposition of a covariance function

Let fX.t/; t 2 Rg be a complex-valued stationary stochastic process described by its covariance function. Then there exists a real-valued function S.!/ such that cov./ enjoys the representation.

ZC1 Cov./ D exp.i!/dS.!/ (C224) 1 called the spectral function of the process. Note the domain t 2 Œ1; C1

Cov.0/ D S.1/ S.1/ D EfjXj2g < 1 (C225) C-8 Special Analysis of One Parameter Stationary Stochastic Process 799

The spectral function is determined only up to an additive constant c. Most commonly c is chosen to S.1/ D 0. If there exists the first derivative S.!/ D dS.!/=d!,wefindthespectral density of the stochastic process: The covariance function of this stationary process is the Fourier transform of the spectral density. Since S.!/ has to be a decreasing function we find also its property.

ZC1 Cov./ D exp.i!/s.!/d! (C226) 1 s.!/ 0; (C227) ZC1 s.!/d! < 1 (C228) 1

The set f!;s.!/ > 0g defines the continuous spectrum of the stationary stochastic process. The term

ZC1 Cov.0/ D S.1/ S.1/ D s.!/d! (C229) 1 is called average power of the spectrum. If we describe the stationary stochastic process Xt by harmonic oscillations with random amplitude and random phase, we are able to express

exp.i!t/ D expŒit.! C 2k/ for all k 2f1;2;:::g or k 2 Œ; C (C230)

ZC Cov./ D exp.i!/s.!/d! for D 0; ˙1; ˙2;::: (C231) C1R If Cov./d < 1 for stationary stochastic processes, holds, we are able to 1 introduce the inverse Fourier transform by

ZC1 1 s.!/ D exp.i!/Cov./d (C232) 2 1 800 C Statistical Notions, Random Events and Stochastic Processes

ZC1 i exp.! / exp.i! / s.! / s.! / D 2 1 Cov./d (C233) 2 1 2 1

Ex 4: Fourier Spectral Density

Example 8.4: Fourier spectral density

Assume real-valued constants a and cjaj <1. Here we will analyze the covariance function for an autoregressive stationary sequence of first order and compute its spectral density.

1 XC1 s.!/ D Cov./ exp.i!/ 2 D1 " # e X1 X1 D a exp.i!/C a exp.i!/ 2 D1 D0 " # c X1 X1 D a exp.i!/ C a exp.i!/ (C234) 2 D1 D0

c a exp.i!/ 1 s.!/ D C (C235) 2 1 a exp.i!/ 1 a exp.i!/

End of Example: Fourier spectral density

Assume a real-valued stochastic process whose covariance function Cov./ D Cov./, namely Cov./ D ŒCov./ C Cov./=2, can be represented by

ZC1 Cov./ D cos.!/s.!/d! (C236) 1 ZC1 Cov./ D 2 cos.!/s.!/d! .cos.!/ D cos.!// (C237) 1 C-8 Special Analysis of One Parameter Stationary Stochastic Process 801

ZC1 1 s.!/ D cos.!/Cov./d (C238) 2 1 ZC1 1 s.!/ D cos.!/Cov./d (C239) 0

Correlation time In practice the notion of “correlation time”or“correlation length” is very appro- priate:

ZC1 1 WD Cov./d (C240) 0 Cov.0/ 0 or s.0/ WD (C241) 0 C1R 2 s.!/d! 0

For jj0 there is a unstable correlation or statistical dependence between X.t/ and X.t/ C .Thiscorrelation decreases for growing jj; jj >0.

Ex 5: Stationary Infinite Random Sequence

Example 8.5: Stationary infinite random sequence

The infinite random sequence f ; X1;X0; CX1; g may be structured according to Xt D at X subject to t D 0; ˙1; ˙2;:Thecomplex random variable is structured according to EfXgD0 as well as VarfXgD 2. The random sequence f ; X1;X0; CX1; g is the wider sense stationary if and only if the constants ! within the set-up.

at D exp.it!/ for t D 0; ˙1; ˙2; (C242) are represented. In the stationary case, the harmonic oscillations Xt will be given by the random amplitude and the random phase as well as a constant frequency !. For such a case a set-up of the covariance-function will be calculated.

exp.it!/ D exp it.! C 2k/ for t 2; ˙1; ˙2; (C243) 802 C Statistical Notions, Random Events and Stochastic Processes

ZC Cov./ D exp.it!/s.!/d! for 2; ˙1; ˙2; , (C244) , 1 XC1 s.!/ D exp.it!/Cov./ (C245) 2 D1 If we specialize to X real-valued and uncorrelated we achieve a pure random sequence subject to

Cov./ D 2 , s.!/ D 2=.2/ (C246)

End of Example 8.5: random sequence

Ex 6: Spectral Density of a Random Telegraph Signal

Example 8.6: spectral density of a random telegraph signal Given the covariance function, we intend to find a representation of the spectral density for a random telegraph signal.

Cov./ D a exp.bjj/ for a>0;b>0 (C247) ZC1 1 s.!/ D exp.i!/aexp.bjj/d! 2 1 8 9 < Z0 ZC1 = a D exp.i!/d C expŒ.b i!/d 2 : ; 1 0 a 1 1 D C (C248) 2 b i! b C i!

ab s.!/ D (C249) .!2 C b2/

The correlation time is calculated to 0 D 1=b! this result is illustrated by Figs. C.7 and C.8, namely by the spectral structure of the covariance function and its spectral density End of Example: spectral density telegraph signal C-8 Special Analysis of One Parameter Stationary Stochastic Process 803

Fig. C.7 Covariance of Example 8.6

Fig. C.8 Spectral density of Example 8.6

Ex 7: Spectral Representation of a Pulse Modulation

Example 8.7: Spectral density of a pulse modulation

We start with the covariance function of a pulse modulation and study its spectral density. a.T jj/ for jjT Cov./ D (C250) 0 for jj >T

ZCT a s.!/ D Œexp.i!/.T jj/d 2 T 8 9 < ZT ZCT ZCT = a D T exp.i!/d exp.i!/d exp.i!/d 2 : ; T 0 0 8 9 < ZCT = a 2T D sin.!/ 2 cos.!/d (C251) 2 : ! ; 0

a 1 cos !T s.!/ D (C252) !2

Figures C.7 and C.8 illustrate the covariance function and the spectral density of a pulse modulation. A slight modification of our example proves that it is not automatic for stationarity. 804 C Statistical Notions, Random Events and Stochastic Processes

Fig. C.9 Covariance of Example 8.7

Fig. C.10 Spectral density of Example 8.7

2 a.T 2/ for jj0 Cov./ D 4 for a>0;T>0 (C253) 0 for jj <0 s.!/ cannot be the spectral density of a stationary stochastic process.

Alternatively, we like to resent the covariance function Cov./ be a Dirac delta- function ı./. In this case we find

ZC1 1 ı./ D exp.i!/d (C254) 2 1

ZC1 1 1 s.!/ D exp.i!/ı./d D (C255) 2 2 1 by formal inversion. End of Example 8.7: pulse modulation C-8 Special Analysis of One Parameter Stationary Stochastic Process 805

Fig. C.11 Spectral density of a harmonic function

Ex 8: Spectral Density and Spectral Function of a Harmonic Oscillation

Example 8.8: Spectral density and spectral function of a harmonic oscillation

Given a harmonic oscillation with a given covariance function, we will derive the structure of the spectral density function as well as the spectral function.

Cov./ D a cos !0 (C256) ZC1 a s.!/ D exp.i!/cos.! /d 2 0 1 Z1 a D exp.i!/Œexp.i! / exp.i! /d 4 0 0 1 8 9 < Z1 Z1 = a D expŒi.! C !/ C expŒi.! !/ d (C257) 4 : 0 0 ; 1 1

a s.!/ D fı.! !/ C ı.! C !/g (C258) 2 0 0

2 0 for !<!0 4 S.!/ D a=2 for !0 !0

We illustrate the spectral density as well as the spectral function of a harmonic oscillation by Fig. C.11 as well as Fig. C.12. It has to be emphasized that all three functions Cov./; s.!/ and S.!/ are stationary functions.

End of Example 8.8: Spectral function of harmonic oscillation 806 C Statistical Notions, Random Events and Stochastic Processes

Fig. C.12 Spectral function of type step function for a harmonic oscillation

Ex 9: Spectral Density Function of a Damped Harmonic Oscillation

Example 8.9: Spectral density functions of a damped harmonic oscillation

Given the covariance function of a damped harmonic oscillation,wewanttofind the spectral density of this stationary stochastic process,

Cov./ D a exp.bjj/ cos !0 (C260) Z1 a s.!/ D exp.b/cos.!/ cos.! /d 0 0 Z1 a D exp.b/Œcos.! ! / C cos.! C !/d (C261) 2 0 0 0

ab 1 1 s.!/ D C (C262) 2 2 2 2 2 b C .! !0/ b C .! C !0/

!0 is called the eigen function of the stochastic process of type stationary. A typical example is the fading of a radio signal.

End of Example 8.9: Damped harmonic oscillation

Ex 10: Spectral Density of White Noise

Example 8.10: Spectral density of white noise

Perviously we introduced the concept of “white noise”asareal-valued stationary process with continuous time of type Wiener process. Given its covariance function, we are interested in the spectral density function.

Cov./ D 2s0ı./ (C263) C-8 Special Analysis of One Parameter Stationary Stochastic Process 807

Z1 1 s.!/ D exp.i!/2s ı./d D S (C264) 0 0 1

A comparative formulation of a white noise process is the following:

White noise is a real-valued process whose spectral density is a constant

Comment the spectral density of a white noise process has only the property s.!/ 0, but not R1 the property s.!/d! < 1. Accordingly, a white noise process with an average 1 power spectrum fulfils s.!/d! D1 (C265) does exist only in theory not in practice. A comparison is “the mass point”or “the point mass”, which also exist only “in theory”. Nevertheless it is reasonable approximation of any reality. A stationary process can always be considered as a excellent approximation of white noise if the covariance between Z.t/ and Z.t C/ for growing values jj extremely fast goes to zero.

Example:

Let us denote the variations of the absolute value of the force by Z.t/ acting on a particle of a liquid medium at the time t and leading to a Brownian motion. Per second, the resulting force leads to approximately 1021 collisions with other particles. Therefore the stochastic variables Z.t/ and Z.t C / are stochastically independent (“uncorrelated”) if jj is of the order of 1018 seconds. If we assume a covariance function of type Cov./ D exp.bjj/ for b>0, the number b has to be larger than 1017 seconds. End of Example 8.10: White noise

Ex 11: Band Limit of White Noise

Example 8.11: Band limited white noise

A stationary stochastic process with a constant spectral density function S.!/ D s0 for ! 2f1; C1g does not in practice. But a stationary stochastic process with the spectral density 808 C Statistical Notions, Random Events and Stochastic Processes

Fig. C.13 Spectral density of band limited white noise process

Fig. C.14 Covariance function of a band limited white noise process

s for ˝=1 ! C˝=2 s.!/ D 0 (C266) 0 otherwise exists CZ˝=2 sin.˝/=2 Cov./ D exp.i!/s D 2s (C267) o 0 ˝=2

The average power of the process is proportional to Cov .0/ D s0˝. The parameter ˝ is called the band width of the process.Awhite noise process is generated by the limit of a band limited white noise illustrated by Figs. C.13 and C.14.

End of Example 8.11: band limited white noise

C-84 Spectral Decomposition of the Mean and Variance-Covariance Function

C.8.4: Spectral decomposition of the expectation and the variance-covariance function The decomposition of the spectrum of a stationary process fY.x/;x 2 Rg subject to R 2f1; C1g applied to orthogonal increments of various order has many representations, if they do not overlap in the intervals

Œx1;x2; Œx3;x4 or Œx1;x2;x3; Œx4;x5;x6 etc C-8 Special Analysis of One Parameter Stationary Stochastic Process 809 in the formulations of double, triple etc. differences. An example is

EfŒY.x2/ Y.x1/ŒY.x4/ Y.x4/g (C268)

EfŒY.x3/ 2Y.x2/ C Y.x1/ŒY.x6/ 2Y.x5/ C Y.x4/g (C269)

Accordingly, a real-valued stochastic process with independent increments whose trend function EfY.x/gD0 is zero, has orthogonal increments. Example 8.12: Spatial best linear uniformly unbiased prediction: spatial BLUUP Spatial BLUUP depends on the exact knowledge of proper covariance function. In general, the variance-covariance function depends on three parameters fı1;ı2;ı3g called f rugged, sill, rangeg

Cov./ D .kx1 x2k/ (C270)

We assume stationarity and isotropy for the mean function as well as for the variance-covariance function. (In the next section we define isotropy)

Model W Z.x/ f.x/0ˇ C e.x/ (C271) Subject to Efe.x/gD0

Postulate one: “ Mean square continuity ”

lim EfZ.y/ Z.x/gD0 (C272) y!x Postulate two: Mean square differentiability

Z.kkCh / Z.kk/ lim n ! 0 (C273) h!0 hn n!1 If we assume “mean square differentiability”, then Z0 has a variance-covariance function. If “mean square differentiability” holds, it is also differentiated in any dimension. Here we introduce various classes of applied to variance-covariance functions. (i) DIGGLE chaos: Cov.h/ D c exp.ajhj / (C274) (ii) MATERN class: Cov.h/ D c.˛jhjH.ajhj// (C275) “ H” denotes the “modified Bessel function of order ” (iii) Whittle class: spectral density of type

˛=2 c.˛2 C !2/ (C276) 810 C Statistical Notions, Random Events and Stochastic Processes

(iv) Stochastic process on curved spaces like the sphere or the ellipsoid: no Matern classes, the characic functions have a discrete spectrum, for instance in terms of harmonic functions.

End of Example 8.12: spatial BLUUP

Let us give some references: Brown et al. (1994), Brus (2007), Bueso et al. (1999), Christenson (1991), Diggle and Lophaven (2006), Fedorov and Muller (2007), Groeningen et al. (1999), Kleijnen (2004), Muller et al. (2004), Muller and Pazman (2003), M¨uller (2005), Omre (1987), Omre and Halvorsen (1989), Pazman and Muller (2001), Pilz (1991), Pilz et al. (1997), Pilz and Spock (2006), PilzSpock(2008), Spock¨ (1997), Spock(2008), Stein (1999), Yaglom (1987), Zhu and Stein (2006).

Up to now we assumed a stochastic process of type fX.t/; t 2 Rg, R Df1; C1g as a complex stationary process of second order. Then there exist a stochastic process of second order fU.!/;! 2 Rg with orthogonal increments which can be represented by ZC1 X.t/ D exp.i!t/dU.!/ (C277) 1 The process fU.!/;! 2 Rg of the process fX.t/; t 2 Rg is called the related spectral process. Its unknown additive constant we fix by the postulate

P fU.1/ D 0gD1 (C278)

subject to

EfU.!/gDW0 (C279) EfŒjU.!/j2gS.!/ (C280) EfŒjdU.!/j2gdS.!/ (C281)

Our generalization was introduced by A. N. Kolmogorov: Compare this representa- tion with our previous model

XK X.t/ D lim exp.i!t/Xk (C282) k!1 kD1

and C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 811

ZC1

Xt D exp.i!t/dU.!/ (C283) 1 The orthogonality of the Kolmogorov stochastic process fU.t/;t 0g corresponds in case of a discrete spectrum to the concept of uncorrelation. Convergence in the squared mean of type

C1R Pn exp.i!t/dU.!/ D lim lim exp.i!k1t/ŒU.!k / U.!k1/ a!1 1 n!C1 D b!C1 ! !0 k 1 k (C284)

emphasizes the various weighting functions of frequencies: The frequency !k1 in the range Œ!k1;!k receives the random weight U.!k/ U.!k1/. A analogue version of the inversion process leads to

ZC1 i exp.i! t/ exp.i! t/ U.! / U.! / D 2 1 X.t/dt (C285) 2 1 2 t 1

In practice, Kolmogorov stochastic processes are applied in linear filters for prog- nosis or prediction.

C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes of Multi-Parameter Systems

Appendix C.9: Scalar-, vector- and tensor-valued stochastic processes of multi- parameter systems We have experienced the generalization of a scalar-valued stochastic process due to A.N. Kolmogorov. Another generalization due to him is the concept of the structure functions for more general vector-valued and tensor-valued for increments of various order as well as their power spectrum or multi-parameter systems.

First we introduce the notion of the characteristic functional replacing the notion of the characteristic function for random function. Second,themoment represen- tation for stochastic processes is outlined. Third we generalize the notion from scalar-valued and vector-valued stochastic processes to tensor-valued stochastic processes of multi-point parameter systems. In particular, we introduce the notion 812 C Statistical Notions, Random Events and Stochastic Processes of homogeneous and isotropic stochastic fields and extent the Taylor-Karman structured criterion matrices to distributions of the sphere.

C-91 Characteristic Functional

Let us begin with the definition of the characteristic functional.

Zb YxΠD Efexp.iY.//gDEfig .x/Y.x/dx (C286) a Y./ as the characteristic functional elates uniquely to the random function Y.x/ of a fixed complex number. If the characteristic functional of a specific random function is known we are able to derive the probability density distribution fX1;:::;XN .YX ;:::;YXN /.

Example

If a scalar-valued function in a three dimensional field x WD .x1; x2; x3/ exists define its characteristic functional by

Z ZC1Z YY ΠWD Efexp.i Y.x1; x2; x3/.x1; x2; x3//dx1dx2 (C287) 1 The domain of integration is very often chosen to be spherical coordinates of ellipsoidal coordinates .u; v; w/ for u 2f0; 2g; v 2f=2 < v < C=2g and w 2f0

Probability distribution for random functions and the characteristic functional

As a generalization of the characteristic function for random events, the concept of the characteristic functionals for random functions or stochastic processes has been developed. Here we aim at reviewing the theory. We apply the concept of random functions for multi-functions of type scalar-valued and vector-valued functions which have been first applied in the statistical theory turbulence.

what is the characteristic functional? We summarize in Table C.9.1 the detailed notion of a scalar-valued as well as a vector-valued characteristic functional illustrated by an example by introducing the “Fourier-Stieljes functional”. C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 813

Table C.9.1 Probability distribution of a random function and the characteristic functional

“Scalar-valued characteristic functionals”

“Random function over an interval [a,b] with N-variables”

fY.x/; x 2 RN g is called a random function if the density function

fx1;x2;:::;xN 1;xN ŒY.x1/; Y.x2/; : : : ; Y.xN 1/; Y.xN / (C288)

exist at .x1;x2;:::;xN 1;xN / points.

“Fourier representation of the distribution function”

P Y . ;:::; / WD Ef Œi. N Y /g x1;:::;xR N 1R NP exp kD1 k k C1 N (C289) D 1::: expfi kD1 kYkgfx1;:::;xN .Y1;:::;YN /dY1 :::dYN

subject

Y1 WD Y.x1/;:::;Yk WD Y.xk/ (C290)

“Existence condition”

Rb YŒ1;:::;N D .x/dx (C291) a

“Vector-valued characteristic functionals”

˛ “at any point P of the domain D place a set of base vectors e .Pi / at fixed points Pi for ˛ D 1;2;:::;n 1; n; i D 1;2;:::;N 1; N .

˛ ˛ Yi D;Y.P i/je .Pi /> (C292)

“Vector-valued characteristic functionals” P n YYŒ W .x;y;z/ D ˛D1 ˛.Pi /Y.Pi / (C293)

End of Table C.9.1: characteristic functional 814 C Statistical Notions, Random Events and Stochastic Processes

C-92 The Moment Representation of Stochastic Processes for Scalar Valued and Vector Valued Quantities

The moment representation of stochastic processes is the standard tool of statistical analysis. If a random function is given by its probability function, then we find a unique representation of its moments. But the inverse process of a given moment representation converted in its probability function is not unique. Therefore we present only the direct representation of moments for a given probability function. At first we derive for a given scalar-valued probability function its moment representation in Table C.9.2. In Table C.9.3 we generalize this result for stochastic processes which are vector-valued.Anexample is presented for second order statistics, namely for the Gauss-Laplace normal distribution and its first and second order moments.

Table C.9.2 Moment representation of stochastic processes for scalar quantities

“scalar-valued stochastic processes”

“moment representation”

Y.x/;x 2 RN is a random function, for instance applied in turbulence theory. Define the set of random function fx1;x2;:::;xN 1;xN g3R with the probability distribution f.x1;x2;:::;xN 1;xN /. Then the moment representation is the polynomial

p1;p2;:::;N 1;N M WD Efx1;x2;:::;xN 1;xN g RR C1RR 1 2 N 1 N D ::: x1 x2 :::xN 1 xN f fx1;x2;:::;xN 1;xN g (C294) 1

dx1dx2 :::dxN 1dxN

(nonnegative even numbers) p1;:::;pN W 1;2;:::;pN 1;pN 2 NN

Œp WD 1 C p2 CCpN 1 C N (C295)

is called the order of the moment representation C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 815

Table C.9.2 Continued

“central moment representation”

fx1 Efx1g;x2 Efx2g;:::;xN 1 EfxN 1g;xN EfxN gg (C296) 12:::pN 1;pN 1 B WD Ef.x1 Efx1g/ ; 2 N 1 .x2 Efx2g/ ;:::;.xN 1 EfxN 1g/ ; N .xN EfxN g/ g (C297) “Characteristic function” RR ˚.1;:::;N / WD C1 ::: 1 (C298) RR P expfi k kxk gf fx1;x2;:::;xN 1;xN gdx1dx2 :::dxN 1dxN

“differentiate at point 1 D 0;:::;N .0/” h i Œ Œ 1p2:::pN 1;pN @ .i/ M D p p ˚. ;:::; / (C299) @ 1 :::@ N 1 N 1 N 1D0;:::;N D0

“semi-invariants”

‰ WD ln ˚ (C300)

h S 1;:::;N WD i Œ Œ @Œ .i/ .1/ p ‰. ;:::; / (C301) @ 1 @ 2 :::@ N 1 @ N 1 N 1 2 N 1 N 1D0;:::;N D0

“transformation of semi invariants to moments of order”

2 Si D M1;S2 D M2 M1 D B2; 3 S3 D M3 3M2M1 C 2M1 D B3 2 S4 D B1 3B2 ;S5 D B5 10B3B2 (C302)

End of Table C.9.2: Moment representation of stochastic processes 816 C Statistical Notions, Random Events and Stochastic Processes

Table C.9.3 Moment representation of stochastic processes for vector- valued quantities

“Vector-valued stochastic processes”

“moment representation”

“multi-linear functions of a vector field Gauss-Laplace distributed” P n ˛ YYŒ W .x/ D ˛D1 ˛.Px/Y .Pi / (C303)

˛ for a set of base vectors e .Pi / at fixed points P˛;˛D 1;2;:::;n 1; nI i D 1;2;:::;N 1; N

“one-point n-dimensional Gauss-Laplace distribution”

Y.P˛/ f.P˛/ ! PN 1 i i j j f.PN / D C exp 2 gij .P˛/.Y˛ EfY g/.Y˛ EfY˛g/ (C304) i;j

“gauge”

RR C1RR ::: f.P˛/dY1dY2 :::dYN 1dYN WD 1 (C305) 1

“two-point n-dimensional Gauss-Laplace distribution: covariance function”

˛;ˇ ˛ ˛ ˇ ˇ B .P˛;Pˇ/ D EfŒY .P˛/ EfY gŒY .Pˇ/ EfY gg (C306)

Y.P˛/; Y.Pˇ/ f.P˛ ;Pˇ/ (C307) P 1 N i i i i f.P˛;Pˇ/ D D exp 2 i;jD1 gij .P˛;Pˇ/.Y˛ EfY˛ g/.Yˇ EfYˇ g/ (C308)

Example : Gauss-Laplace normal distribution, character’s functional

“ansatz” C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 817

Table C.9.3 Continued

Rb Rb A./ D EfX./gWDEf .Y/Y.x/gdx D EfY.x/gdx (C309) a a

Rb Rb B./ D B.x1;x2/.x1/.x2/dx1dx2 (C310) a a

“multi-point functions”

Rb Rb Rb 1 Y.Y /Œ.x/ WD expfi .x/EfY.x/gdx 2 B.x1;x2/.x1/.x2/dx1dx2 a a a (C311)

in general: multi-point functional series Fourier-Stieljes functional series Gauss-Laplace normal distribution functional: first and second order moments

An example is the central moment of fourth order of type two-points subject to a Gauss-Laplace normal distribution:

˛ˇ; ı ˛;ˇ ı B .P1;P2/ D B .P1/B .P2/C ˛; ˇı ˛ı ˇı CB .P1;P2/B .P1;P2/ C B .P1;P2/B .P1;P2/ (C312)

general rule by JSSERLIS: on a formula for the product moment coefficient in any number of variables Biometrika 12(1918) No. 138

First and Second order moments of a probability density and the uncertainty relation

Rb ŒY.x/ EfY.x/0.x/dx D 0 (C313) a

Rb Rb B.x1;x2/.x1/.x2/dx1dx2 D 0 (C314) a a 818 C Statistical Notions, Random Events and Stochastic Processes

C-93 Tensor-Valued Statistical Homogeneous and Isotropic of Multi-Point Systems

First, we introduce the ideal structure of a variance-covariance matrix of multi-point systems in an called homogenous and isotropic in the statistical sense.

Such a notion generalized the concept of stationary functions so far introduced. Throughout we use the terminology “signal”and“signal analysis”. Let us begin with the notion of an ideal structure of the variance-covariance matrix of scalar value called signal, a multi-point function. An example is the gravity force as a one-point function, namely the distance between two-points as a two-point function or the angle between to a reference point and two targets as a three-point function. Here, we are interested in a criterion matrix of vector-vector signals which are multi-point functions. An example is the placement vector between network points determined by an adjustment process, namely a vector-valued one-point function proportional to the difference vector between network points, a vector- valued two-point function. Let S.X1; ; X˛/ be a scalar-valued function between placement vectors X1; ; X˛ with in a three dimensional Euclidean space. The variance-covariance of the scalar-valued signal at placement vectors X1; ; X˛ and X˛C1; ; Xˇ is defined by P .X1; ; X˛; X˛C1; ; Xˇ/ WD EfŒS.X1; ; X˛/ EfS.X1; ; X˛/g

ŒS.X˛C1; ; Xˇ/ EfS.X˛C1; ; Xˇ/gg (C315)

ForP the special case X1; ; X˛; X˛C1; ; Xˇ the multi-point function agrees to .X1; ; X˛; X˛C1; ; Xˇ/ to the variance in the other case to the covariance.

Definition C.9.1: Homogeneity and isotropy of a scalar-valued multi-point function P The scalar-valued multi-point function .X1; ; X˛; X˛C1; ; Xˇ/ is called homogenous in the statistical sense.ifitistranslational invariant, namely X X .X1 C t; ; X˛ C t;X˛C1 C t; ; Xˇ C t/ D .X1; ; X˛; X˛C1; ; Xˇ/ P (C316) t is called the translational vector. The function is called the isotropic,ifitis rotational invariant in the sense of X X .RX1; ; RX˛; RX˛C1; ; RXˇ/ D .X1; ; X˛; X˛C1; ; Xˇ/ (C317) R is called the rotational matrix. C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 819

End of Definition C.9.1: homogeneity and isotropy

The following representation theorems apply: Lemma C.9.2: homogeneity and isotropy of a scalar-valued multi-point function

The scalar-valued multi-point function is homogenous in the statistical sense if and only if it is a function of the difference vectors X2 X1; ; Xˇ Xˇ1: X X .X1; ; X˛; X˛C1; ; Xˇ/ D .X2 X1; ; X˛C1 X˛; ; Xˇ Xˇ1/ (C318) This function is isotropic in the statistical sense, P .X1; ; X˛; X˛C1; ; Xˇ/ X D .jX1j;; < X1; X3 >; ;; jXˇj/ (C319) is a function of all scalar products including the length of the vectors X1; ; X˛; X˛C1; ; Xˇ. P The function .X1; ; X˛; X˛C1; ; Xˇ/ is homogenous and isotropic in the statistical sense if P .X1; ; X˛; X˛C1; ; Xˇ/ X D .jX2 X1j;; ;

; ;; jXˇ Xˇ1j/ (C320) is a function of all scalar products including the length of the difference vectors X2 X1; ; X˛C1 X˛; Xˇ Xˇ1. End of Lemma C.9.2: homogeneity and isotropy P As a basic result we take advantage of the property that a scalar-valued function of type multi-points is homogenous and isotropic in the statistical sense if

P .X1; ; X˛; X˛C1; ; Xˇ/ (C321) X D .jX2 X1j; jX3 X1j; ; jXˇ Xˇ2j; jXˇ Xˇ1j/

is a function of length of all difference vectors X Xı for all 1 ı< 1.For a proof we need the decomposition 820 C Statistical Notions, Random Events and Stochastic Processes

1 < X; Y > D .jXj2 CjYj2 jX Yj2/ 2 1 D .jX C Yj2 jX Yj2/ (C322) 2

Example: four-point function, var-cov function

Choose a scalar-values two-point function as the distance S.X1; X2/ between two points X1 and X2. The criterion matrix of a variance-covarianceP function under the postulate of homogeneity and isotropy in the statistical sense .X1; X2; X3; X4/ as a four-point function described by ˇ.ˇ 1/=2 D 6 quantities, for instance P .X1; X2; X3; X4/ X D .jX2 X1j; jX3 X1j; jX4 X1j; jX3 X2j; jX4 X2j; jX4 X3j/ (C323)

End of example: var-cov function, 4 points

Another example is a scalar-valued three-point function of the type angular observation A.X1; X2; X3/ between a fixed point X1 and the two moving points X2 and X3. The situation of vector-valued functions between placement vectors X1; ; X˛ in a three-dimensional Euclidian space based on the representation

X3 i S.X1; ; X˛/ D Si .X1; ; X˛/e .X1; ; X˛/ (C324) iD1 is slightly more complicated. the Euclidean space is spanned by the base vectors fe1;e2;e3g fixed to a reference point. The variance-covariance of a vector signals at placements X1; ; X˛ and X˛C1; ; Xˇ is defined as the second order tensor X X i j WD .X1; ; X˛; X˛C1; ; Xˇ/e .X1; ; X˛/ ˝ e .X˛C1; ; Xˇ/ i;j (C325) when we have applied the sum notion convention over repeated indices. P i;j .X1; ; X˛; X˛C1; ; Xˇ/ WD EfŒSi .X1; ; X˛/EfSi .X1; ; X˛/g

ŒSj .X˛C1; ; Xˇ/ EfSj .X˛C1; ; Xˇ/gg (C326) We remark that all Latin indices run 1; 2; 3 but all Greek indices label the number of multi-points.P For the case X1 D X˛C1; ; X˛ D Xˇ we denote the multi-point function i;j .X1; ; X˛; X˛C1; ; Xˇ/ as the local variance covariance matrix for the general case nonlocal covariance C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 821

Definition C.9.3: Homogeneity and isotropy in the statistical sense of a tensor valued multi-point function P The multi point tensor valued function .X1; ; X˛; X˛C1; ; Xˇ/ is called homogenous in the statistical sense,ifitistranslational invariant in the sense of X X .X1 C t; ; X˛ C t; X˛C1 C t; ; Xˇ C t/ D .X1; ; X˛; X˛C1; ; Xˇ/ (C327) Where t denotes the translational vector P In contrast the multi-point tensor-valued function .X1; ; X˛; X˛C1; ; Xˇ/ is called isotropic in the statistical sense if it is rotational invariant in the sense of X X .RX1; ; RX˛; RX˛C1; ; RXˇ/ D R .X1; ; X˛; X˛C1; ; Xˇ/R (C328) where R denotes the rotation matrix element of the SO.3/ group End of tensor-valued multi-point functions of key importance are the following representations for tensor-valued multi-point homogenous and isotropic functions

Lemma C.9.4: homogeneity and isotropy in the statistical sense of tensor-valued symmetric multi-point functions A second order -valued multi-point function is homogenous if, X X .X1; ; X˛; X˛C1; ; Xˇ/ D .X2 X1; ; X˛C1 X˛; ; Xˇ Xˇ1/ (C329) is a function of difference vector .X2 X1; ; X˛C1 X˛; ; Xˇ Xˇ1/.This function is isotropic if P .X1; ; X˛; X˛C1; ; Xˇ/ i j D 0.jX1j;; < X1; X3 >; ;; jXˇj/ıij e ˝ e Xˇ Xˇ C .jX1j;; < X1; X3 >; ;; jXˇj/ D1

Œ.X ˝ X/ C .X ˝ X / (C330) for a certain isotropic scalar-valued function 0 and for all 1 ˇ

Finally such a function is homogenous and isotropic in the statistical sense,ifand only if 822 C Statistical Notions, Random Events and Stochastic Processes P .X1; ; X˛; X˛C1; ; Xˇ/ i j D 0.jX2 X1j; jX3 X1j; ; jXˇ Xˇ2j; jXˇ Xˇ1j/ıij .e ˝ e / Xˇ Xˇ C .jX2 X1j; jX3 X1j; ; jXˇ Xˇ1j/ D2

Œ.X X1/ ˝ .X X1/ C .X X1/ ˝ .X X1/ (C331) holds for a certain homogenous and isotropic scalar-valued functions 0 and for all 2 ˇ

End of Lemma C.9.4: tensor-valued function var-cov functions

For the applications the Taylor-Karman structure for the case ˇ D 2 is most important: Corollary C.9.5: ˇ D 2, Taylor-Karman structure for two-point tensor function homogeneity and isotropy A symmetric second order two-point tensor-function is homogenous and isotropic in the statistical sense if and only if

˙.X1; X2/ i j D 0.jX2 X1j/ıij .e ˝ e /

C 22.jX2 X1j/Œ.jX1 X2j/ ˝ .jX2 X1j/ i j D 0.jX2 X1j/ıij C 22.jX2 X1j/< X2 X1; e > i j D ˙ij .X1; X2/.e ˝ e / (C332)

(summation convention) and

2 ˙ij D 0.jX2 X1j/ıij C Œ22.jX2 X1j/jX2 X1j C 0.jX2 X1j/

Xi Xi 0.jX2 X1j/ 2 (C333) jX2 X1j C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 823

˙ij .X1X2/ D ˙m.jX2 X1j/ıij (C334)

Xi Xi CfŒ˙l .jX2 X1j/ ˙m.jX2 X1j/ 2 jX2 X1j

˙m and ˙l are the homogenous and isotropic scalar-values functions

End of Corollary C.9.5: ˇ D 2, Taylor-Karman structure The representation of the symmetric second-order two-point tensor-valued function under the postulate of homogeneity and isotropy has been analyzed by G. J. Taylor (1935) and T. Karman (1937) dealing with problems of Hydrodynamics.Itwas introduced into Geodetic sciences by E. Grafarend(1970, 1972). Most often the homogenous and isotropic scalar-valued function ˙m and ˙l are called longitudinal and lateral correlation function. It has been C.C. Wang who wrote first the symmetric second order two-point tensor-valued function being homogenous and isotropic if

i j ˙.X1X2/ D a1.X2 X1/ıij Œe X1 ˝ e X2 C a2.X2 X1/Œ.X2 X1/ ˝ .X2 X1/ (C335) holds. This representations refers to a1.X2X1/ D b1.jX2X1j/ and a2.X2X1/ D b2.jX2 X1j/ according to C. C. Wang (1970 p, 214/215) as scalar-valued isotropic functions. In case we decompose the difference vector

i j i j X2 X1 D < X2 X1je .X1/>ŒeX1 ˝ e X2 D i j D Xi Xj Œe X1 ˝ e X2 (C336)

˙ij .X1X2/ D b1.jX2 X1j/ıij C b2.jX2 X1j/Xi Xj for any choice of the basis ei1 ;ej2 .Aspecial choice is to put parallel to the basic vector X2 X1 such that

2 ˙11 D b1.jX2 X1j/ C b2.jX2 X1j/jX2 X1j (C337)

˙22 D ˙22 D b1.jX2 X1j/ (C338)

2 3 The base vector e and e are orthogonal to the “longitudinal direction” X2 X1. For such a reason b1.jX2 X1j/ WD ˙m.jX2 X1j/ (C339) and 824 C Statistical Notions, Random Events and Stochastic Processes

Fig. C15 Longitudinal and lateral correlation: Two-point function

1 b2.jX2 X1j/ WD 2 f˙l .jX2 X1j/ ˙m.jX2 X1j/g (C340) jX2 X1j of the scalar-valued isotropic functions ˙l .jX2 X1j/ and ˙m.jX2 X1j/.Theresult is illustrated in Fig. C.9.1 A two-dimensional Euclidean example is the vector-valued one-point function of a network point. Let 2 3 x x x y x x x y 6 1 1 1 1 1 2 1 2 7 6 y x y y y x y y 7 ˙ D 4 1 1 1 1 1 2 1 2 5 (C341) x2x1 x2y1 x2x2 x2y2

y2x1 y2y1 y2x2 y2y2 be the variance-covariance matrix of the two-dimensional network of two points with Cartesian coordinates. The variance-covariance matrix will be characterized by the variance D 2 of the X-coordinate of the first point, the covariance x1x1 x1 x1y1 of the x;y coordinates of the first point and the second point and so on. The discrete variance-covariance matrix

˙ D EfŒX EfXgŒX EfXgg (C342)

or

˙ij .X1; X2/ D EfŒxi .X1/ Efxi X1gŒxj Efxj X2gg (C343) or

xi .X1/ Dfx1X1;x2X1gDWfx1;y1g

xj .X2/ Dfx1X2;x2X2gDWfx2;y2g C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 825

Fig. C16 Homogenous and isotropic dispersion situation: (a) general, (b)homogenous and (c) homogenous-isotropic are the estimated coordinates of the Cartesian vectors of the first network point X1 or the second network point X2. The two-point functions ˙ij .X1; X2/ are the coordinates labeling the tensor of second order. The local variances and covariances are usually illustrated by local error ellipses:

˙ij .X1; X2 D X1/ (C344)

and

x1x1 x1y1 x2x2 x2y2 ˙ij .X1 D X2; X2/; and (C345) y1x1 y1y1 y2x2 y2y2

The nonlocal covariances are contained in the function ˙ij .X1; X2/ for the case X1 ¤ X2, in particular x1x2 x1y2 (C346) y1x1 y1y2

Figure C.9.2 illustrates the postulates of homogeneity and isotropy for variance- covariance matrices of cartesian coordinates left, we illustrate the general dis- persion situation in two-dimensional networks, of course those local dispersion ellipses. In the center, the homogenous dispersion situation: At each network points, due the translation invariance all dispersion ellipses are equal. In the right side, the homogenous and isotropic dispersion situation of type Taylor-Karman is finally illustrated. “All dispersion ellipses are equal and circular” 826 C Statistical Notions, Random Events and Stochastic Processes

Fig. C17 Correlation figures of type (a) ellipse and (b) hyperboloid

Finally we illustrate“longitudinal”and“lateral” within homogenous and isotropic networks by Fig. C16, namely the characteristic figures of type (a) ellipse and (b) hyperboloid. Those characteristic functions ˙l and ˙m are described the eigen values of the variance-covariance matrix. If the eigenvalues are positive, then the correlation figure is an ellipse. But if the two eigen values change sign (either “C”or“”or“”or“C”) the characteristic function has to be illustrated by a hyperboloid.

Ex 1: Two-Dimensional Euclidean Networks Under the Postulates of Homogeneous and Isotropy in the Statistical Sense

Example C.9.1: Two-dimensional Euclidean networks under the postulates of homogeneity and isotropy in the statistical sense Two-dimensional network in a Euclidean space are presented in terms of the postulates homogeneity and isotropy in the statistical sense. At the beginning, we assume a variance-covariance matrix of absolute cartesian net coordinates of type homogenous and isotropic, in particular with Taylor Karman structure.Given such a dispersion matrix, we derive the associated variance-covariance matrix of coordinate differences, a special case of the Kolmogorov structure function, and directions, angles and distances. In order to write more simple formulae, we assume quantities of type EfYgD0 Definition C.9.6: Variance covariance matrix of Cartesian coordinate, coordi- nate differences, azimuths, angular observations and distances in two-dimension Euclidean networks C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 827

Let ıxi .X1/ be absolute Cartesian coordinates ıxi .X1/ ıxi .X2/ relative cartesian coordinates or coordinate differences, ı˛.X1; X2/ the azimuths of a line observation point X1 to a target point X2, the difference ı˛.X1; X2/ to ı˛X1; X3/ as angular observations or azimuth differences and ıs.X1X2/ the distances from the point X1 to the point X2.Then

˙ij .X1; X2/ D Efıxi .X1/ıxj .X2/g (C347)

˚ij .X1; X2; X3; X4/ D EfŒıxi .X1/ ıxi .X2/Œıxj .X3/ ıxj .X4/g (C348)

.X1; X2; X3/ D EfŒı˛.X1; X2/ı˛.X3; X4/g (C349)

.X1; X2; X3; X4; X5; X6/ D EfŒı˛.X1; X2/ ı˛.X1; X3/

Œı˛.X4; X5/ ı˛.X4; X6/g

˘.X1; X2; X3; X4/ D Efıs.X1; X2/ ıs.X3; X4/g (C350) are the derived variance-covariance matrices for the increments Y.x1; ;xi / y.x1; ;xi / D ıy.x1; ;xi /fıxi :ıxi ıxj ;ı˛;ı˛i ı˛j ;ısg with respect to a model y.

End of Definition C: derived var-cov matrices

Let the variance-covariance matrix ˙ij .X1; X2/ of absolute Cartesian coordinates of the homogenous and isotropic type the characteristic isotropic functions ˙l and ˙m given. Then we derive the variance-covariance of

Lemma C.9.7: Representation of derived variance-covariance matrices of Taylor- Karman structured variance-covariance of absolute Cartesian coordinates.

Let the variance-covariance matrix of absolute Cartesian ij .X1; X2/ be isotropic and homogenous in terms of the Taylor-Karman structure be given. Then the derived variance-covariance matrices are structured according to

˚ij .X1; X2; X3; X4/ D ˙ij .X1; X3/ ˙ij .X1; X4/

˙ij .X2; X3/ ˙ij .X2; X4/ (C351)

.X1; X2; X3; X4/ D ai .X1; X2/aj .X3; X4/˚ij .X1; X2; X3; X4/ (C352)

.X1; X2; X3; X4; X5; X6/ D .X1; X2; X4; X5/ .X1; X2; X4; X6/

.X1; X3; X4; X5/ C .X1; X3; X4; X6/ (C353)

˘.X1; X2; X3; X4/ D bi .X1; X2/bj .X3; X4/˚ij .X1; X2; X3; X4/ (C354)

subject to 828 C Statistical Notions, Random Events and Stochastic Processes

˙ij .Xˇ; X˛/ D ˙m.jXˇ X˛j/ıij C Œ˙l .jXˇ X˛j/

˙m.jXˇ X˛j/bi .Xˇ; X˛/bj .Xˇ; X˛/ (C355)

a1.X˛; Xˇ/ WD Œy.P X˛/ Py.Xˇ/ Œs.P Xˇ; X˛/ (C356) 2 a2.X˛; Xˇ/ WD CŒx.P X˛/ Px.Xˇ/ ŒsP .x˛;xˇ/ (C357) 2 b1.X˛; Xˇ/ WD CŒx.P X˛/ Px.Xˇ/ ŒsP .x˛;xˇ/ D cos ˛Pˇ˛ (C358) 2 b2.X˛; Xˇ/ WD CŒy.P X˛/ Py.Xˇ/ ŒsP .x˛;xˇ/ D sin ˛Pˇ˛ (C359)

End of Lemma C.9.7: Taylor-Karman derived structures For the proof, we apply summation convention with respect to two identical indices. In addition, the derivations are based on

ı˛.X1; X2/ D a1.X1; X2/Œıx.X1/ ıx.X2/ C a2.X1; X2/Œıy.X1/ ıy.X2/ (C360)

ıs.X1; X2/ D b1.X1; X2/Œıx.X1/ ıx.X2/ C b2.X1; X2/Œıy.X1/ ıy.X2/ (C361)

In order to be informed about local variance-covariance we need special results about the situation X1 D X3; X2 D X4:

Lemma C.9.8: derived local variance-covariance matrices of a Taylor-Karman structure variance-covariance matrix of absolute Cartesian coordinates

˚ij .X1; X2/ D 2Œ˙m.0/ıij .jX2 X1j/

D ˚m.jX2 X1j/ıij C Œ˚l .jX2 X1j/

˚m.jX2 X1j/bi .X1; X2/bj .X1; X2/ (C362)

˚l .jX2 X1j/ D 2Œ˙l .0/ ˙l .jX2 X1j/ (C363)

˚m.jX2 X1j/ D 2Œ˙m.0/ ˙m.jX2 X1j/ (C364)

.X1; X2/ D 2ai .X1; X2/aj .X1; X2/Œ˙m.0/ıij ˙.X1; X2/ 2 D Œ˚m.jX2 X1j/ ŒjX2 X1j (C365) C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 829

.X1; X2; X3/ D .X1; X2/ 2.X1; X2; X1; X3/ C .X1; X3/

˚m.jX2 X1j/ ˚.jX3 X1j/ D 2 C 2 ai .X1; X2/aj .X1; X3/ jX2 X1j jX3 X1j

Œ˚ij .X1; X2/ ˚ij .X2; X3/ ˚ij .X1; X3/

< X3 X2; X3 X1 D ˚m.jX2 X1j/ 2 2 jX2 X1j jX3 X1j

< X2 X1; X3 X2 > ˚m.jX3 X2j/ 2 2 jX2 X1j jX3 X2j

< X2 X1; X3 X1 > C˚m.jX3 X2j/ 2 2 jX2 X1j jX3 X1j

CŒ˚m.jX2 X1j/ ˚.jX3 X2j/ 2 2 ŒjX2 X1j jX3 X1j < X2 X1; X3 X1 > 2 2 2 (C366) ŒjX2 X1j jX3 X1j jX3 X2j

˘.X1; X2/ 2bi .X1; X2/j˙m.0/ıij ˙ij .X1; X2/ D ˚m.jX2 X1j/ (C367)

End of Lemma C 9.8: Derived local var-cov matrices The results can be interpreted as following.

First, the scalar-valued functions .X1; X2/; .X1; X2; X3/ and ˘.X1; X2/ are homogenous and isotropic. Second,ofthelocal variance-covariance matrix of Cartesian coordinate differences has the structure of nonlocal covariance matrix of absolute Cartesian coordinates as long as we depart from a Taylor-Karman matrix: Third, not every homogenous and isotropic local variance-covariance matrix of Cartesian coordinate differences produces derived homogenous and isotropic functions as we illustrated in our next example.

Of course, not every homogenous and isotropic local variance-covariance matrix of type coordinate difference has the structure of being derived by the transformation of absolute coordinates into coordinate difference. For instance, for the special case X1 D X2 the variance-covariance matrix ˙ij .X1; X2/ due to ˙m.0/ D ˙l .0/ can be characterized by circles. The limits

˙ij .X1; X1/ D ˙ij .X1; lim X2/ D lim ˙ij .X1; X2/ (C368) X2!X1 X2!X1 are fixed for any direction of approximation. However, due to ˚m.jX2 X1j/ ¤ ˚l .jX2 X1j/ lead us to symmetry breaking in a two-dimensional EUCLIDEAN 830 C Statistical Notions, Random Events and Stochastic Processes space: Though we have started from a homogenous and isotropic variance- covariance matrix of absolute Cartesian coordinates into relative coordinates or coordinate differences the variance-covariance matrix ˚ij .X1; X2; X3; X4/ is not homogenous and isotropic, a result mentioned first by W. Baarda (1977): The error eclipses are not circular.Inathree dimensional Euclidean space.Incontrast,we receive rotational symmetric based on the difference vector X2 X1 with respect to the axis of rotation and circles as intersection surfaces orthogonal to the vector X2 X1.

In order to summarize our results we present

Lemma C.9.9: Circular two-point functions

The image of the two-point function ˚ij .X1; X2/ D ˚.X1; X2; X1; X2/ is a circle if and only if ˚l .jX2 X1j/ D ˚m.jX2 X1j/ or ˙l .jX2 X1j/ D m.jX2 X1j/

End of Lemma C.9.9: Circular two-point functions The result is illustrated by an example: Assume network points with a distance function jX2 X1jD1. In this distance the longitudinal and the lateral correlation functions are assumed to the values 1/2 and 1/4. Then there holds

˙l .0/ D ˙m.0/ D 1 (C369) 1 1 ˙ D ;˙ D (C370) l 2 m 4 3 3 ˚ D 1; ˚ D ;.1/D ;˘.1/D 1 (C371) l m 2 2

Lemma C.9.10: Derived local variance-covariance matrix for a variance- covariance matrix of absolute Cartesian coordinate of Special Taylor-Karman structure ˙l D ˙m Let the variance-covariance matrix of absolute Cartesian coordinates with Special Taylor-Karman structure ˙l D ˙m for homogenous and isotropic signals given. Then the derived variance-covariance matrices are structured accordingly to

˚ij .X1; X2/ D 2Œ˙m.0/ ˙m.jX2 X1j/ıij

D ˚.jX2 X1j/ıij (C372)

˚l .jX2 X1j/ D ˚m.jX2 X1j/ D 2Œ˙m.0/ ˙m.jX2 X1j/ (C373) C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 831

2 .X1; X2/ D 2 Œ˙m.0/ ˙m.jX2 X1j/ jX2 X1j 1 D ˚m.jX2 X1j/ (C374) jX2 X1j 1 .X1; X2; X3/ D 2 2 jX2 X1j jX3 X1j

Œ˚m.jX2 X1j/

˚m.jX3 X1j/

C˚m.jX3 X2j/ (C375)

˘.X1; X2/ D 2Œ˙m.0/ ˙m.jX2 X1j/ D ˚m.jX2 X1j/ (C376)

End of Lemma C 9.10: Special Taylor-Karman matrix Our example is characterized now by a homogenous and isotropic variance- covariance matrix of Cartesian absolute coordinates which are the gradient of a homogenous and isotropic scalar-valued function. In addition, we assume that the scalar valued function is an element of a two-dimensional Markov process of first order. Its variance-covariance matrix is characterized by normalized longitudinal and lateral correlation function which possess the distance function s WD jX2 X1j between network points d the characteristic distance, K0 and K1 the modified Bessel function of the second kind of zero and first order. The characteristic distance dis the only variable or degree of freedom. Within the parameter d we depend on our experience with geodetic networks. Due to the property ˙l .0/ D ˙l .0/ we call the longitudinal and lateral normalized. In order to find the scale for the variance- covariance matrix we have to multiply by the variance 2.Themodified Bessel function K0 and K1 are tabulated in Table C18 in the range 0.1(0.1)8 where we followed M. Abramowtz and I. Stegun (1970 p. 378-379). In Fig. C18 we present the characteristic functions of type absolute coordinates 2 1 2 ˙l .X/ D4x C 2K0.X/ C 4x K1.X/ C 2xK1.X/ and ˙m.X/ DC4x 1 2K0.X/2K0.X/4x K1.X/. Next is the representation of the derived functions ˚l .X/ D ˘.X/ D 2˙m.0/ 2˙l .X/; ˚m.X/ D 2˙m.0/ 2˙m.X/ and .X/ D 2 2 2x j˙m.0/ ˙m.X/jD x ˚m.X/. Figures C19 and C20 illustrate the various variance-covariance functions. An explicit example is a two-dimensional network in Fig. C21. Let point one be the center of a fixed (x,y) Cartesian . In consequence, we measure nine points by distance observations assuming the distance between point one and point two is unity, namely p p p 1; 2; 2; 5; 8 The related characteristic functions for a characteristic distance d=1 are approxi- mately given in Table C18. The variance-covariance matrix of absolute Cartesian 832 C Statistical Notions, Random Events and Stochastic Processes

Fig. C18 Modified Bessel function K0.X/ and K1.X/ longitudinal and lateral function of absolute Cartesian coordinates f1.X/ DW ˙l .X/ and f2.X/ DW ˙m.X/, longitudinal and lateral correlation of relative Cartesian coordinates f3 WD ˚m.X/ and f4 WD ˚l .X/, variances of directions f5 WD .X/ and distances ˘.X/ DW .X/ of a two-dimensional conservation Markov process of first order C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 833

Fig. C19 Characteristic functions l and ˙m for Taylor-Karman structured varaince-covariance matrix of Cartesian coordinates

coordinates is relative Cartesian coordinates or coordinate differences is computed 2 with respect to D 1:09; y1y2 D 0:50; x1x2;y1y2 D 0 We added by purpose according to Fig. C19 the characteristic functions for the special homogenous and isotropic variance-covariance matrix given by ˙l D ˙m. The associated variance-covariance matrix for absolute and relative Cartesian coordinates is given in Tables C25 and C26, structured by

4d2 s 4d s s s ˙ D C 2K . / C K . / C 2. /K . / (C377) l s2 0 d s 1 d d 1 d 4d2 s 4d s ˙ D C 2K . / C K . / (C378) m s2 0 d s 1 d

Finally we present the derived variance-covariance matrices for relative Cartesian coordinates, direction s, direction differences namely angles and distances, for the special case ˙l D ˙m. 834 C Statistical Notions, Random Events and Stochastic Processes

Fig. C20 Derived variance-covariance functions for Taylor-Karman structured variance-covariance matrix of Cartesian coordinates

˚l .s/ D ˘.s/ D 2˙m.0/ 2˙m.s/; 8d 2 s 8d s s s D 2 C 4K K 4 K s2 0 d s 1 d d 1 d (C379)

˚m.s/ D ˘.s/ D 2˙m.0/ 2˙m.s/; 8d 2 s 8d s D 2 4K C K ; (C380) s2 0 d s 1 d 2 .s/ D ˘.s/ D Œ˙ .0/ ˙ .s/ ; s2 m m 2 4d2 s s s D 1 2K C 4 K (C381) s2 s2 0 d d 1 d

Example 9.1 is based on our contribution E. Grafarend and B. Schaffrin (1979) on the subject of criterion matrices of type homogenous and isotropic. Other statistical properties like anisotropic or non-isotropic correlation functions were treated by G. K. Batchelor (1946), S. Chandrasekhar (1950) and E. Grafarend (1971, 1972) on the subject of axisymmetric turbulence. C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 835

Fig. C21 Two dimensional network 836 C Statistical Notions, Random Events and Stochastic Processes

Fig. C22 Characteristic functions of a network example

Fig. C23 Cartesian coordinate data for a network example

Of course there is a rich list of references for “criterion matrices”. We list only few of them. J. E. Alberta (1974), A. B. Amiri (2004), W. Baarda (1973, 1977), K. Bill (1985), R. Bill et. al. (1986), Bischoff et. al. (2006), G. Boedecker (1977), F. Bossler et. al. (1973), F. Co mte e t. a l. (2002), P. Cross et. al. (1978), G. Gaspari et. al. (1999), E. Grafarend (1971, 1972, 1975, 1976), E. Grafarend, F. Krumm and B. Schaffrin (1985), E. Grafarend and B. Schaffrin (1979), T. Karman (1937), T. Karman et. al. (1939), R. Kelm (1976), R. M. Kerr (1985), S. Kida (1989), F. Krumm et. al (1982, 1986), S Meier (1976, 1977, 1978, 1981), S. Meier and W. Keller (1990), J. van Mierlo (1982), M. Molenaar (1982), A. B. Obuchow (1958), T. Reubelt et. al. (2003), H. P. Robertson (1940), B. Schaffrin and E. Grafarend (1977, 1981), B. Schaffrin and E. Grafarend (1982), B. Schaffrin et. al. (1977), G. Schmitt (1977, 1978 i, ii), J. F. Schoeberg (1938), J. P. Shkarofky (1968), V. I . Ta ta rsk i (1961), A. I. Taylor (1935, 1938), C. C. Wang (1970), H. Wimmer (1972, 1978), M. J. Yadrenko (1983) and A. A. Yaglom (1987).

Ex 2: Criterion Matrices for Absolute Coordinates in a Space Time Holonomic Frame of Reference, for Instance Represented in Scalar-Valued Spherical Harmonics

Example C.9.2: Criterion matrices for absolute coordinates in a space time holonomic frame of reference, for instance represented in scalar-valued spherical harmonics C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 837

Fig. C24 Derived variance-covariance functions for a special Taylor-Karman structure variance-covariance matrix of type ˙l D ˙m for Cartesian coordinates

Conventional geodetic networks have been adjusted by methods of Total Least Squares and optimized in different reference frames. The advantage of a rigourously three dimensional adjustment in a uniform reference frame is obvious, especially under the influence of subdtic geodetic networks within various Global Positioning Systems (GPS, Global Problem Solver). Numerical results in a three dimensional, Total Least Squares approach are presented for instance by K. Bergbauer et. al. (1979) K. Euler et. al. (1982), E. Grafarend (1991), G. Hein and H. Landau (1983), and by W. Jorge and H. G. Wenzel (1973).

The diagnosis of a geodetic network is rather complicated since the measure of quality, namely the variance-covariance matrix of three dimensional coordinates of Cartesian type contains 3g.3g C 1/=2 independent elements. The integer number g accounts for the number of ground stations.

Example: g = 100 838 C Statistical Notions, Random Events and Stochastic Processes

Fig. C25 Homogenous isotropic normalized variance-covariance matrix of absolute coordinates from a network example C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 839

Fig. C26 Special homogenous isotropic normalized variance-covariance matrix of absolute coordinates for a network example case ˙l D ˙m

Fig. C27 Special homogenous isotropic normalized variance-covariance matrix of relative coordinates for a network example case ˙l D ˙m

The number of independent elements with in the coordinate variance-covariance matrix amounts to 45,150. Example: g = 1,000 The number of independent elements within the coordinate variance-covariance matrix amounts to 4,501,500. Example: g = 5,000 (GPS) 840 C Statistical Notions, Random Events and Stochastic Processes

The number of independent elements within the coordinate variance-covariance matrix amounts to 125,507,500 ! In a definition, the same number of unknown variance-covariance elements of vertical deflections and gravity disturbances.

The open big problem In light of the great number of elements of the variance-covariance matrix it is an open question how to achieve any measure of quality of geodetic network based on GPS. We think the only way to get away from this number of millions of unknowns is to design an idealized variance-covariance matrix again called criterion matrix. Comparing the real situation of the variance-covariance with an idealized one, we receive an objective measure of quality of the geodetic network.

Here we are aiming for designing a three-dimensional criterion matrices for absolute coordinates in a holonomic frame of reference and for functionals of the “disturbing potential”. In a first section we extensively discuss the notion of criterion matrix on a surface of a moving frame of type homogenous and isotropic on the sphere which is a generalization of the classical Taylor-Karman structure for a vectorized stochastic process. The vector values stochastic process on the sphere is found. In detail we review the representation of the criterion matrix in scalar- and vector-valued spherical harmonics.Insection two we present the criterion matrices for functionals of the disturbing potential. The property of harmonicity is taken into account for the case that a representation in terms of scalar-valued spherical harmonics exists. At the end, we present a numerical example.

Example C.9.21: Criterion matrices for absolute coordinates in a space time holonomic frame if reference The variance-covariance matrix of absolute Cartesian coordinates in the fixed orthonormal frame of equatorial type, holonomic in , is transformed into a moving frame, e.g. of spherical type. In the moving frame longitudinal and lateral characteristic functions are derived. The postulates of spherical homogenity and spherical isotropy are reviewed extending to the classical Taylor-Karman structure with respect to three dimensional Cartesian coordinates into three . Finally the spherical harmonic representation of the coordinate criterion matrix is introduced.

Transformation of the coordinate criterion matrix from a fixed into a moving frame of reference

F ! e W

We depart from the fixed orthonormal frame fF ;F ;F g which we transform e1 e2 e3 into a moving one fe ;e ;e ; g by e1 e2 e3 C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 841

F ! e D RE .;;0/F (C382)

RE .;;0/WD R3.0/R2. 2 /R3./ is the three dimensional euler rotation matrix including geometric longitude and geometric latitude . As an example assume a representation of a placement vector x by spherical coordinates .;;r/such that e

x D F1r cos cos C F2r sin cos C F3r sin (C383)

e1 Dx; kx; kDe

e2 Dx; kx;kDe

e3 Dx;r kx;r kDer (C384) x; denotes ıx=ı etc. e ! f

Now let us rotate the orthonormal frame fe1; e2; e3; g into the orthonormal frame ff1; f2; f3; g by means of the South azimuth ˛ 2 3 f1 4 5 e ! f D R3.˛/e f2 f3 2 3 2 3 cos ˛ sin ˛0 e1 4 5 4 5 D sin ˛ cos ˛0 e2 (C385) 001e3

The transformation e ! f on the unit sphere orientates f1 into the direction of the great circle connecting the points .;;r/ and .0;0;r0/ For this reason the unit vector f1 will be called “longitudinal direction”. In contrast, f2 points in direction orthogonal to f1, but still in the tangential plane of the unit sphere. Thus we call the unit vector f2 “lateral direction”. Obviously f3 D e3 holds

F ! g ! f

There is an alternative way to connect the triads F and f. Consider the spherical position of a point in the “orbit” of the great circle passing through the points x; x0, respectively. For a given set of “Keplerian elements” f˝;i;!g - ˝ the right ascension of the ascending node, i the inclination and ! the angle measured in the “orbit” - we transform the fixed orthonormal frame fF1; F2; F3g into the orthonormal “great circle moving frame” fg1; g2; g3gDff3; f1; f2; g by

F ! g D R3.!/R1.i/R3.˝/F (C386) g ! F D R3.˝/R1.i/R3.!/F (C387) 842 C Statistical Notions, Random Events and Stochastic Processes

Fig. C28 Moving and fixed frame of reference on the sphere : two point correlation function

or explicitly

2 3 2 3 g1 cos ! cos ˝ sin ! cos i sin ˝ cos ! sin ˝ C sin ! cos i cos ˝ C sin ! sin i 4 5 4 5 g2 D sin ! cos ˝ cos ! cos i sin ˝ sin ! sin ˝ C cos ! cos i cos ˝ cos ! sin i g3 sin i sin ˝ sin i cos ˝ cos i (C388) 2 3 F1 4 5 : F2 (C389) F3

g3 D sin i sin ˝F1 sin i cos ˝F2 C cos iF3 (C390) represents the “great circle normal” parameterized by the longitude 2 ˝ and the latitude 2 i. g1 and g2 span the “great circle plane”, namely g1 is directed towards the spherical point x.

Figure C28 illustrates the various fames of type “fixed” and “moving”. fg1; g2; g3gDff3; f1; f2; g, g2 is the vector product of g3 and g1

Transformation of variance-covariance matrices Next we compute the Cartesian coordinates variance-covariance matrix. C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 843

0 0 †.x; x / D †ij .x; x /fFi ˝ Fj g

0 0 0 †.x; x / D †ij .x; x /ffi.x/ ˝ fj .x /g

0 0 0 †.x; x / D †ij .x; x /fgi .x/ ˝ gj .x /g (C391) wherei;j"f1; 2; 3g holds 2 3 ˙x;x0 ˙x;y0 ˙x;z0 ij 0 4 5 .˙ / D ˙y;x0 ˙y;y0 ˙y;z0 (C392) ˙z;x0 ˙z;y0 ˙z;z0

0 0 0 0 .˙ ij / D EfŒxi Efxi gŒX j EfX j ggDEf"i "j g (C393) ˙.x; x0/ WD Ef".x/"T .x0/g (C394) 0 Note that the variance-covariance matrix ˙ ij .x; x0/ is a two-point tensor field paying attention to the fact that the coordinate errors ".x/ and ".x/ are functions of the point x; x0, respectively. Now let us transform ˙ $ ˙ $ ˙.

T 0 0 0 ˙30 D RE .;;˛/˙33RE . ; ;˛ / 0 T 0 T 0 D R3.˝/R1.i/R3.!/˙33R3.! /R1 .i /R3 .˝ / T 0 0 0 ˙30 D RE .;;˛/˙ RE . ; ;˛ / (C395) T 0 0 0 T 0 0 0 D RE .;;˛/˙ R.!;i;˝/˙33R .! ; i ; ˝ / RE . ; ;˛ / T 0 0 0 ˙30 D R .! ; i ; ˝ /˙33R.!;i;˝/

T 0 0 0 T 0 0 0 0 0 0 D R .! ; i ; ˝ /RE .;;˛/˙33RE . ; ;˛ / R.! ; i ; ˝ /

A detailed write-up of the variance-covariance matrix ˙ is 2 3 ˙ll0 ˙lm0 ˙lr0 ij 0 4 5 .˙ / D ˙ml0 ˙mm0 ˙mr0 (C396) ˙rl0 ˙rm0 ˙rr0 indicating the “longitudinal” base vector f1 D fl, “lateral” base vector f2 D fm and the “radical” base vector f3 D fr D er . In terms of spherical coordinates ˙ ;˙, respectively, can be written

0 0 0 0 ˙30.x; x / D ˙ .;;r;; ;r / (C397) 0 0 0 0 0 ˙30.x; x / D ˙.!;i;˝;r;! ;i ;˝ ;r / (C398) 0 ˙ll0 D Ef"l .x/"l0 .x /g; 0 0 ;˙ll0 .x; x /ffl .x/ ˝ fl0 .x /g 844 C Statistical Notions, Random Events and Stochastic Processes

0 ˙lm0 D Ef"l .x/"m0 .x /g; 0 0 ;˙lm0 .x; x /ffl .x/ ˝ fm0 .x /g 0 ˙lr0 D Ef"l .x/"r0 .x /g; 0 0 ;˙lr0 .x; x /ffl .x/ ˝ fr0 .x /g (C399)

0 The characteristic function ˙ll0 .x; x / is called longitudinal correlation function, 0 0 ˙mm0 .x; x / lateral correlation function, ˙lm0 .x; x / cross correlation function 0 between the longitudinal error "l .x/ at the point x and the lateral error "m0 .x / at the point x0.

Spherically homogenous and spherically isotropic coordinate criterion matrices in a surface moving frame terrestrial geodetic networks constitute points on the earths surface. Once we want to develop an idealized variance-covariance matrix of the coordinates of the network points, we have to reflect the restriction given by the closed surface. A three dimensional criterion matrix of Taylor-Karman type is therefore not suited since it assumes extension of a network in three dimension up to infinity. a more suitable concept of a coordinate criterion matrix starts from the representation where the radial part is treated separately from the longitudinal-lateral part. Again the nature of the coordinate criterion matrix as a second order two-point tensor field will help us to construct homogenous and isotropic representations. The spherically homogeneity-isotropy-postulate reflects the intuitive notion os an idealized variance-covariance matrix.

Definition (spherical homogeneity and spherical isotropy of a tensor-valued two- point function): The two-point second order tensor function ˙.x; x0/ is called spherically homoge- nous, if it is translational invariant in the sense of

0 0 0 0 0 0 0 0 †33.! C ;i;˝;r;! C ;i ;˝ ;r / D †33.!;i;˝;r;! ;i ;˝ ;r / (C400) for all 2 Œ0;2;iD i 0;˝ D ˝0;rD r0, where !0 D ! C holds. It is called spherically isotropic, if it is rotational invariant in the sense of

0 0 0 0 ˙33.! !s ;i ;˝ ;r;! !s ;i ;˝ ;r / 0 0 0 0 D R3.ıs/˙33.! !s;i;˝;r;! !s;i ;˝ ;r /R3.ıs/ (C401)

0 0 0 for all ı"Œ0;2;rD r ; where ! D ! C , ! D ! C holds. R3.ıs/ indicates 0 a local rotation around the intersection points xs of the great circle through x; x 0 and through x ; x , respectively. xs has the common coordinates .˝;i;!s and .˝ ;i;!s with respect to the locally rotated frames.

End of Definition C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 845

Corollary (spherical homogeneity and spherical isotropy of a tensor-valued two- point function): The two-point second order tensor function ˙.x; x0/ is spherically homogenous, if it is a function of . ;i;˝;r/only:

0 0 0 ˙.!;i;˝;r;! ;i ;˝ ;r/D ˙.!;i;˝;r;! !s ; ;r/ (C402) It is spherically homogenous and isotropic, if it is a function of . ; r/ only

˙.!;i;˝;r;!0;i0;˝0;r/D ˙. ;i;˝;r/ (C403) such that

0 ij 0 ˙.x; x / Df˙0. ; r/ı C ˙22. ; r/ < x xjfi > 0 < x xjfi >g.fi ˝ fj / (C404) holds for some spherically isotropic and homogenous scalar-valued functions ˙0 and ˙22 End of Corollary

Let us interpret the definition of the corollary, especially with respect to Fig. C28. 0 0 Two points x; x are connected to the sphere of radius r D r D r0 by a great circle 0 such that D 2 arcsin.kx; x k=2r0/ is the spherical distance if these points.

Obviously a “translation” of the configuration x; x0 is generated by ! ! !C;! ! !0 C where the location of x; x0 in the great circle / “orbit” plane is measured by !;!0. The “rotation” of the configuration x; x0 is more complicated. Assume 0 therefore an alternative configuration x; x of two point connected by another 0 great circle. Note the spherical distances of x; x0 and x; x respectively, coincide. 0 The great circles intersect at xs, : The location of Xs within the plane x; x is 0 described by !s with respect to the ascending node, while within the plane x ; x by !s . the angle between the two great circles is denoted by ıs.

0 The configuration x; x0 and x; x is described with respect to xs by 0 0 0 0 0 0 ! !s ;i;˝;! !s ;i ;˝ and ! !s ;i ;˝ ;! !s ;i ;˝ respectively. Now it should be obvious that the two configurations under the spherical isotropy postulate coincide once we rotate around xs by the angle ıs.

We expressed ˙ . given in the F -frame in terms of the g-frame, namely by

T T T ˙ D R3 .!/R1 .i/R3 .˝/˙ R3.˝/R1.i/R3.!/ (C405)

Introducing ! D .! !s / C !s we compute the variance-covariance matrix ˙ 846 C Statistical Notions, Random Events and Stochastic Processes

T T T T 0 0 0 ˙ D R3 .! !s /R3 .!s /R1 .i/R3 .˝/˙ R3.˝ /R1.i /R3.!s/R3.! !s / (C406)

T 0 ˙ D R3 .! !s/˙s R3.! !s/ (C407) in terms of the variance-covariance matrix ˙s in the g.xs/-frame. Now we are prepared to introduce Corollary (spherical Taylor-Karman structure):

0 Denote the variance-covariance matrix ˙ ij in the f -ande- frame by 0 ij ˙ 0 . ; r/ 0 22 f ˙ D ll f ˙ (C408) 0˙mm0 . ; r/ 0 ij ˙ 0 ˙ 0 22 e˙ D 11 12 e˙ (C409) ˙210 ˙220 and transform f ˙ ! e˙ by cos ˛ sin ˛ cos ˛0 sin ˛0 e˙ D f ˙ D (C410) sin ˛ cos ˛ sin ˛0 cos ˛0

Then

0 0 ˙110 D ˙ll0 . ; r/ cos ˛ cos ˛ C ˙mm0 . ; r/ sin ˛ sin ˛ 0 0 ˙120 D ˙ll0 . ; r/ cos ˛ sin ˛ ˙mm0 . ; r/ sin ˛ cos ˛ 0 0 ˙210 D ˙ll0 . ; r/ sin ˛ cos ˛ ˙mm0 . ; r/ cos ˛ sin ˛ 0 0 ˙220 D ˙ll0 . ; r/ sin ˛ sin ˛ C ˙mm0 . ; r/ cos ˛ cos ˛ (C411)

˙lm0 D ˙ml0 D 0 (C412) holds for spherically homogenous and isotropic scalar-valued functions ˙ll0 . ; r/, ˙mm0 . ; r/ called longitudinal and lateral correlation functions on the sphere. End of Corollary

The corollary extends results of G.J. Taylor (1935), T. Karman (1937) and C. Wang (1970 p. 214-215) and has been given for a special variance-covariance two-point tensor field of potential type by H. Moritz (1972 p. 111). Here it has been generalized for any vector-valued field. Note that incase of homogenity and isotropy the cross-correlation functions ˙lm0 and ˙ml0 may vanish.

The classical planar Taylor-Karman structure is constrained within. C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 847

Let us put ˛ D ˛0 such that cos ˛ cos ˛0 D cos2 ˛ D 1 sin2 ˛; sin ˛ sin ˛0 D sin2 ˛ etc. can be rewritten

2 ˙110 D ˙mm0 . / C Œ˙ll0 . / ˙mm0 . / cos ˛

˙120 D Œ˙ll0 . / ˙mm0 . / sin ˛ cos ˛ D ˙210 2 ˙220 D ˙mm0 . / C Œ˙ll0 . / ˙mm0 . / sin ˛ (C413) which is the standard Taylor-Karman form Representation of the coordinate criterion matrix in scalar spherical harmonics

Let us assume a coordinate variance-covariance matrix which is homogenous and isotropic in the sphere. With reference to (C412) we postulate a coordinate vector of potential type, in addition, namely

i " D gradR " D @i R.iD 1; 2; 3/ (C414)

@ @ @ where .@i / D . @x ; @y ; @z / nd R the scalar potential. Now the variance-covariance matrix of absolute coordinates can be represented by

ij 0 i j 0 0 0 ˙ D Ef" .x/" .x /gD@i @j 0 EfR.x/R.x /g (C415) where we used the commutator relation @i E D E@i of differentiation and integration operators. Denote the scalar-valued variance-covariance function EfR.x/R.x0/gDW K.x; x0/. Once we postulate homogeneity and isotropy of two-point function K.x; x0/ on the sphere we arrive at

K.x; x0/ D K.r; r0; / (C416)

For a harmonic coordinate error potential, @i @i R D 0, we find for the covariance function K.r; r0; /

0 0 @i @i K.r; r ; / D Ef@i @i R.x/R.x /gD0 (C417) 0 0 @j 0 @j 0 K.r; r ; / D EfR.x/@j 0 @j 0 R.x /gD0 (C418)

Case 1 .kxkDkx0k/

0 On a sphere .kxkDkx k/ D r0 the scalar-valued variance-covariance function K. / which fulfils (C414 - C 417) may be represented by

X1 K. / D knPn.cos / (C419) nD0 848 C Statistical Notions, Random Events and Stochastic Processes where Pn are the Legendre polynomials. The constants kn depend, of course, on the choice of r0

Case 2 .kxk¤kx0k/

Denote .kxkDr; kx0kDr0/. the scalar-valued variance-covariance function K.r; r0; /which fulfils (C414 - C 417) may be represented by

K D K.r; r0; / C X1 r2 n 1 X1 rr0 n D 1kn . 0 / P .cos / C 2kn . / P .cos / (C420) rr0 n r n nD0 nD0 0 where the coefficients 1kn ;2kn represent the influence of the decreasing and increasing solution, by Legendre polynomials with respect to r; r 0, respectively. We can only hope that the covariances K.r; r0; / decrease with respect to r; r 0, respectively in order to be allowed to discriminate 2kn D 0. In the following we mae this assumption, thus representing

C X1 r2 n 1 K.x; x0/ D K.r; r0; /D k . 0 / P .cos / (C421) n rr0 n nD0

Next let us assume the coordinate variance-covariance matrix (C420) is of potential type. Then longitudinal and lateral correlation functions on the sphere if radius r can be represented by

d 2 ˙ 0 . / D K. / (C422) ll d 2 1 1 ˙ 0 . / D K. / (C423) mm sin d d ˙ 0 . / D .˙ 0 sin (C424) ll d mm if .x; x0/ is homogenous and isotropic on the sphere. End of Corollary

0 d 0 0 Note that the result ˙ll D d .sin ˙mm / for the sphere corresponds to ˙ll D d 0 ds .s˙mmq/ for a harmonic field in the plane. s D .x0 x/2 C .y0 y/2 is the Euclidean distance in the plane which corresponds to at the distance on the sphere. C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 849

Corollary (longitudinal and lateral correlation functions on the sphere of harmonic type): Let us assume that the coordinate variance-covariance matrix id homogenous, isotropic and harmonic on the sphere in the sense of the definition. Longitudinal and lateral correlation functions on the sphere can be represented by

1 X .n2 C 3n C 2/cos2 0 ˙ll . / D kn 2 C .n C 1/ : nD0 sin 2 2 cos Pn.cos / Œn C 3n C 2 PnC1.cos / sin2

2 1 C Œn C 3n C 2 PnC2.cos /g (C425) sin2 X n C 1 0 ˙mm . / D 1kn 2 Œcos Pn.cos / nD0 sin

PnC1.cos / (C426)

End of Corollary

For the proof of the above corollary we have made successive use of the recurrence 2 relation .x 1/dPn.x/=dx D.n C 1/ŒxPn.x/ PnC1.x/; x D cos ;d=d D .dx=d /.d=dx/ Dsin d=dx

Representation of the coordinate criterion matrix in vector spherical harmonics Previously we restricted the coordinate criterion matrix being homogenous and isotropic on the sphere to be of potential type. Here we generalize the coordinate criterion matrix to be of potential and “turbulent” type. Thus according to the Lame lemma – for more details see A. Ben Menahem - S. J. Singh (1981) - we represent the coordinate vector " D gradR C rotA (C427) where we gauge the vector potential A by divA D 0. In vector analysis gradR is called the longitudinal vector field, rotA the transversal vector field. In order to base the analysis only on scalar potentials, the source-free vector field rotA is decomposed SCT where S is the poloidal part while T is the toroidal part such that

" D gradR C rotrot.er S/ C rot.er T/ (C428)

.R;S;T/ are the three scalar potentials we were looking for. The variance- covariance matrix of absolute coordinates can now be structured according to 850 C Statistical Notions, Random Events and Stochastic Processes

˙.x; x0/ D Ef".x/g D grad ˝ grad0EfR.x/R.x0/g 0 0 0 Crotrot ˝ rot rot er er0 EfS.x/S.x /g 0 0 Crot ˝ rot er er0 EfT.x/T .x /g (C429) where we have assumed EfR.X/S.X0/gD0; EfR.X/T .X0/gD0; EfS.X/T .X0/g D 0 holds for a coordinate variance-covariance matrix ˙.xx0/ homogenous and isotropic on the sphere. Thus with respect to the more general representation is

˙.x; x0/ D grad ˝ grad0K 0 0 C rotrot ˝ rot rot er er0 L 0 C rot ˝ rot er er0 M (C430)

where K WD EfR.X/R.X0/g;L WD EfS.X/S.X0/g;M WD EfT.X/T .X0/g are supposed to be the scalar-valued two point covariance functions depending on .r; r0; /for .˙.x; x0// homogenous and isotropic on the sphere.

The representation of the criterion matrix .˙.x; x0// in terms of vector spherical harmonics is achieved once we introduce the spherical surface harmonics. 2 q 2.2n C 1/ .nm/Š P .sin /cos m 8m>0 6 .nCm/Š nm 6 6 p 6 enm./ D 6 2.2n C 1/Pn.sin / 8m D 0 (C431) 6 4 q .njmj/Š 2.2n C 1/ .nCjmj/Š Pnjmj.sin /sin jmj 8m<0: where Pnm.sin / are the associated Legendre functions

nCm 1 m=2 d n P .x/ D .1 D x2/ .x2 1/ (C432) nm 2nnŠ dxnCm Note that the quantum numbers run n D 0; 1; ; 1I m Dn; n C 1; ;0; ; n 1; n. The base functions enm.; / are orthonormal in the sense

Z2 CZ=2 1 d d cos e e D ı ı (C433) 4 kl nm kn lm 0 =2 C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 851

Finally a vector field " can be represented in terms of vector spherical harmonics by

" D U a C V b C W c (C434) 2nm nm nm nm nm nm a WD e e .; / 6 nm r nm 6 6 6 6 bnm WD rgradenm.; / (C435) 4

cnm WD x grad enm.; /:

For more details on vector spherical harmonics we refer to standard textbooks, here e.g. to E. Grafarend (1982).

˙.x; x0/ D Ef".x/ ˝ ".x0/g

D Unmn0m0 anm ˝ an0m0

C Vnmn0m0 bnm ˝ bn0m0

C Wnmn0m0 cnm ˝ cn0m0 (C436) which is due to < ajb >D< ajc >D< bjc >D 0. Unmn0m0 etc. are spherical covariance functions.

Example C 9.22: Towards criterion matrices for functionals of the distributing potential in a space-time holonomic frame if reference The geodetic observational equations in their linearized form contain beside unknown Cartesian coordinate corrections in an orthonormal reference frame, being holonomic in space-time, the disturbance of the potential and its derivatives as unknowns . for a complete set-up of a criterion matrix of geodetic unknowns we have therefore present thoughts about a homogenous and isotropic variance- covariance matrix of the potential disturbance and its derivatives, The postulates of homogeneity and isotropy will lead again to the extension of an classical Talyor- Karman structure. finally the representation of the criterion matrix of potential related quantities in terms of scalar spherical harmonics is introduced. Since the potential disturbance is harmonic function, vector spherical harmonics are not needed.

We begin the transformation of the gravity criterion matrix from spherical into Cartesian coordinates. b c With reference to the linearized observational equations the unknowns .ı ; ı ; ı/b have to be equipped with a criterion matrix, reasonable to be homogenous and 852 C Statistical Notions, Random Events and Stochastic Processes isotropic on the sphere. In order to take advantage of lemma and corollaries of the second chapter, we better transform the spherical coordinates of the disturbance gravity vector ı into Cartesian ones and then apply the variance-covariance “propagation” on the transformation formula. 2 3 2 3 cos cos ˚ cos cos 4 5 4 5 ıi WD i i D sin cos ˚ sin cos sin ˚ sin 2 3 . C ı/cos. C ı / cos. C ı / 4 5 D . C ı/sin. C ı / cos. C ı / . C ı/sin. C ı / 2 3 cos cos 4 5 sin cos (C437) sin 2 3 . C ı/.cos ı sin /.cos ı sin / : 4 5 ıi D . C ı/.sin C ı cos /.cos ı sin / . C ı/.sin C ı cos / 2 3 cos cos 4 5 sin cos (C438) sin 2 3 ı cos cos C ı sin cos C ı cos sin : 4 5 ıi D ı sin cos ı cos cos ı sin sin ı sin ı cos (C439) 2 3 2 3 2 3 ı1 C sin cos C cos sin cos cos ı 4 5 : 4 5 4 5 ı2 D cos cos sin sin sin cos ı ı3 0 cos sin ı (C440) 2 3 2 3 2 3 2 2 1=2 1 ı 2 C12. C / 1 ı 1 : 6 1 2 7 4 5 4 2 2 1=2 1 5 4 5 ı2 D C1 23.1 C 2 / 2 ı (C441) ı 2 2 1=2 1 ı 3 0 .1 C 2 / 3

c b 0 The variance-covariance matrix Dfıi .x/; ıj 0 .x /g as a function of the variance- b c b b c b 0 covariance matrix Df.ı ; ı ; ı/.x/; .ı ; ı ; ı/.x /g basedonthetrans- formation ( C 438) is given. finally the Cartesian variance-covariance matrix c b 0 Dfıi .x/; ıj 0 .x /g in the fixed frame F should be transformed into the moving frame f according to (C381). C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 853

P5 1 Fig. C29 Normalized covariance function K. / D knPn.cos / for kn D nC2 nD0

Thus we refer to ˙ ˙ ˙ ˙ ˙ ˙ ll0 ;lm0 ;lr0 ;ml0 ;mm0 ; ;rr0 (C442) ˙ ˙ as the longitudinal correlation function ll0 ,thelateral correlation function mm0 etc. of the gravity disturbance vector ıi . In order to construct a homogenous and isotropic criterion matrix for functionals of the disturbing potential in a surface moving frame we refer to the introduction which applies here, too. Again we make use of the definition of homogeneity and isotropy 0 of the tensor-valued two-point function ˙.X;X / on the sphere, the basic lemma and the corollary for the spherical Taylor-Karman structure. Just by adding the left hand index on ˙ within formula (C410) (C411), we arrive at the corresponding formulae for longitudinal, lateral and cross-correlation of the gravity disturbance vector ı. For the representation of the criterion matrix for functionals of the disturbing potential in scalar spherical harmonics we once more refer to (C417). All results can be transferred, especially (C 420 - C 425) once we write K.r; r0; / as the scalar-valued two-point function EfŒıcw E.ıcw/xŒıcw E.ıcw/x0g homogenous and isotropic on the sphere. Besides the first-order functionals of the potential ıw and their variance-covariance matrices, higher order functionals, e.g. for gravity , and their variance-covariance matrices can be easily obtained, a project for the future. 854 C Statistical Notions, Random Events and Stochastic Processes

P5 1 Fig. C30 Normalized covariance function K. / D knPn.cos / for kn D .nC2/.n22nC2/ nD0

A numerical example of the homogenous and isotropic two-point function K.x; x0; /on the space For demonstration purpose plots C29 - C31 show the normalized covariance functions K.X; X0/ D K.r; r0; /

P5 D K. / D knPn.cos / for case 1 nD0 0 .kXkDkmathbf X kDr0/ and three different choices of the coefficients kn. The coefficients are chosen in such a manner that their sum equals the unity (so as to normalize the covariance function) and the covariance function approaches zero as tends to . As an example for the construction of a criterion matrix, the coefficients kn could be estimated for an ideal network and its variance-covariance matrix; that is derived covariance function K.x; x0/. We have taken a part of Appendix C 9.2 from our contribution E. Grafarend, I. Krumm and B. Schaffrin (Manuscripta geodetica 10 (1988) 3-22). Spherical homogeneity and isotropy in tensor-valued two-point functions have been intro- duced by E. Grafarend (1976) and H. Moritz (1972, 1978).

Ex 3: Space Gravity Spectroscopy: The Benefits of TaylorÐKarman Structured Criterion Matrices

Example C.9.3. Space gravity spectroscopy: the benefits of Taylor-Karman struc- tured criterion matrices (eg, P. Marinkovice et. al. (2003)) C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 855

P5 1 Fig. C31 Normalized covariance function K. / D knPn.cos / for kn D n2C3 nD0

As soon as the space spectroscopy was successfully performed, for instance by means of semi-continuous ephemeris of LEO-GPS tracked satellites, the problem of data validation appeared. It is for this purpose that a stochastic model for the homogenous isotropic analysis of measurements, obtained as “directly” measured values in LEO satellite missions (CHAMP, GRACE, GOCE), is studied. An isotropic analysis is represented by the homogenous distribution os measured values and the statistical properties of the model are calculated. In particular a correlation structure function is defined by the third order tensor (Taylor-Karman tensor), for the ensemble average of a set of incremental differences in measured components. Specifically, Taylor-Karman correlation tensor is calculated with the assumption that the analyzed random function is of a “potential type”. The special class of homogenous and isotropic correlation functions is introduced. Finally, a successful application of the concept is presented in the case study CHAMP and a comparison between modeled and estimated correlations is performed.

Example C.9.31. Introduction

A significant problem of LEO satellites, both in geometry and gravity space, is the association of quality standards to Cartesian ephemeris in terms of variance-covariance matrix valued-functions. as a pessimistic measure of the quality standards os LEO satellite ephemeris, a three dimensional Taylor-Karman structured criterion matrix has been proposed, named in honor of Taylor (1938)and Karman (1938), the founders of the statistical theory of turbulence. 856 C Statistical Notions, Random Events and Stochastic Processes

The concept of the Taylor-Karman criterion matrices was first introduced by E. Grafarend (1979) and subsequently further developed by B. Schaffrin and E. Grafarend (1982), H. Wimmer (1982), and E. Grafarend et. al. (1985, 1986). with this contribution we extend the application of the Taylor-Karman structured matrices to the third-dimension, namely to the long-arc orbit analysis.

If we assume the vector-valued stochastic process to be the gradient of a random scalar-valued potential, in particular its longitudinal and lateral correlation function or the “correlation function along-track and across-track”, what would be the struc- ture of a three-dimensional Taylor-Karman variance-covariance matrix.Inorderto answer this question, a three-dimensional correlation tensor and its decomposition in the case of homogeneity and isotropy is studied with the emphasis on R3. Additionally, we deal with a special class of homogenous and isotropic tensor- valued correlation functions. They are derived, analyzed and applied to the data validation process. The theoretical concept for the application of the previously discussed criterion matrix in the geometric and gravitational analysis of LEO satellite ephemeris is presented. Finally the case study CHAMP is used for the application of our theory concept followed by the results and conclusion.

Example C.9.32: Homogenous and isotropic variance-covariance tensor and cor- relation functions in a three-dimensional Euclidean space

Example C.9.321: Notions of homogeneity and isotropy

The notions of homogeneity and isotropy for functions on R are briefly explained as the following. The general context for these two definitions involves the action of a transitive group of motions on a homogenous and space belongs to the extensive theory of Lie groups (F. W. Warner (1983), A. M. Yaglom (1987)). However, it is important to clarify the different notions of homogeneity and isotropy exist due to the variety of homogenous spaces and transitive group actions on these spaces. The terminology introduced associates the notion of homogeneity and isotropy with

Fig. C32 Graphical representation of the longitudinal and lateral correlation functions C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 857 the functions on R that are invariant under the translation group acting on R . The notion of isotropy is defined for functions on R that are invariant under the orthogonal group acting on R.

Table C.9.9: Tensor-valued correlation function of second-order “two-point correlation function”

P3 P3 i j i j ˙.x ; x / D e e ˙ij .x ; x / D ˙ij .x ; x /e e (C443) i;jD1 i;jD1

r WD kx; xk and r WD x; x

xi xj ˙ij .r/ D ˙m.r/ıij C Œ˙l .r/ ˙m.r/ r2 ;i;j2f1; 2; 3g (C444)

“Cartesian versus spherical coordinates”

x1 D x WD .x1 x1 / D r cos ˇ cos ˛

x2 D y WD .x2 x2 / D r cos ˇ sin ˛ (C445)

x3 D z WD .x3 x3 / D r sin ˇ

“continuity of a potential type”

dŒr˙m.r/ d˙m.r/ ˙l .r/ D dr D ˙m.r/ C r dr (C446) End of Table C.9.9

Example C.9.322: Homogenous and isotropic variance-covariance tensor (correla- tion tensor) Taylor (1938) proved that he homogenous random field X.t/ correlation function ˙.r/ Ddepends only on the length r Dkrk of the vector r and not on its direction, where < ::: > denoted the ensemble average. If the correlation function ˙.r/ of the homogenous random field X.t/ in R has the property, then the field X.t/ is said to be an isotropic random field in R. The corresponding correlation function ˙.r/ is then called an isotropic correlation function in R ( or an n-dimensional isotropic correlation function). Process, which satisfy the introduced postulates of homogeneity and isotropy, are said to be (widely) stationary (M. J. Yadrenko (1983)). Note that for an isotropic random field in R, all directions in space are obviously equivalent.

The decomposition of a homogenous and isotropic variance-covariance tensor- valued function, shown in box 1, was introduced by von Karman and Howarth 858 C Statistical Notions, Random Events and Stochastic Processes

Fig. C33 Graphical representation of the correlation tensor transformation

(1938) by means of a more general and direct method than the one used by G. J. Taylor(1938). Additionally, Robertson (1940) refined and reviewed the T. Karman and L. Howard equation in the light of a classical invariant tensor theory.

The decomposition of ˙ij .kx x k/, with a special emphasis on n D 3,is performed in terms of Cartesian coordinates and with respect to the orthonormal frame of reference fe1; e2; e3j0g attached to the origin 0 of a three-dimensional Euclidean space. kx xk denotes the Euclidean distance r between the two points x and x of E WD fR ;ıij . Longitudinal and lateral correlation functions ˙l and ˙m, are the structural elements of such a homogenous and isotropic tensor- valued variance-covariance function which appear in the spherical tensor ˙m.r/ıij 2 as well as in the oriented tensor Œ˙l .r/ ˙m.r/xi xj =r for all i;j 2f1; 2; 3g, see (C443) and Fig. C.32. ıij denotes the Kronecker or unit matrix, xi the Cartesian coordinate difference between the points x and x. These differences are also represented in terms of relative spherical coordinates .˛;ˇ;r/, (C444). Finally the continuity condition of a potential type is formulated by (C445) which provides the unique relation between ˙l and ˙m (G. J. Taylor (1938); H. M. Obuchow (1958); E. Grafarend (1979)). Due to its complexity, it is necessary to further elaborate on the previous equation set. The correlation tensor ˙ij .r/ was transformed to a special coordinate system 0 0 0 0 R 0 0 0 0 O x1x2x2 in instead of the initial set Ox1x2x3. The new set O x1x2x3 is selected in such a way so that its origin O0 is shifted by the vector x with respect to the origin O, as illustrated in Fig. C15.ThismeansthatO0 coincides with the terminal 0 0 point of the vector x that refers to the initial coordinates, while the axis O x1 lies along the vector x x. C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 859

Fig. C34 The behavior of Tatarski’s correlation function for different values of shape parameter .d D 900/ and scale parameter d. D 3=2/

˙ij , introduced here are explanatory functions, are the components of the correla- 0 tion tensor ˙ij .r/ in the new set of coordinates. The functions ˙ij .r/ clearly depend only on the length r Dkrk of the vector r, since the direction of r is fixed in the new set of coordinates. In the space R exist a reflection which leaves the points x 0 0 0 0 0 and x D .O / unmoved and it replaces the axis O xj by O xj ,wherej ¤ 1 is a fixed number. However, it does not change the directions of all other coordinates 0 0 axes O xl ;l 2f1; 2; 3g and l ¤ j . It follows that

0 0 ˙ij .r/ D˙ij .r/ D 0textrmfori ¤ j (C447) 0 Hence, only the diagonal elements ˙ij .r/ of ˙ij .r/ can differ from zero. Further 0 0 0 0 more, if i ¤ j and j ¤ 1, then the axis O xi by its rotation around the axis O xj , 0 0 can be transformed to the axis O x1. Hence

0 0 ˙22.r/ D ˙33.r/ (C448)

0 0 The tensor ˙ij and, consequently, ˙ij are symmetric and their components ˙ij .r/ can take at most only tow non-equal non-zero values at the already introduces 0 longitudinal correlation function ˙ii.r/ D ˙l .r/ and the lateral correlation function 0 0 ˙22.r/ D ˙33.r/ D ˙m.r/, which specify in a unique way the correlation tensor. In order to obtain the explicit form of ˙ij .r/, as the function of ˙l .r/ and ˙m.r/, the unit vectors of the old coordinate axes Ox1;Ox2;Ox3 along the axes of the 0 0 0 0 0 0 new system O x1;O x2;O x3 must be resolved and then ˙ij .r/ can be represented 0 as linear combination of the functions ˙kl.r/; .k ¤ i;l ¤ j and k; l 2f1; 2; 3g/, which leads to (C442) and (C443). 860 C Statistical Notions, Random Events and Stochastic Processes

Example C.1. homogenous and isotropic correlation functions

It was shown in the pervious section that for a homogenous and isotropic random fields defined on the Euclidean space R, the correlation between x and x depends only on the Euclidean distance kx xk. Therefore as shown in Table C32, we can distinguish a homogenous and isotropic correlation function on R with the real valued function ˙.r/ defined on Œ0; 1/ and we denote by ˚n the class of all continuous permissible functions ˙.r/ W Œ0; 1/ ! such that ˙.0/ D 1 (we are working in terms od correlation not covariance) and the symmetric function ˙.k:k/ is a positive definite on R . The characterization of classes ˚n,alsoshown in Table C.9.10, is a well known result of J. F. Schoenberg (1938). The function ˙.r/ W Œ0; 1/ ! R is an element of ˚n if and only if it abmits a representation in the form of (C450), where W is a probability measure on Œ0; 1/; J.n2/=2 is the Bessel function of the first kind of order .n 2/=2 and stands for the Gamma function. Hence in for geodesy relevant spaces R and R, (C450) reduces to the form presented in (C452).

Table C.9.10: Isotropic correlation and Schoenberg’s characterization “homogenous and isotropic correlation function” ˙.x; x/ D ˙.kx; xk/; x; x 2 R (C449) r WD kx; xk R “the characterization of the ˚n class” ˙n.r/ D ˝n.r/dW./ (C450) Œ0;1/ 2 .n2/=2 ˝n.r/ D .n=2/.r / J.n2/=2.r/ (C451) “reduction of the ˝n for n D 2 and n D 3” 1 ˝2.r/ D J0.r/ and ˝3.r/ D r sin r (C452) End of Table C.9.10

Table C.9.11: Special classes of correlation functions “Tatarski’s class”

21 r r ˙Œ.r/ D ./. d / K. d / (C 453)

“Shkarofsky’s class”

2 =2 2 1=2 . r Cı2/ K .. r Cı2/ / d2 d2 ˙Œ;ı.r/ D (C454) ı K .ı/

End of Table C.9.11 C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 861

Example C.2. Tatarski’s class of homogenous and isotropic correlation functions

Many analytical candidate models for ˙ have been suggested in the literature (for example, Buell, (1972); Haslett, (1989)), but we refer to Tatarski (1962) as being the first who elaborated on such correlation functions which fulfill all the conditions presented in the previous section. The Tatarski’s correlation function class is shown in Table C.9.11 and illustrated by Fig. C.34. In addition to V. J. Tatarski’s class,a very general family of correlation function models due to J. P. Shkarofsky (1968) is introduced, that came as the generalization of Tatarski’s correlation function family. These two classes, which have been proved to be the members of ˚3 (Shkarofsky, (1968) and of ˚1 classes; Gneiting et. al. (1999)), can be applied to many geodetic problems, (e.g. Grafarend (1979); Meier (1982); Wimmer (1982); Grafarend (1985)).

In equation of Table C.9.11, K stands for a modified Bessel function of order ; d > 0 is a scale parameter, and ı>0and are shape parameters. In the case of ı D 0 J. P. Shkarofsky’s class reduces to V. J. Ta ta rsk i’s class.

The special case of Tatarski’s class appears if the shape parameter is sum of a non-negative integer k and 1=2. Then the right-hand side of the equation can be written as a product of exp.r=d/ and a polynomial of degree k in r=d (eg. T. Gneiting, (1999)). In particular, in the case of n D 3 dimensional Markov process of the p D 1 order, shown in Fig. C34, the shape parameter is expressed as D .2p C 1/=.n 1/ D 3=2 and results in the flowing simplification of (C454): r r ˙ .r/ D .1 C / exp. / (C455) Œ3=2 d d

Example C.3. Three dimensional Taylor-Karman criterion matrix in the geometric and gravitational analysis of LEO satellite ephemeris

WE have so far analyzed the theoretical background and solution for design of the homogenous and isotropic Taylor-Karman correlation tensor. The question is, how this theoretical concept applies to the geometric and gravitational analysis of LEO satellite ephemeris.

The basic idea is, that the errors in the position vectors of LEO satellites constitute a vector-valued stochastic process. Following this concept, a satellite orbit of LEO- GPS tracked satellites is an homogenous and anisotropic field of error vectors and the error situation is described by the covariance function. As it is well known, the error situation os a newly determined position in a three-dimensional Euclidean space is the best, when the error ellipsoid is sphere (isotropy) with the 862 C Statistical Notions, Random Events and Stochastic Processes minimal radius and if the error situation is uniform over the complete satellite orbit (homogeneity). This “ideal” situation can be explained by the three-dimensional Taylor-Karman structured criterion matrix of W. Baarda - E. Grafarend (potential) type. Then the correlations between the vectors of pseudo-observations of satellite ephemeris described by the longitudinal and lateral correlation functions.

The characteristic correlation functions can be estimated by matching the correlation tensor with a three-dimensional Markov process of 1st order and with the introduction of some additional information about the underlying process. The correlation analysis is performed with the assumption that the vector valued three- dimensional random function is of “potential type” (E. Grafarend (1979)), i.e. the gradient of a random scalar function “signal s.x/”. The structure of the random function s.x/ is outlined as an n-dimensional Markov process of the pth order. Figure C35 illustrates the case n D 3 and p D 1:

One of the simples os such a process has the form given by

p .2 ˛2/ s.x/ D e.x/ (C456) where e.x/ is a white noise. If the can be applied to the homogenous random scalar function, then it transforms this function into a new homogenous random function, having the spectral density that corresponds to the spectral density of the correlation function of (C453) and (C454), see P. Whittle (1954), V. He in e (1955) and P. Whittle (1963). Hence the homogenous solution of C455 (if it exist) must have the spectral density that corresponds to the spectral density of the correlation function.

Table C.9.9 summarizes the representation of the homogenous and isotropic corre- lation functions of type (i) Signal correlation function ˙, (ii) Longitudinal correlation function ˙l and (iii) Lateral correlation function ˙m

Example C.9.34: Results and conclusions

Case study: Champ As the numerical test in this study, we processed two data sets: two three- dimensional fx.tk/; y.tk/; z.tk /g and fx.td /; y.td /; z.td /g Cartesian ephemeris time-series of CHAMP satellite orbit for the test period from day 140 to 150 of 2001 (20 May to 30 May, both inclusive). We analyzed in total 27,360 triplets of satellite positions. Both time series are indexed with a 30 s sampling rate and referenced to a kinematic (index k) and a dynamic CHAMP orbit (index d). The dynamic orbit used as a reference, provides us with ephemeris differences between the two orbits. The estimation of (“real”) auto and cross correlations between the C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 863

Fig. C35 The six point interaction in the grid; the three-dimensional Markov process of the 1st order (auto regressive process); the gray rectangle represents the same process in two-dimensions

vectors of pseudo-observations as functions of time, can be performed as Priestley (1981).

According to Tables C.9.10 and C.9.11 the Taylor-Karman structured (“ideal”) correlations are computed from the three-dimensional fx.tk/; y.tk/; z.tk /g time series. The adopted scale parameter is d D .2=3/Rchar,whereRchar is the characteristic length of the process. The characteristic length is defined by the arc length of 2400 seconds (80 points for the 30 second sampling rate). The both parameters are experimentally estimated. For further details on the scale parameter and characteristic length, please see Wimmer (1982).

The numerical results of the study are graphically presented in Fig. C37. The gray area represents the estimated (“real”) correlation situation along the satellite arc as presupposed by Austen et al. (2001). The high auto and low cross-correlations between CHAMP satellite positions for approximately 20 min of an orbit arc are very evident. The Taylor-Karman structured correlation (black line), as theoreti- cally assumed, gives an upper bound of the “real” correlation situation along the satellite orbit. 864 C Statistical Notions, Random Events and Stochastic Processes

Fig. C36 The behavior of the longitudinal and lateral correlation functions, (C456) and (C 458), for different values of the scale parameter d. D 3=2/

Table C.9.12 Longitudinal and lateral correlation function for a homogenous and isotropic vector-valued random field of potential type, 1st order Markov process “condition for a process of potential type”

Rr 2p ˙.x/ ! r2 x˙.x/ dx ! 0

d ! ˙l .r/ D dr Œr˙m.r/

“input”

21=2 r 3=2 r r r ˙.r/ D .3=2/ . d / K3=2. d / D .1 C d / exp. d / (C457)

“output”

r 2 r r r 1 r 2 ˙l .r/ D6. d / C exp . d /Œ4 C 2.d / C 6. d / C 6. d / (C458)

r 2 r r 1 r 2 ˙m.r/ D6. d / C exp . d /Œ2 C 6. d / C 6. d / (C459)

End of Table C 9.12 C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 865

Fig. C37 Graphical representation of the numerical study results (20 minute correlation length, 40 points for the 30 second sampling rate)

Ex 4: Nonlinear Prediction

Example C.9.4: Nonlinear Prediction

For direct interpolation, extrapolation or filtering without trend analysis, linear prediction gives poor results, asking for a more general concept, namely nonlinear prediction.Asetoffunctional series of Volterra type for nonlinear prediction of scalar-, vector-, in general, tensor-valued signals is set-up. Optimizing the Helmert or Work Meister point error, a set of linear integral equations, generalizing the Weiner-Hopf integral equations. Multi-point-correlation functions (MPCF) are characteristic for those equations. A criterion for linear prediction, namely the vanishing of all MPCFs beside the two-point-correlation, is formulated solutions of the discrete integral equations and the prediction error tensor of rank two are reviewed. A structure analysis of PCFs of homogenous and isotropic vector fields proves the number of characteristic functions to be 2.n D 2/; 4.n D 3/; 10.n D 4/ and 26.n D 5/.

The methods of statistical prediction were developed relating to stochastic processes by two famous scientists, by the Russian A. N. Kolmorogov (1941) and by the American N. Wiener (1941), nearly at the same time during the Second World War. 866 C Statistical Notions, Random Events and Stochastic Processes

The world-wide resonance to these milestones began rather late: the work of A. N. Kolmorogov was due to the bad documentation of Eastern publications in Western countries nearly unknown, the great works of N. Wiener appeared as a classified report of section D2 of the American National Defence Research Committee. At that time the difficult formula apparatus made the acceptance rather impossible. Nowadays, the difficulties are only history, the number of publications about linear filtering, interpolation and extrapolation, reaches ten thousands. For example, the American Journal JRE, Transactions on , New York appears regularly every year with a literature report about the State-of-the-Art. Notable are the works of R. Kalman (1960) who succeeded to solve elegant by the celebrated perdition equation, the Wiener-Hopf integral equation in transforming to a differential equation which is much easier to solve. The methods became very well known as a method of data analysis applied to Navigation of the Apollo Spacecraft.

In practice we begin with a two-step procedure. First, we analyze the observed values with respect to trend: we fit a data set to a harmonic function, to a exponential function or a polynomial with respect to “position”. Second, we analyze the data after the trend fit to a Wiener-Kolmogorov prediction assuming a linear relation between the predicted signal and the reduced unknown signal. The coefficients in this linear relation depend on the distance between the points and its direction. It is well known how to operate with the discrete approximation of the classical Wiener-Hopf integral equation.

The two step procedure accounts for the typical results that (a) the direct application of a linear Kolmogorov-Wiener prediction gives too inconsistent results, namely too large mean-square-errors of the predicted signal. The remarkable disadvantage of the two step procedure, in contrast is the immense computer work. Thus the central question is: is the two-step-procedure necessary when a concept for nonlinear prediction exists.

For all statistical prediction concepts the correlation function between various points is the key quantity. In practice, the computational problems are greatly reduced if we are able to find out whether the predicted signal is subject to a statistical homogenous and isotropic process. It is a key information if a correlation function depends only on the distance between the involved points or is a function of the difference vector, namely isotropy and homogeneity, our special topic in a special section.

Example C.9.41: The hierarchy for the equations in nonlinear prediction of scalar- valued signals We review shortly the characteristical equations which are given in nonlinear prediction. Before hand we agree to the following notation: All Greek indices run f1; 2; ;N 1; N g counting the number of points P˛ with a signal s.P˛/.The C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 867 signal may be a scalar signal, a vector signal or a tensor signal. A natural assumption is the “simple prediction model” that the predicted signal s.P/ at the point P is a linear function of the observed signal s.P˛/ for ˛ 2f1; 2; ;N 1; N g. The coefficients which describe the linear relation are dented by a.PP˛ /.The inconsistency between the predicted signal and the observed signal is denoted by the letter “"00 leading the prediction variance Ef".P /".P /g, namely assuming that PN the difference s.P/ a.P; P˛ /s.P˛/ is random. ˛D1 Nonlinear prediction is defined by a nonlinear relation between the predicted signal and the observed signal, for instance the sum of a linear and a quadratic relation described by our previous formula. The postulate os a minimum mean square error leads to the problem to estimate the coefficients a and b. Of course, we could continue with signal functions which depends of arbitrary power series. The open question is which is signal relation of arbitrary powers.

In order to give an answer to our key question, we have to change our notion from discrete to an integral concept. We arrive in this concept if we switch over 0 to a continuous distribution of points P , namely from fP;P˛g to fr; r g.Ina one-dimensional problem we integrate over a measured line, in a two-dimensional problem we integrate over a surface. The integral set-up, in contrast, is reviewed by formula .C 461/ .C 464/ O.s3/ expresses the order of neglected terms in the functional series SŒs.r0. We refer to a type of Taylor series in a generalized Hilbert space referred to V. Volterra (1959), called Volterra functional series.The coefficient functions given by .C 462/ are called as variational derivatives in a generalized Hilbert space.

A special criticism originates from the continuous version of the Volterra series. Help comes from the application of functional analysis, namely the Dirac function as a generalized function illustrated by formulae (C464) and (C465). It is easy now the switch from the continuum to the discrete, namely for a regular grid. Nowadays the integral version is “simple” to end up with a discrete formulation, introduced already by N. Wiener.

Up to now we have introduced a set-up of our prediction formulae for scalar signals. In relating our work to practical problems we have to generalize to vector-valued functions.

Table C.9.13 Discrete and continuous Volterra series for scalar signals

“discrete 2nd order Volterra series” PN PN PN s.P/ D a.P; P˛ /s.P˛/ C b.P;P˛;Pˇ/s.P˛ /s.Pˇ/ C ".P / (C460) ˛D1 ˛D1 ˇD1

“continuous 2nd order Volterra series” 868 C Statistical Notions, Random Events and Stochastic Processes R n 0 0 0 s.r/ D dR r a.rR; r /s.r / C d nr0 d nr00a.r; r0; r00/s.r0/s.r00/ CO.s3/ C ".r/.C461/ rd R “continuous 3 order Volterra series” n 0 0 0 s.r/ D dR r a.rR; r /s.r / n 0 n 00 0 00 0 00 C R d r R d r a.R r; r ; r /s.r /s.r / C d nr0 d nr00 d nr000a.r; r0; r00; r000/s.r0/s.r00/s.r000/ C O.s4/ C ".r/.C462/ “variational derivatives” ıs.r/ a.r; r0/ D .C 463/ ıs.r0/ 0 00 1 ı2s.r/ a.r; r ; r / D 0 00 2Š ıs.r /ıs.r / 1 ı3s.r/ a.r; r0; r00; r000/ D 3Š ıs.r0/ıs.r00/ıs.r000/ “from continuous to discrete via Dirac functions: example” C1R d nr0f.r0/ı.r; r0/ D f.r/ (C464) 21 C1R 0 n 0 0 0 4 !1 for r D r ; d r ı.r; r / D 1 ı.r; r / WD 1 0otherR wise: s.P/ D d nr0a.P; r0/s.r0/ (C465) PN PN n 0 0 D K˛d r ı.P; r / D a.P; P˛ /s.P˛/ ˛D1 ˛D1

End of Table C.9.12

Example C.9.42: The hierarchy of the equations in nonlinear prediction of vector- valued signals In order to take care of practice, we will present finally the concept of prediction of vector-valued signals set-up by vector-valued Volterra series of type (C641). The partial variational derivatives of the vector-valued functions, also called signal 3 Si .r/, are given by (C459) upto order O.s . We let the indices of Latin type run 1; 2; ;n1; n where n is the maximum dimension number. We apply the Einstein summation convention, namely the addition with respect to identical numbered indices.

In order to fill the deflections depend on the position r of the measurements. In order to determine the unknown coefficients of the nonlinear prediction “ansatz”, we choose risk function to be optimized. For instance, we may choose the trace of the variance function T1 D trij r D min, called Helmert point error,orthe determinant of the variance function T2 D detij r D min, called Werkmeister C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 869 point error,astwo basic invariants called Hilbert invariants. Such an optimal design leads to a linear integral equation, a system of first kind, for the unknown 0 0 00 tensors aij .r; r /, aij k .r; r ; r / etc. If we only refer to terms up to second order, namely to quadratic signal terms, we have eliminated cubic, biquadratic etc. term, the standard concept of linear prediction.

The first nonlinear term, the quadratic terms, lead to the concept of two-point correlation functions: 0 0 ˚ij .r; r / WD Efsi .r/sj .r /g three-point correlation functions: 0 00 0 00 ˚ij k .r; r ; r / WD Efsi .r/sj .r /sk.r /g and four-point correlation functions: 0 00 000 0 00 000 ˚ij k l .r; r ; r ; r / WD Efsi .r/sj .r /sk.r /sl .r /g The term “multipoint functions” is to be understood that tensor valued functions between multipoints appear as correlation functions. With respect to linear prediction newly three-point and four-point correlation functions appear.Letus formulate the discrete version of the integral equations: here run all the bar indices .1; 2; ;Nn/up to the number Nn. Indeed, we approximated the integral (C470), (C471) etc. by (C472), (C473) etc. Indeed we switched from continuum to discrete by our summation convention by neglecting the summation signs. For instance,the P Pı two-point and three-point functions aim.r; r1/; aimn.r; r1; r2/ are written aim ;bimn in the discrete versions.

In summary, our matrices have NnŒ.Nn/2 C .N n/ elements. They correspond to the correlation functions ˚i;j ;˚i;j;k and ˚i;j;k;l . Finally we restrict us to prediction terms of to second order when we write (C473) to (C476). Here we advantage of two conventions: “Extensor” calculus developed by Craig (1930–1939) abbreviates (a) as the multiindex the series i1i2; i1. Again we sum up indices in brackets. In the new version of H. V. Craig’s multiindex we gain our characteristic equations (C476) - (C 479). The convention coefficients ai .i/ have their origin in the generalized Taylor series with the condition that higher order coefficients are getting smaller with increasing multiindex degree. If we apply the fundamental prediction equation (C475) we have to sum up the coefficients ai;i ;ai;i1; i2;ai;i1; i2; i3 etc. With the generalized variance-covariance matrix, function of the coordinates of the position vector r. The Helmert point error reduces proportional to the number of prediction coefficients as long as the inequality (C481) holds. If we fix the 0 coefficient functions aij .r; r / for the distance zero to one, the following coefficients 0 00 0 00 000 aij k .r; r ; r /; aij k l .r; r ; r ; r / are smaller than one. 870 C Statistical Notions, Random Events and Stochastic Processes

Table C.9.44 Discrete and continuous Volterra series for vectors

continuous 2nd order Volterra series

Pn R n 0 0 0 si .r/ D d r aij .r; r /sj .r / j D1 Pn Pn R R n 0 n 00 0 00 0 00 3 C d r d r aij k .r; r ; r /sj r skr C o.s / (C466) j D1 kD1 2 0 ısi .r/ 0 00 ı si .r/ aij .r; r / D 0 ;aij k .r; r ; r / D 0 00 (C467) ısj .r / ısj .r /ısk .r /

Variance function as a tensor of 2nd order ˚ R n R ij .r/ DR E Œsi .r/ d .r1/aii1 .r; r1/si1 .r1/ n n d .r1/ d .r2R/aii1i2 .r; r1; r2/si1 .r1/si2 .r2/ n R ŒsRj .r/ d .r1/ajj1 .r; r1/sj1 .r1/ n n d .r1/ d .r2/ajj1j2 .r; r1; r2/sj1 .r1/sj2 .r2/ (C468)

J1 D trij .r/ D min; J2 D detij .r/ D min (C469)

from continuous to discrete: multipoint correlation functions R 0 n 0 R˚ij .r; rR/ D d r1aim.r; r1/˚jm.r ; r1/C n n d r1 d r2aimn.r; r1; r2/˚jmn.r; r1; r2/ (C470) R 0 00 n 0 00 ˚Rij k .r; rR; r / D d r1aim.r; r1/˚jkm.r ; r ; r1/C n n 0 00 d r1 d r2aimn.r; r1; r2/˚jkmn.r ; r ; r1; r2/ (C471)

P˛ P ˛ Pı ˛ı P˛ˇ P ˛ˇ Pı ˛ˇ ı ˚jk D aim ˚jm C bimn˚jmn;˚ij k D aim ˚jkm C bimn˚jkmn (C472)

˚j k D aim˚j m C bimn˚j mn;˚ij k D aim˚j km C bimn˚j kmn (C473)

ai1 D ci1;ai2 D ci2; ;aim D cim; ;aiNn D ciNn bi11 D ciNnC1;bi12 D ciNnC2; ;bi1n D ciNn C n; ;bi1Nn D ciNn C Nn bi21 D ci2NnC1;bi22 D ci2NnC2; ;bi2n D ci2Nn C n; ;bi2Nn D ci2Nn C Nn bi31 D ci3NnC1;bi32 D ci3NnC2; ;bi3n D ci3Nn C n; ;bi3Nn D ci3Nn C Nn : :

bim1 D cimNnC1;bim2 D cimN nC2; ;bimn D cimNn C n; ; C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 871

bimN n D cimNn C Nn biNnNn D ci.Nn/2 Nn (C474)

0 0 0 0 0 0 0 0 0 0 1 ˚ D C ˚ ;C D ˚ ˚00 (C475)

˚i.j/ .ai.i/;˚.j /.i// D 0 (C476)

˚ij1 .aii1 ;˚j1i1 / .aii1i2 ;˚j1i1i2 / D0 (C477)

˚ij1j2 .aii1 ;˚j1j2i1 / .aii1i2 ;˚j1j2i1i2 / D0 (C478) R n 0 .aii1 ;˚j1i1 / D d r1aii1 .r; r1/˚j1i1 /.r ; r1/ (C479) R R n n 0 00 .aii1i2 ;˚j1j2i1i2 / D d r1 d r2aii1i2 .r; r1; r2/˚j1j2i1i2 /.r ; r ; r1; r2/ (C480)

ij .r/ D ..ıi.i/ ai.i//; ˚j.i// ..ıi.i/ ai.i//; aj.j/˚.i/.j // (C481)

2tr.ai.i/;˚j.i//>tr.ai.i/;aj.j/;˚.i/.j // (C482)

Table C.9.44: Volterra series

Example C.4. Structure analysis

Here we analyst the structure of multipoint functions of higher order with respect to statistical assumptions of homogeneity and isotropy. These assumptions made our prediction formula much simpler. If we were not assuming this statistical property, we had to compute for every point and every direction an independent higher order correlation function. For instance, if we had to calculate two-point- correlation functions in two dimensions every 1 Gon, we had to live with 1600 different correlation functions. If we would be bale to assume isotropy, the number of characteristic functions would reduce to two functions only! In the case of three- point-functions the reductions range from 3200 non-isotropic functions to four in case of isotropy. Of course, we will prove these results.

The structure of these multi-point-functions of statistically homogenous and isotropic vector-valued signals follow from the form invariance of the functions with respect to rotations and mirror functions of the coordinate system. Alternatively, we have to postulate invariance against transformations of the complete orthogonality group O.n/. Form invariance of a multi-point-correlation functions is to be 872 C Statistical Notions, Random Events and Stochastic Processes

Fig. C38 Projections: longitudinal and lateral components for two-, three- and four point correlation functions, isotropy-homogeneity assumption

understood with respect to base functions which leads to scalar quantities. Our next section offers a better understanding of these theoretical results. As a short introduction to two-point-correlation os vector-valued signals we illustrate the theory of characteristic functions for two-point-functions, for three-point-functions and four-point-functions by Fig. C38.

In case of a vector valued functions the structure of the correlation function used for linear prediction is generated the coordinates si .r/ at the point r or P1 and 0 0 sj .r / at the point r or P2 and the projected coordinate components along the connection line P1P2 (along track) and orthogonal to the line P1P2 (cross track) called “longitudinal” and “lateral” sp and sn (“parallel” p, “normal” n). These characteristic functions ˚nn resp. ˚pp given by the two-point correlation functions illustrated in Fig. C38. C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 873

Table C.15 Characteristic functions for two-point- and three-point correla- tion functions of vector-valued signals

“homogenous and isotropic two-point-function”

0 0 ˚nn.r/ D Efsn.r/sn.r /g;˚pp .r/ D Efsp.r/sp.r /g, ˚pn.r/ D ˚np .r/ D 0 (C483)

0 0 xi xj ˚j .r; r / D Efsi .r/sj .r /gD˚nnıij Œ˚pp .r/ ˚nn.r/ r2 (C484)

“homogenous and isotropic three-point-function” 9 0 00 ˚nnp.r1;r2/ D Efsn.r/; sn.r /; sp .r /g > 0 00 = ˚np n .r1;r2/ D Efsn.r/; sp.r /; sn.r /g 0 00 > (C485) ˚pnn.r1;r2/ D Efsp.r/; sn.r /; sn.r /g ;> 0 00 ˚ppp .r1;r2/ D Efsp.r/; sp.r /; sp.r /g

x 0 x 0 00 xi0 xi j j ˚ij k .r; r ; r / D jrr0j ıjk˚pnn.r1;r2/ C jrr0j ıik˚np n .r1;r2/C .x 0 x /.x 0 x /.x 00 x / xk00 xk i i j j k k D x 00 x ıij ˚nnp.r1;r2/ C 0 2 1 1 jrr j .x100 x1/ f˚ppp .r1;r2/ ˚pnn.r1;r2/ ˚np n .r1;r2/ ˚nnp.r1;r2/g (C486)

End of Table: characteristic functions

In Table C 16, we present only results. How is the detailed proof of our results? This is here our central interest.

We begin with the definition of the popular scalar product and the norm of a Hilbert space by equations (c 484) and (c 488), extend by the variance-covariance function (C489) by Craig calculus generalizations of a Hilbert space are given by (C490) and (C491). In terms of Craig calculus we compute Helmert’s optimal design of unknown coefficients by (C492), (C493), (C494) and (C495) and in contrast Werkmeister’s optimal design by (C496), (C497) and (C498), again of the unknown coefficients.

Table C.16 Optimal variance function

Hilbert space: scalar product, norm R .f; g/ D f!g!dP! (C487) ˝ 874 C Statistical Notions, Random Events and Stochastic Processes

p rR 2 jf2jD .f; f / D jf!j dP ! (C488) ˝

Variance function of vector-valued signals, Craig calculus

ij .r/ D ."i .r/; "j .r// D ..ıi.i/ ai.i//; ˚j.i// ..ıi.i/ ai.i//; aj.j/˚i.j// (C489)

Hilbert optimal design, Craig calculus J1 D tr ij .r/ D ..ıi.i/ ai.i//; ˚j.i// ..ıi.i/ ai.i//; aj.j/˚i.j// D min 2 ıJ1ŒaI.i/ D 0; ı J1ŒaI.i/>0 (C490) 9 dJ Œa C"b d 2J Œa C"b . 1 i.i/ i.i/ / D 0; . 1 i.i/ i.i/ / >0 > d" "D0 d"2 "D0 > > => J Œa C "b D tr ..ı .a C "b //; ˚ / 1 i.i/ i.i/ i.i/ i.i/ i.i/ j.i/ (C491) tr ..ı .a C "b //; .a C "b /˚ / > i.i/ i.i/ i.i/ j.j/ j.j/ i.j/ > > ;> dJ1Œai.i/C"bi.i/ . d" /"D0 D 0 W tr .bi.i/;.˚j.i/ aj.j/˚i.j// D 0

2 . d J1Œai.i/C"bi.i/ / >0W .b ;b ˚ />0 d"2 "D0 tr i.k/ j.l/ .k/.l/ (C492)

positive definiteness of the correlation function R R n 0 n 00 0 00 00 tr d r d r bik.r; r /bji.r; r /˚kl.r; r />0 (C493)

Werkmeister optimal design, Craig calculus 9 J2 D det ij .r/ Df..ı1.i/ a1.i//; ˚1.i// ..ı1.i/ a1.i//; a1.j /˚.i/.j //g = f..ı2.i/ a2.i//; ˚2.i// ..ı2.i/ a2.i//; a2.j /˚.i/.j //g ; 2 f..ı1.i/ a1.i//; ˚2.i// ..ı1.i/ a1.i//; a2.j /˚.i/.j // g (C494) 2 ıJ2Œai.i/ D 0; ı J2Œai.i/>0 9 2 dJ1Œai.i/C"bi.i/ d J1Œai.i/C"bi.i/ > . / D 0; . / >0 > d" "D0 d"2 "D0 > => 2 3 4 J2Œai.i/ C "bi.i/ D A0 C A1" C A2" C A3" C A4" > (C495) > > 2 ;> . d J1Œai.i/C"bi.i/ / D 0 W A D 0 d"2 "D0 1 C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 875

2 . d J1Œai.i/C"bi.i/ / >0W A >0 (C496) d"2 "D0 2

End of Table: Craig optimal design

Finally, we study in more detail the concept of structure functions. We illustrate the form invariance of its base invariants which are invariant in terms of rotational and mirror symmetry. Let us call the base vector ei .r/ relating to signal si .r/ at the 0 0 0 placement vector r;ej .r / relating to signal sj .r / at placement vector r etc. The set-up of base vectors by (C449) and corresponding structure functions by (C580) are given. They lead us to the combination of base invariants ˚1;˚2 following Taylor (1935), and Karman (1937), ˚3;˚4;˚5 etc in Table (C501)–(C505). finally, we summarize up to order three the various isotropic and homogenous correlation functions in Table C.17, (C501)–(C505). They are based on the work of Karman and Howarth (1938), and Obuchow (1958). Let us present finally the number of characteristic functions for homogenous and isotropic correlation functions of higher order for vector-valued signals, collected in Table C.18.

Table C.17 Scalar products of base invariants

base invariants 9 xi xi ;xj 0 xj 0 ;xk00 xk00 ;xl000 xl000 ; etc. > > e e 0 ;ee 00 ;ee 000 ; etc. > i i i i i i > e 0 e 00 ;e0 e 000 ; etc. > i i i i => etc. (C497) x e ;xe 0 ;xe 00 ;xe 000 ; etc. > i i i i i i i i > x 0 e 0 ;x0 e 00 ;x0 e 000 ; etc. > i i i i i i > 00 00 00 000 > xi ei ;xi ei ; etc. ;> etc.

base functions 9 > ˚1.ei / D ˚i ei > 0 > ˚2.ei ;ej 0 / D ei ej 0 ˚ij 0 .r; r / = ˚ .e ;e 0 ;e 00 / D e e 0 e 00 ˚ 0 00 .r; r0; r00/ (C498) 3 i j k i j k ij k > ˚ .e ;e 0 ;e 00 ;e 000 / D e e 0 e 00 e 000 ˚ 0 00 000 .r; r0; r00; r000/ > 4 i j k l i j k l ij k l ;>

combinations of base invariants

˚1 D ˚1.ei / D ˚1ei (C499) 876 C Statistical Notions, Random Events and Stochastic Processes

0 ˚2.ei ;ej 0 / D ei ej 0 ˚ij 0 .r; r / D ei ej 0 fxi xj 0 a1.r/ C ıij 0 a2.r/g (C500) (Taylor (1935), Karman (1937))

0 00 ˚3.ei ;ej 0 ;ek00 / D ei ej 0 ek00 ˚ij 0k00 .r; r ; r / D D ei ej 0 ek00 fxi xj 0 xk00 a1.r1;r2/ C xi ıj 0k00 a2.r1;r2/C Cxj 0 ıik00 a3.r1;r2/ C xk00 ıij 0 a4.r1;r2/g (C 501) 9 0 00 000 0 00 000 0 00 000 0 00 000 > ˚4.ei ;ej ;ek ;el / D ei ej ek el ˚ij k l .r; r ; r ; r / D > > D ei ej 0 ek00 el000 fxi xj 0 xk00 xl000 a1.r1;r2;r3/ > > Cxi xj 0 ık00l000 a2.r1;r2;r3/C = Cx 0 x 000 ı 00 a .r ;r ;r / C x x 00 ı 0 000 a .r ;r ;r /C j l ik 3 1 2 3 i k j l 4 1 2 3 > Cx x 000 ı 0 00 a .r ;r ;r / C x 0 x 00 ı 000 a .r ;r ;r /C > i l j k 5 1 2 3 j k il 6 1 2 3 > x 00 x 000 ı 0 a .r ;r ;r / ı 0 ı 00 000 a .r ;r ;r / > C k l ij 7 1 2 3 C ij k l 8 1 2 3 C ;> Cıik00 ıj 0l000 a9.r1;r2;r3/ C ıj 0k00 ıil000 a10.r1;r2;r3/g (C502) 9 0 00 000 0000 ˚4.ei ;ej 0 ;ek00 ;el000 ;em0000 / D ei ej 0 ek00 el000 em0000 ˚ij 0k00l000m0000 .r; r ; r ; r ; r / D > > 0 00 000 0000 0 00 000 0000 > D ei ej ek el em fxi xj xk xl xm a1.r1;r2;r3;r4/ > > Cxi xj 0 xk00 ıl000m0000 a2C > > Cxi xj 0 xm0000 ık00l000 a3 C xi xj 0 xl0000 ık00m0000 a4 > > Cx x 000 x 0000 ı 0 00 a C > i l m j k 5 > Cx x 00 x 0000 ı 0 000 a C x x 00 x 000 ı 0 0000 a > i k m j l 6 i k l j m 7 => Cxk00 xl000 xm0000 ıij 0 a8C 0 000 0000 00 0 00 0000 000 > Cxj xl xm ıik a9 C xj xk xm ıil a10 > > Cxj 0 xk00 xl000 ıim0000 a11C > > Cxi ıj 0k00 ıl000m0000 a12 C xj 0 ıik00 ıl000m0000 a13 C xk00 ıij 0 ıl000m0000 a14C > > Cx 000 ı 0 ı 00 0000 a C x 0000 ı 0 ı 00 000 a C x ı 0 000 ı 00 0000 a C > l ij k m 15 m ij k l 16 i j l k m 17 > Cx 0 ı 000 ı 00 0000 a C x 00 ı 000 ı 0 0000 a C x 000 ı 00 ı 0 0000 a C > j il k m 18 k il j m 19 l ik j m 20 > 0000 00 0 000 00 000 0 0000 0 0000 00 000 > Cxm ıik ıj l a21 C xi ık l ıj m a22 C xj ıim ık l a23C ;> Cxk00 ıim0000 ıj 0l000 a24 C xl000 ıim0000 ıj 0k00 a25 C xm0000 ıil000 ıj 0k00 a26g (C503)

End of Table: Scalar products of basic invariants C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 877

Table C.18: Isotropic and homogenous correlation functions, two- and three- point functions, normal and longitudinal components 9 0 2 ˚11.r; r / D a1.r/r C a2.r/ D ˚pp = 0 0 ˚12.r; r / D ˚12.r; r / D ˚pn D ˚np D 0 ; (C 504) 0 0 ˚22.r; r / D ˚33.r; r / D ˚nn 9 2 00 > ˚111 D r1 .x1 x1/a1.r1;r2/ C r1Œa2.r1;r2/ C a3.r1;r2/ > 00 > C.x1 x1/a4.r1;r2/ D ˚ppp > 00 00 > 2 > ˚112 D r1 .x3 x2/a1.r1;r2/ C .x2 x2/a4.r1;r2/ > 00 00 > ˚ D r2.x x /a .r ;r / C .x x /a .r ;r / > 113 1 3 3 1 1 2 3 3 4 1 2 > ˚ D 0; ˚ D r a D ˚ ;˚ D 0 > 121 122 1 2 pnn 123 => ˚ D 0; ˚ D 0; ˚ D r a D ˚ 131 132 133 1 2 pnn (C505) ˚ D 0; ˚ D r a D ˚ ;˚ D 0 > 211 212 1 3 np n 213 > ˚ D ˚ D ˚ D 0 > 231 232 233 > > ˚311 D ˚312 D ˚313 D r1a3 D ˚np n > > ˚321 D ˚322 D ˚323 D 0 > 00 00 > ˚331 D .x1 x1/a4 D ˚nnp;˚332 D .x2 x2/a4; > 00 ;> ˚333 D .x3 x3/a4 ˚pp ˚nn a1.r/ D r2 ;a2.r/ D ˚nn 9 ˚ppp ˚pnn˚np n ˚nnp > a1.r2;r2/ D 2 00 > r1 .x1 x1/ > ˚pnn = a2.r2;r2/ D r1 (C506) ˚np n > a3.r2;r2/ D > r1 > ˚nnp ; a4.r2;r2/ D 00 .x1 x1/

0 xi xj ˚ij .r; r / D ˚nn.r/ıij C Œ˚pp .r/ ˚nn.r/ r2 (C507)

00 0 00 xi xj .xk xk / ˚ij k .r; r ; r / D ıjk˚nnn C ıik˚np n C 00 ıij ˚nnp r1 r1 .x x1/ 00 1 xi xj .xk xk / C 2 00 .˚ppp ˚pnn ˚np n ˚nnp/ r1 .x1 x1/ (C508) 0 00 ˚ij 0k0 .r; r D r / D xi xj 0 xk0 a1.r1/ C xi ıj 0k0 a2.r1/ C.xj 0 ıik0 C xk0 ıij 0 /a3.r1/ ˚ .r /˚ .r /2˚ .r / ppp 1 pnn 1 nnp 1 0 0 D 3 xi xj xk r1 .x 0 ı 0 Cx 0 ı 0 / xi 0 0 j ik k ij C˚pnn.r1/ ıj k C ˚nnp.r1/ r1 r1 (C509)

End of Table: Isotropy and homogenity 878 C Statistical Notions, Random Events and Stochastic Processes

Table C.19:Number of characteristic functions for multi-point functions based on vector-valued signals

multi-point correlation functions number of characteristic functions

22 34 410 526

End of Table: characteristic functions

Ex 5: Nonlocal Time Series Analysis

Example: Nonlocal time series analysis

Classical time series analysis, for instance Earth tide measurements, is based on local harmonic and disharmonic effects. Here we present a nonlocal concept to analyze on a global scale measurements at different locations. The tool of the generalized harmonic analysis base on correlation functions of higher order between vector-valued signals at different points and at different times. Its polyspectrum is divided into poly-coherence and poly-phase. A 3d-filder of Kolmogorov-Wiener type is designed for an array analysis. The optional distance between stations and the optimal registration time- Nyquist frequency- is given to avoid aliasing.

Standard procedures of signal analysis treat a registered time series of one station only. It is our target here to combine various observation stations: we are interested in the global picture handled by array analysis. We like to refer to applications in seismology and tidal analysis, the great success of tomography. A 3d- or multi- channel filter makes possible to arrange an optimal signal-to-noise ratio in terms of an optimal design of the station distance and an optimal design of the registration time, namely statistical accuracy of numbers which decide upon a linear or nonlinear filter.

In the first section we introduce the classical nonlocal analysis for N D 2 stations for a vector-valued signal. We assume no correlation between the signal components. The mono-spectrum, namely the Fourier-transform of scalar-valued correlation functions is separated by coherence- and phase-graphs.Thesecond section is a straight forward approach to registered vector-valued signals between N D 2 stations. Support has the origin in the analysis of coherence surface and of phase surface of Fourier-transformed correlation-tensors. Poly-spectra of signal space- time functions form the basis of N stations analysis in the third section.We C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 879 separate real- and imaginary-parts in terms of a poly-coherence-graph and of a poly-phase-graph, both matrix forms. An extended array analysis is based on a Kolmogorov-Wiener filter in the fourth section. We give a simple analysis to predict an optimal registration and an optimal station distance. At the end we give references to (a) array analysis,(b)mono-spectrum and (c) bi- and poly-spectra.

Scalar signals, “classical analysis”

In terms of the “classical time series analysis” registrations at two different places are to be combined: Which are the frequency bands in which we can detect coherences, which is the spectral phase-dislocation between two registrations. We are to keep in mind the Fundamental Lemma of N. Wiener that a frequency assured by coherence has the property of maximal probability, characterized by signal time- functions at two stations. We sum up the following operations: (i) Calculation of auto- and cross-correlation functions of scalar-valued signals, (ii) Calculation of Fourier-transforms of auto- and cross-correlation functions, separation of mono-spectra in terms of active and passive (cos versus sin terms) components, 2 2 (iii) Plots of coherence graphs H .k1;!1/ and phase graphs  .k1;!1/ Here we depart from a scalar space-time representation of a signal, namely by a signal s.r;t/at a placement r and at the time t and a signal s.r0;t0/ at the placement r0 and at the time t 0 by correlation, in detail by (C512 - C 519). fŒs.r;t/;s.r0;t0/ denotes the probability density, to meet the signals s and s0 at the placements r; r0 and the times t;t0. we intend to transform the probability integral into a space- time integral assuming homogeneity and ergodicity by (c 513) and (C514). The e space-time complex mono-spectrum ˚.ri ;t1/ ! ˚.ki ;!1/ is defined by (C515), e direct and inverse, (C516), ˚.ki ;!1/ decomposed into a real-valuedp part and an imaginary part.“e” denotes the Fourier transform, i W 1, n indicates the dimension. In analogy to wave propagation in electrodynamics, we define e e e e Rcf˚gDW.ki ;!1/ active spectrum or co-spectrum, but Jmf˚gDW quadratic or “blind spectrum”. Backward transformation ˚.ri ;1/ cos.!11 < k1jr1 >/ e e and ˚.ri ;1/ sin.!11 < k1jr1 >/ lead to f.ki ;!1/; .ki ;!1/g Let us 2 e2 e2 finally H WD .ki ;!1/ C .ki ;!1/g as the space-time coherence graph,and e e tan .ki ;!1/gWD.ki ;!1/=.ki ;!1/; .ki ;!1/ the phase graph, both very important in defining “coherent light”. Figure C39 illustrates the phase graph, e2 C e2 the length of the complex vector in the polar coordinates. The auto correlation functions .r; r/ and .r0; r0/ clearly lead us to “angle” and “length” in the complex plane Fig. C40 illustrates the fundamental coherence- and phase- functions.

Finally the contributions of lackman (1965); Granger and Hatanaka (1964); Harris (1967); Kertz (1969, 1971); Lee (1960); Pugachev (1965); Robinson (1967), Robinson and Treitel (1964). 880 C Statistical Notions, Random Events and Stochastic Processes

Table C.20: Variance-covariance function of a scalar signal, direct and inverse Fourier transform, space-time representation

EŒs.r;t/s.r0;t0/ WD ˚.r; r0;t;t0/ (C510)

C1R C1R WD ds.r;t/ ds.r0;t0/s.r;t/s.r0;t0/f Œs.r;t/s.r0;t/ (C511) 1 1

CRT CRx CRy 0 0 1 ˚.r r;t t/ D lim 8T xy dt dx dy (C512) T;x;y!1 T x y

s.x;y;t/sŒx C .x0 C x/;y C .y0 C y/;t C .t 0 C t/ (C513)

0 0 r r WD r1;t t WD 1 (C514)

nC1 C1R C1R e n ˚.k1;!1/ D .2/ 2 d r1 d1˚.r1;1/ exp Ci.!11 k1r1/ 1 1 (C515)

nC1 C1R C1R n e ˚.r1;1/ D .2/ 2 d k1 d!1˚.k1;!1/ exp i.!11 k1r1/ 1 1 (C516)

e e e e e ˚.k1;!1/ D ReŒ˚C iImŒ˚ D .k1;!1/ C i .k1;!1/ (C 517)

nC1 C1R C1R e n .k1;!1/ WD .2/ 2 d r1 d1˚.r1;1/ cos.!11 k1r1/ (C518) 1 1

nC1 C1R C1R e n .k1;!1/ WD .2/ 2 d r1 d1˚.r1;1/ sin.!11 k1r1/ (C519) 1 1

2 e2 e2 H WD .k1;!1/ C .k1;!1/ (C520) e2 .k1;!1/ tg.k1;!1/ WD (C521) e2 .k1;!1/

End of Table: variance-covariance functions C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 881

Fig. C39 Decomposition into real and imaginary component Gauss representation fe; e g

Fig. C40 Scalar coherence and phase graph

C.9.52 First generalization: vector-valued classical analysis

At first, we deal with separate single components of a general three-component tidal recording. We develop a joint analysis of all three components observed at two points on the surface of the Earth, for example. Its signal functions are correlated with each other, in the special case here the vertical component as well as the horizontal component. We receive a correlation tensor of second degree, namely in the form of the coherence matrix and the phase matrix. In detail, the analysis technique is based on the following operations: (i) Computation of auto- and cross-correlations of the vector-valued signal, (ii) Computation of the Fourier transform of the functions separation within the mono spectral matrix in “active”and“blind” spectra cosine-andsine-Fourier transform, (iii) Part of the coherenec matrix Hij .k1;!1/ as well as the phase matrix ij .k1;!1/.

Theoretical Background 882 C Statistical Notions, Random Events and Stochastic Processes

Let si .x;t/ D ıgi .x;t/ be a vector-valued space-time-signal consisting of vertical and horizontal components subject to i D 1 or x;i D 2 or y and i D 3 or z. The signal function si .x;t/ at the placement x and at the time instant t and the 0 0 0 0 signal function sj .x ;t / at the placement x and the time instant t are correlated by means of

0 0 0 0 Efsi .x;t/sj .x ;t /gDW˚ij .x; x ;t;t / for i;j 2f1; 2; 3g (C522) As an analogue of our previous formulae we define the coherence matrix, namely the coherence tensor Hij ,andthephase matrix ij

e2 e2 Hij .k1;!1/ WD ij .k1;!1/ C ij .k1;!1/ (C523) e2 .k1;!1/ tg  .k ;! / D ij ij 1 1 e2 (C524) ij .k1;!1/

The coherence matrix as well as the phase matrix are represented by special surface for instance by coherence ellipses, coherence hyperbolae etc.

C.9.53 Second generalization: poly spectra Up to now we analyzed only signal registrations at two different points by correlation, namely by coherence and phase. Here, we introduce the concept of poly spectra for the purpose of registration of Earth tides at all points we have registrations. In detail, the analysis technique is based on the following operations: (i) Computation of multi-point correlation functions of a vector-valued tidal signal (ii) Computation of the Fourier transforms called polyspectra. The concept is able to separate mono-, bi-, tri-, in short polyspectra in “active” and “blind” spectra, cosine- and sine-Fourier transform. (iii) Part of generalized coherence graphs

Hi1i2iN 1iN .k1; k2; ; kN 1;!1;!2; ;!N 1/ (C525) and the generalized phase graphs

i1i2iN 1iN .k1; k2; ; kN 1;!1;!2; ;!N 1/ (C526) at N tidal stations being functions of wave number vectors k1; k2; ; kN 1 and the frequencies !1;!2; ;!N 1. Theoretical Background

Let si1 .x;t/ ıgi.x;t/ be a tensor-valued space-time tidal signal at the first tidal 0 station, si2 .x ;t/ be a tensor-valued tidal signal at the second tidal station. If we C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 883 correlate all signal functions with each other, e receive a multi-point correlation function equal to the number of tidal stations.

0 0 Efsi1 .x;t/si2 .x ;t / sin .xN ;tn/gWD˚i1i2iN 1iN (C527)

In case of space like homogeneity and the time like stationarity we are able to represent the various correlation functions by

˚i1i2iN 1iN .x1; x2; ; xN 1;1;2; ;N 1/ (C528)

subject to

0 00 0 00 x1 WD x x; x2 WD x x; etc :1 D t t; 2 D t t; etc (C529) and their polyspectra e ˚ i1i2iN 1iN .k1; k2; ; kN 1;!1;!2; ;!N 1/ D ZC1 ZC1 C n.N 1/ .N 1/ .2/ 2 d n.N 1/r d n.N 1/ 1 1

˚i1i2iN 1iN .r1;r2; ;rN 1;1;2; ;N 1/

exp Ci.!11 C !22 CC!N 1N 1 k1r1 k2r2 kN 1rN 1/ (C530) n is the dimension number, N the number of tidal stations. For the case of N D 3 we use the term “bispectrum”, for the case N D 4 we use the term “trispectrum” in general “polyspectrum”. The common separation of ˚i1i2iN 1iN in real- and imaginary part leads us to the Polycoherence graph as well as the poly phase graph

2 e 2 e Hi1i2iN 1iN D Rc Œ˚ i1i2iN 1iN C Jm Œ˚ i1i2iN 1iN (C531) e JmŒ˚ i1i2iN 1iN tgi1i2iN 1iN D e (C532) RcŒ˚ i1i2iN 1iN

Numerical results are presented in Brillinger (1964), Grafarend (1972), Hasselmann et al. (1963), Rosenblatt (1965, 1966), Sinaj (1963 i, ii), Tukey (1959), and Van Nees (1965). 884 C Statistical Notions, Random Events and Stochastic Processes

Table C.9.54: Generalized array analysis on the basis of a Kolmogorov- Wiener filter (3D-filter) We do not attempt to review “filter theory”, instead we present array analysis for the purpose to optimally reduce noise in tidal measurements in optimal station density. The method of analysis is based in the following operations: (i) Computation of signal correlation functions from tidal registration in multi- stations and afterwards in noise correlation functions from an analysis of noise characteristic multi-dimensional stochastic process, for instance of type Markov, homogenous and isotropic (ii) Computation of spectra from diverse correlation functions (iii) Solving the linear matrix equation of type Wiener-Hopf equations of optimal filter functions. The optimal station density is achieved from the postulate <kjx > 1,the optimal registration time from the postulate !t 1. x is the distance of the tidal stations in position space, x the distance in the Fourier space, for instance kx D 2=x wavelength aliasing t the discretization parameter in the time domain and ! the corresponding frequency distance in the Fourier space,for instance ! D 2=T , ! the frequency aliasing. Example

1 r D k cos ^k; r 2 cos ^k; r ! 1=t

^k; r D 0; D 103 Km ;rŠ 140 Km ^k; r D 300;D 103 Km ;rŠ 330 Km t D 1 sec ;!D 1 Hz ;TŠ 6 sec t D 1 msec ;!D 103 Hz ;TŠ 6 msec

Theoretical Background

Lets us assume that the vector-valued registration signal consists of two parts,the pure signal part and the superimposed noise:

ıgi .x;t/D si .x;t/C ni .x;t/ (C533)

0 The filtered signal ıgi .x;t/has the linear structure of type

0 0 0 ıgi .x;t/D si .x;t/C ni .x;t/ (C534) C-9 Scalar-, Vector-, and Tensor Valued Stochastic Processes 885

0 0 The filter error "i .x;t/ D si .x;t/ si .x;t/ C ni .x;t/ ni .x;t/ is designed by I1trij .x;t/ D min or I1 det ij .x;t/ D min subject to the error tensor ij .x;t/ WD Ef"i .x;t/"j .x;t/gDmin. The filter fij .x;t/is defined by the linear Volterra setup

ZC1 Z 0 n ni .x;t/WD d x1 d1fij .x1;1/nj .x x1;t 1/ (C535) 1

JŒij .fkl.x; t// D min lead the “necessary” generalized Wiener-Hopf equations.

ZC1 ZC1 0 0 n 00 00 00 00 ˚si sj .r; r ;t;t / D d r dt fik.r; r /˚jk.r; r / (C536) 1 1 e e e e C f ij D ˚ si sj .k1;!1/Œ˚ si sk C ˚ ni nk (C537)

ŒC identifies the generalized inverse of type minimum norm least squares. e e e e F Œii D ˚ ssŒiiŒ˚ ssŒii C ˚ nnŒii (C538)

The result of 3D or linearized multi-channel leads to an easy solution. If we would care for a nonlinear filter subject to the multi-index J WD .j1;j2; ;j˛/ and K WD .k1;k2; ;kˇ/ we will receive the solution

˚ij D .fik;˚jk/ (C539) with respect to the scalar product .:; :/ of the corresponding Hilbert space. Numericals examples you can find in C. B. Archambeau et. al. (1965), J. W. Britill and F. E. Whiteway (1965), H. W. Briscoe and P. L. Fleck (1965), J. P. Burg (1964), J. F. Claerbout (1964), P. Embree et. al. (1963), E. Grafarend (1972), A. N. Kolmogorov (1941), N. Wiener (1949, 1964, 1968).

Comments

In experimental sciences, namely geosciences like geophysics, geodesy, environ- mental sciences, namely, weather, air pollution, rainfall, oceanography, temperature affected sciences take action on a spatially and temporally large scale to very large scales. For this reason, they never can be considered stationary or homogenous- isotropic, but non-stationary inhomogeneous or anisotropic in the statistical sense Spock and Pilz (2008) if not Guttorp and Sampson (1994)as one of the attempts to model non-stationary, other examples are geodetic networks 886 C Statistical Notions, Random Events and Stochastic Processes in two- and three-dimensional Euclidean space and on two-, three- and four- dimensional manifolds including the sphere, the ellipsoid or General Relativity as an excellent example for inhomogeneity and anisotropy presented here. C. Calder and N. Cressie (2007) review different directions in spectral and convolution based on Gaussian non-stationary random modeling. Speck and Pilz (2008) present a spectral decomposition without any restriction to the Gaussian approach. They advice the reader to apply a special Generalized Linear (GLMM), the topic of our book, namely derived from the spectral decomposition of non-stationary random fields. Topics (i) Stationary and isotropic random field versus (ii) Non-stationary, locally isotropic random field (iii) Interpretation in the context of linear mixed models (LMMs)

Y D Fˇ C Ab C "0

a. Fˇ: of the first kind, result: regression function, trend behaviour F fixed design matrix b. Ab: non-deterministic random fluctuations around the trend functions, A fixed design matrix. c. "0: independent, homoscedastic error term centered at zero (iv) Relation to non-stationary, locally isotropic random fields (v) Generalized linear mixed models (GLMMs) (vi) Extending generalized linear mixed models (DHGLMMs) (vii) Limear and mixed models and Hermitic polynomials (viii) Anisotropic stochastic process axisymmetric, Chandrasekhar (1950), Grafarend (1972) Appendix D Basics of Groebner Basis Algebra

D-1 Definitions

To enhance the understanding of the theory of Groebner bases presented in Chap. 15, the following definitions supplemented with examples are presented. Three commonly used monomial ordering systems are; lexicographic ordering, graded lexicographic ordering and graded reverse lexicographic ordering.Firstwe define the monomial ordering before considering the three types.

Definition D.1. (Monomial ordering):

Zn A monomial ordering on kŒx1;:::;xn is any relation > on 0 or equivalently any ˛ Zn relation on the set x ;˛2 0 satisfying the following conditions: Zn (a) Is total (or linear) ordering on 0 Zn (b) If ˛>ˇand 2 0,then˛ C >ˇC Zn (c) < is a well ordering on 0. Zn This condition is satisfied if and only if every strictly decreasing sequence in 0 eventually terminates.

Definition D.2. (Lexicographic ordering):

This is akin to the ordering of words used in dictionaries. If we define a polynomial in three variables as P D kŒx;y;z and specify an ordering x>y>z, i.e., x comes before y and y comes before z, then any term with x will supersede that of y which in tern supersedes that of z. If the powers of the variables for respective monomials Zn are given as ˛ D .˛1; :::;˛n/ and ˇ D .ˇ1; :::;ˇn/; ˛; ˇ 2 0; then ˛>lex ˇ if in the vector difference ˛ ˇ 2 Zn; the most left non-zero entry is positive. For the ˛ ˇ same variable (e.g., x) this subsequently means x >lex x :

E. Grafarend and J. Awange, Applications of Linear and Nonlinear Models, 887 Springer Geophysics, DOI 10.1007/978-3-642-22241-2, © Springer-Verlag Berlin Heidelberg 2012 888 D Basics of Groebner Basis Algebra

Example D.1. x>y5z9 is an example of lexicographic ordering. As a second example, consider the polynomial f D 2x2y8 3x5yz4 C xyz3 xy4,wehavethelexicographic order; f D3x5yz4 C 2x2y8 xy4 C xyz3 jx>y>z.

Definition D.3. (Graded lexicographic ordering):

In this case, the total degree of the monomials is taken into account. First, one considers which monomial has the highest total degree before looking at the lexicographic ordering. This ordering looks at the left most (or largest) variable Zn of a monomial and favours the largest power. Let ˛; ˇ 2 0; then ˛>grlex ˇ if Pn Pn n j˛j D ˛i > jˇj D ˇi or j˛j D jˇj,and˛>lex ˇ; in ˛ ˇ 2 Z ; the most iD1 iD1 left non zero entry is positive.

Example D.2.

8 3 2 6 2 3 x y z >grlex x y z j.8;3;2/ >grlex .6;2;3/,sincej.8;3;2/j D 13 > j.6;2;3/j D 11 and ˛ ˇ D .2; 1; 1/. Since the left most term of the difference (2) is positive, the ordering is graded lexicographic. As a second example, consider the polynomial f D 2x2y8 3x5yz4 C xyz3 xy4; we have the graded lexicographic order; f D3x5yz4 C 2x2y8 xy4 C xyz3 jx>y>z:

Definition D.4. (Graded reverse lexicographic ordering):

In this case, the total degree of the monomials is taken into account as in the case of graded lexicographic ordering. First, one considers which monomial has the highest total degree before looking at the lexicographic ordering. In contrast to the graded lexicographic ordering, one looks at the right most (or largest) variable of Zn a monomial and favours the smallest power. Let ˛; ˇ 2 0; then ˛>grevlex ˇ if Pn Pn n j˛j D ˛i > jˇj D ˇi or j˛j D jˇj,and˛>grevlex ˇ,andin˛ ˇ 2 Z the iD1 iD1 right most non zero entry is negative.

Example D.3.

8 3 2 6 2 3 x y z >grevlex x y z j.8;3;2/ >grevlex .6;2;3/ since j.8;3;2/j D 13 > j.6;2;3/j D 11 and ˛ ˇ D .2; 1; 1/. Since the right most term of the difference (-1) is negative, the ordering is graded reverse lexicographic. As a second example, D-2 Buchberger Algorithm 889 consider the polynomial f D 2x2y8 3x5yz4 C xyz3 xy4 ,wehavethegraded reverse lexicographic order: f D 2x2y8 3x5yz4 xy4 C xyz3 jx>y>z. P ˛ If we consider a non-zero polynomial f D ˛ a˛x in kŒx1; ::::;xn and fix the monomial order, the following additional terms can be defined:

Definition D.5.

Zn Multidegree of f : Multideg (f/ D max.˛ 2 0 ja˛ ¤ 0/ Leading Coefficient multideg.f / of f :LC(f/D amultideg.f / 2 k Leading Monomial of f :LM(f/D x (with coefficient 1) Leading Term of f :LT.f / D LC.f / LM .f /.

Example D.4.

Consider the polynomial f D 2x2y8 3x5yz4 C xyz3 xy4 with respect to lexicographic order fx>y>zg ,wehave Multideg (f )=(5,1,4) LC (f )= 3 LM (f )= x5yz4 LT (f )= 3x5yz4

The definitions of polynomial ordering above have been adopted from Cox et al. (1997), pp. 52–58.

D-2 Buchberger Algorithm computes the Groebner basis using the computer algebraic systems ((CAS) of Mathematica and Maple. With Groebner basis, most nonlinear equations that are encountered in geodesy and geoinformatics can be solved. All that is required of the user is to write that can easily run in Mathematica or Maple using steps that are discussed in Sects. D-21 and D-22 below.

D-21 Mathematica Computation of Groebner Basis

Groebner basis can be computed using algebraic softwares of Mathematica (e.g., version 7 onwards). In Mathematica, Groebner basis command is executed by writing

InŒ1 WD GroebnerBasisŒfpolynomialsg; fvariablesg; (D.1) 890 D Basics of Groebner Basis Algebra where In[1]:= is the Mathematica prompt which computes the Groebner basis for the Ideal generated by the polynomials with respect to the monomial order specified by monomial order options.

Example D.5. (Mathematica computation of Groebner basis):

In Example 15.3 on p. 536, the systems of polynomial equations were given as f1 D xy 2y 2 2 f2 D 2y x :

Groebner basis of this system would be computed by

InŒ1 WD GroebnerBasisŒff1;f2g; fx;yg; (D.2) leading to the same values as in (15.10) on p. 536. With this approach, however, one obtains too many elements of Groebner basis which may not be relevant to the task at hand. In a case where the solution of a specific variable is desired, one can avoid computing the undesired variables, and alleviate the need for back-substitution by simply computing the reduced Groebner basis. In this case (D.1) modifies to

InŒ1 WD GroebnerBasisŒfpolynomialsg; fvariablesg; felimsg; (D.3) where elims is for elimination order. Whereas the term reduced Groebner basis is widely used in many Groebner basis literature, we point out that within Mathematica software, the concept of a reduced basis has a different technical meaning. In this book, as in its predecessor, and to keep with the tradition, we maintain the use of the term reduced Groebner basis.

Example D.6. (Mathematica computation of reduced Groebner basis):

In Example D.2.1, one would compute the reduced Groebner basis using (D.3)as

InŒ1 WD GroebnerBasisŒff1;f2g; fx;yg; fyg; (D.4) which will return only 2x2 C x3. Note that this form is correct only when the retained and eliminated variables are disjoint. If they are not, there is absolutely no guarantee as to which category a variable will be put in! As an example, consider the solution of three polynomials x2 C y2 C z2 1, xy z C 2,andz2 2x C 3y. In the approach presented in (D.4), the solution would be

InŒ1 WD GroebnerBasisŒfx2Cy2Cz21; xyzC2;z22xC3yg; fx;y;zg; fx;yg; (D.5) leading to D-2 Buchberger Algorithm 891

f1024 832z 215z2 C 156z3 25z4 C 24z5 C 13z6 C z8g:

Lichtblau (Priv. Comm.) however suggests that the retained variable, in this case .z/ and the eliminated variables .x; y/ be separated, i.e.,

InŒ1 WD GroebnerBasisŒfx2 C y2 C z2 1; xy z C 2;z2 2x C 3yg; fzg; fx;yg: (D.6) The results of (D.6)arethesameasthoseof(D.5), but with the advantage of a vastly better speed if one uses an ordering better suited for the task at hand, e.g., elimination of variables in this example. For the problems that are solved in our books, the condition of the retained and eliminated variables being disjoint is true, and hence the approach in (D.5) has been adopted. The univariate polynomial 2x2 C x3 is then solved for x using the roots command in Matlab (see e.g., Hanselman and Littlefield (1997), p. 146) by

roots. Œ1 200/: (D.7)

The values of the row vector in (D.7) are the coefficients of the cubic polynomial x3 2x2 C0xC0 D 0 obtained from (D.4). The values of y from Example (15.3) on p. 536 can equally be computed from (D.4) by replacing y in the option part with x and thus removing the need for back substitution. We leave it for the reader to compute the values of y from Example (15.3) and also those of z in Example (15.3) using reduced Groebner basis (D.3) as an exercise. The reader should confirm that the solution of y leads to y3 2y with the roots y D 0 or y D˙1:4142.From experience, we recommend the use of reduced Groebner basis for applications in geodesy and geoinformatics. This will; fasten the computations, save on computer space, and alleviates the need for back-substitution.

D-22 Maple Computation of Groebner Basis

In Maple Version 10 the command is accessed by typing > with (Grobner); Basis (WL;T) is for Groebner, gbasis (WL;T) is for reduced Groebner basis. WL list or set of polynomials, T monomial order description, e.g. “plex” (variables) – pure lexicographic order and > is the Maple prompt and the semicolon ends the Maple command). Once the Groebner basis package has been loaded, the execution command then becomes > gbasis (polynomials, variables) which computes the Groebner basis for the ideal generated by the polynomials with respect to the monomial ordering specified by variables in the executable command. We should point out that at the time of writing this book, May 2012, version 16 of Maple has been released. 892 D Basics of Groebner Basis Algebra

D.3 Gauss Combinatorial Formulation D.3 Gauss Combinatorial Formulation 893 References

Aarts, E.H. and Korst, J. (1989): Simulated Annealing and Boltzman Machines, Wiley, New York Abbe, E. (1906): Uber¨ die Gesetzmaßigkeit¨ in der Verteilung der Fehler bei Beobachtungsreihen, Gesammelte Abhandlungen, Vol. II, Jena 1863 (1906) Abdous, B. and R. Theodorescu (1998): Mean, median, mode IV, Statistica Neerlandica 52 (1998), 356-359 Abel, J.S. and Chaffee, J.W. (1991): Existence and uniqueness of GPS solutions, IEEE Transac- tions on Aerospace and ElectronicSystems 27 (1991) 952-956. I. Abhandlung Monatsberichte der Akademie der Wissenschafte 1853, Werke 4 (1929) 1-11 Absil, P.A., Mahony, R., Sepulehre, R. and Van Dooren, P. (2002): A Grassmann-Rayleigh quotient iteration for computing invariant subspaces, SIAM Review 44 (2002), 57-73 Abramowitz, M. and J.A. Stegun (1965): Handbook of mathematical functions, Dover Publication, New York 1965 Adams, M. and V. Guillemin (1996): Measure theory and probability, 2nd edition, Birkhauser-¨ Verlag, Basel Boston Berlin 1996 Adelmalek, N.N. (1974): On the discrete linear L1 approximation and L1 solutions of overdeter- mined linear equations, J. 11 (1974), 38-53 Adler, R. and Pelzer, H. (1994): Development of a Long Term Geodetic Monitoring System of Recent Crustal Activity Along the Dead Sea Rift. Final scientific report for the Gennan-Israel Foundation GIF Aduol, F.W.O. (1989): Intergrierte geodatische¨ Netzanalyse mit stochastischer Vorinformationuber ¨ Schwerefeld und Referenzellipsoid, DGK, Reihe C, Heft Nr. 351 Afifi, A.A. and V. Clark (1996): Computer-aided multivariate analysis, Chapman and Hall, Boca Raton 1996 Agnew, D.C. (1992): The time-domain behaviour of power-law noises. Geophysical research letters, 19(4):333-336, 1992 Agostinelli, C. and M. Markatou (1998): A one-step robust estimator for regression based on the weighted likelihood reweighting scheme, Stat. & Prob. Letters 37 (1998), 341-350 Agreo,´ G. (1995): Maximum likelihood estimation for the exponential power function parameters, Comm. Statist. Simul. Comput. 24 (1995), 523-536 Aickin, M. and C. Ritenbaugh (1996): Analysis of multivariate reliability structures and the induced bias in linear model estimation, Statistics in Medicine 15 (1996), 1647-1661 Aitchinson, J. and I.R. Dunsmore (1975): Statistical prediction analysis, Cambridge University Press, Cambridge 1975 Aitken, A.C. (1935): On least squares and linear combinations of observations, Proc. Roy. Soc. Edinburgh 55 (1935), 42-48

E. Grafarend and J. Awange, Applications of Linear and Nonlinear Models, 895 Springer Geophysics, DOI 10.1007/978-3-642-22241-2, © Springer-Verlag Berlin Heidelberg 2012 896 References

Airy, G.B. (1861): On the algebraical and numerical theory of errors of observations and the combination of observations, Macmillan Publ., London 1861 Aki, K. and Richards P.G. (1980): Quantitative seismology, W.H. Freeman, San Francisco Albert, A. (1969): Conditions for positive and nonnegative definiteness in terms of pseudo inverses, SIAM J. Appl. Math. 17 (1969), 434-440 Alberda, J.E. (1974): Planning and optimization of networks: some general considerations, Boll. di Geodesicl, e Scienze, Aff. 33 (1974) 209-240 Albertella, A. and F. Sacerdote (1995): Spectral analysis of block averaged data in geopotential global model determination, Journal of Geodesy 70 (1995), 166-175 Alcala, J.T., Cristobal, J.A. and W. Gonzalez-Manteiga (1999): Goodness-of-fit test for linear models based on local polynomials, Statistics & Probability Letters 42 (1999), 39-46 Aldrich, J. (1999): Determinacy in the linear model: Gauss to Bose and Koopmans, International Statistical Review 67 (1999), 211-219 Alefeld, G. and J. Herzberger (1974): Einfhrung in die Intervallrechung, Bibliographisches Inst. Mannheim 1974 Alefeld, G. and J. Herzberger (1983): Introduction to interval computation. and applied mathematics, Academic Press, New York London 1983 Ali, A.K.A., Lin, C.Y. and E.B. Burnside (1997): Detection of outliers in mixed model analysis, The Egyptian Statistical Journal 41 (1997), 182-194 Allende, S., Bouza, C. and I. Romero (1995): Fitting a model by combining least squares and least absolute value estimation, Questiio 19 (1995), 107-121 Allmer, F. Louis Krger (1857-1923), 25 pages, Technical University of Graz, Graz 2001 Alzaid, A.A. and L. Benkherouf (1995): First-order integer-valued autoregressive process with Euler marginal distributions, J. Statist. Res. 29 (1995), 89-92 Amiri-Simkooei, A.R. (2004): A new method for second order design of geodetic networks: aiming at high reliability, survey Review, 37 (2004), pp. 552-560 Amiri-Simkooei, A.R. (2007): Least-squares estimation of variance components, Theory and EPS applications, Ph.D. Thesis, Delft Univ. of Tech., delft, The Netherlands 2007 An, H.-Z., F.J. Hickernell and L.-X. Zhu (1997): A new class of consistent estimators for stochastic linear regressive models, J. Multivar. Anal. 63 (1997), 242-258 Andel, J. (1984): Statistische Analyse von Zeitreihen, Akademie Verlag, Stuttgart 1984 Anderson, P.L. and M.M. Meerscaert (1997): Periodic moving averages of random variables with regularly varying tails, Ann. Statist. 25 (1997), 771-785 Anderson, R.D., Henderson H.V., Pukelsheim F. and Searle S.R. (1984): Best estimation of variance components from balanced data, with arbitrary kurtosis, Mathematische Operations- forschung und Statistik, Series Statistics 15, pp. 163-176 Anderson, T.W. (1945): Non-central Wishart Distribution and Its Application to Statistics, doctoral dissertation, Princeton University Anderson, T.W. (1946): The non-central Wishart distribution and certain problems of multivariate statistics, Ann. Math. Stat., 17, 409-431 Anderson, T.W. (1948): The asymptotic distributions of the roots of certain determinantal equations, J. Roy. Stat. Soc., B, 10, 132-139 Anderson, T.W. (1951): Classification by multivariate analysis, psychometrika, 16, 31-50 Anderson, T.W. (1973): Asymptotically efficient estimation of covariance matrices with linear structure, The Annals of Statistics 1 (1973), 135-141 Anderson, T.W. (1984): An introduction to multivariate statistical analysis, 2nd ed., J. Wiley, New York 1982 Anderson, T.W. (2003): An introduction to multivariate statistical analysis, J. Wiley, Stanford CA, 2003 Anderson, T.W. and M.A. Stephens (1972): Tests for randomness of directions against equatorial and bimodal alternatives, Biometrika 59 (1972), 613-621 Anderson, W.N. and R.J. Duffin (1969): Series and parallel addition of matrices, J. Math. Anal. Appl. 26 (1969), 576-594 Ando, T. (1979): Generalized Schur complements, Linear Algebra Appl. 27 (1979), 173-186 References 897

Andrews, D.F. (1971): Transformations of multivariate data, Biometrics 27 (1971), 825-840 Andrews, D.F. (1974): Technometrics 16 (1974), 523-531 Andrews, D.F., Bickel, P.J. and F.R. Hampel (1972): Robust estimates of location, Princeton University Press, Princeton 1972 Angelier, J., Tarantola, A., Vallete, B. and S. Manoussis (1982): Inversion of field data in fault tectonics to obtain the regional stress - I, Single phase fault populations: a new method of computing the stress tensor, Geophys. J. R. astr. Soc., 69, 607-621 Angulo, J.M. and Bueso, M.C. (2001): Random perturbation methods applied to multivariate Spatial Sampling design, Environmetrics, 12, 631-646. Anh, V.V. and T. Chelliah (1999): Estimated generalized least squares for random coefficient regression models, Scandinavian J. Statist. 26 (1999), 31-46 Anido, C. and T. Valdees` (2000): Censored regression models with double exponential error distributions: an iterative estimation procedure based on medians for correcting bias, Revista Matemeatica` Complutense 13 (2000), 137-159 Anscoube, F.J. (1960): Rejection of outliers, Technometrics, 2 (1960), pp. 123-147 Ansley, C.F. (1985): Quick proofs of some regression theorems via the QR Algorithm, The American Statistician 39 (1985), 55-59 Anton, H. (1994): Elementary linear algebra, J. Wiley, New York 1994 Arcadis (1997): Ingenieurgeologischer Situationsbericht f¨ur 1997, Bericht des Pumpspeicherwerks Hohenwarthe, VEAG, 1997 Archambeau, C.B. and Bradford, J.C. and Broome, P.W. and Dean, W.C. and Flinn, E.A. (1965): Data processing techniques for the detection and interpretation of teleseismic signals, Proc. IEEE 53 (1965), 1860-1865 Arellano-Valle, R. and Bolfarine, H. and Lachos, V (2005): Skew-normal linear mixed models. In Journal of Data Science vol 3, pp.415-438 Arnold, B.C. and R.M. Shavelle (1998): Joint confidence sets for the mean and variance of a normal distribution, J. Am. Statist. Ass. 52 (1998), 133-140 Arnold, B.F. and P. Stahlecker (1998): Prediction in linear regression combining crisp data and fuzzy prior information, Statistics & Decisions 16 (1998), 19-33 Arnold, B.F. and P. Stahlecker (1999): A note on the robustness of the generalized least squares estimator in linear regression, Allg. Statistisches Archiv 83 (1999), 224-229 Arnold, K.J. (1941): On spherical probability distributions, P.H. Thesis, M.I.T., Boston 1941 Arnold, S.F. (1981): The theory of linear models and multivariate analysis, J. Wiley, New York 1981 Arrowsmith, D.K. and C.M. Place (1995): Differential equations, maps and chaotic behavior, Champman and Hall, London 1995 Arun, K.S. (1992): A unitarily constrained total least squares problem in signal processing, SIAM J. Matrix Anal. Appl. 13 (1992), 729-745 Ashkenazi V. and Grist, S. (1982): Inter-comparison of 3-D geodetic network adjustment models, International sypmosium on geodetic networks and computations of the I.A.G. Munich, August 31 to September 5, 1981. Atiyah, M.F., Hitchin, N.J. and Singer, J.M.: Self-duality in four-dimensional Riemannian geometry. Proc. Royal Soc. London A362 (1978) 425-461 Austen, G. and Grafarend, E.W. and Reubelt, T. (2001): Anal: Earth’s gravitational field from semi continuous ephe low earth orbiting GPS-tracked satellite of type CRA or Goce, in: Vistas for Geodesy in the New Millenn Adam and Schwarz, International Association of Geo posia 125, 309-315, 2001 Aven, T. (1993): Reliability and risk analysis, Chapman and Hall, Boca Raton 1993 Awange, L.J. (1999): Partial procrustes solution of the three dimensional orientation problem from GPS/LPS observations, Quo vadis geodesia...? Festschrift to E.W. Grafarend on the occasion of his 60th birthday, Eds. F. Krumm and V.S. Schwarze, Report Nr. 1999.6-1 Awange, J.L. (2002): Grobner¨ bases, multi polynomial resultants and the Gauss-Jacobi combina- torial algorithms - adjustment of nonlinear GPS/LPS observations, Schriftenreihe der Institute des Studiengangs Geodasie¨ und Geoinformatik, Report 2002.1 898 References

Awange, J. and E.W. Grafarend (2002): Linearized Least Squares and nonlinear Gauss-Jacobi combinatorial algorithm applied to the 7-parameter datum transformation C7(3) problem, Zeitschrift f¨ur Vermessungswesen 127 (2002), 109-116 Awange, J.L. (2012): Environmental Monitoring using GNSS. Global Navigation Satellite Sys- tems, Springer, Berlin-New York. Azzalini, A. (1996): Statistical inference, Chapman and Hall, Boca Raton 1996 Azzam, A.M.H. (1996): Inference in linear models with non stochastic biased factors, Egyptian Statistical Journal, ISSR - Cairo University 40 (1996), 172-181 Azzam, A., Birkes, D. and J. Seely (1988): Admissibility in linear models with polyhedral covariance structure, Probability and Statistics, essays in honor of Franklin A. Graybill, J.N. Srivastava, Ed. Elsevier Science Publishers, B.V. (North-Holland), 1988 Baarda, W. (1967): Statistical Concepts in Geodesy. Netherlands Geodetic Commission, Publica- tions on Geodesy, New Series, Vol. 2, No.4, Delft. Baarda, W. (1967): A generalization of the concept strength of the figure, Publications on Geodesy, New Series 2, Delft 1967 Baarda, W. (1968): A testing procedure for use in geodetic networks, Netherlands Geodetic Commission, New Series, Delft, Netherlands, 2 (5), 1968 Baarda, W. (1973): S-transformations and criterion matrices, Netherlands Geodetic Commission, Vol. 5, No. 1, Delft 1973 Baarda, W. (1977): Optimization of design and computations of control networks, F. Halmos and J. Somogyi (eds.), Akademiai Kiado, Budapest 1977, 419-436 Babai, L. (1986): On Lovasz’ lattice reduction and the nearest lattice point problem, Combinatorica 6 (1986), 1-13 Babu, G.J. and E.D. Feigelson (1996): Astrostatistics, Chapman and Hall, Boca Raton 1996 Bai, J. (1994): Least squares estimation of a shift in linear processes, Journal of Time Series Analysis 15 (1994), 453-472 Bognarova, M., Kubacek, L. and Volaufova J. (1996): Comparison of MINQUE and LMVQUIE by simulation. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 35 (1996), 25-38. Bachelier, L. (1900): Theorie de le speculation, Ann, Sci. EC. Norm. Super. 17 (1900) 21-26 Bahr,¨ H.G. (1988): A quadratic approach to the non-linear treatment of non-redundant observations Manuscripta Geodaetica,13(1988) 191-197. Bahr,¨ H.G. (1991): Einfachuberbestimmtes ¨ ebenes Einschneiden, differentialgeometrisch analysiert, Zeitschrift f¨ur Vermessungswesen 116 (1991) 545-552. Bai, W.M., Vigny, C., Ricard, Y. and Froidevaus, C. (1992): On the origin of deviatoric stresses in the lithosphere, J. geophys. Res., B97, 11728-11737 Bai, Z.D., Chan, X.R., Krishnaiah, P.R. and L.C. Zhao (1987): Asymptotic properties of the EVLP estimation for superimposed exponential signals in noise, Technical Report 87-19, CMA, University of Pittsburgh, Pittsburgh 1987 Bai, Z.D. and Y. Wu (1997): General M-estimation, J. Multivar. Anal. 63 (1997), 119-135 Bajaj, C.L. (1989): Geometric Modelling with Algebraic Surfaces. In: The Mathematics of Surfaces III, Ed.: D.C. Handscomb, Clarendon Press, Oxford. Bajaj, C., Garity, T. and Waren, J. (1988): On the applications of multi-equational resultants, Department of Computer Science, Purdue University, Technical Report CSD-TR-826, pp. 1-22, 1988. Baksalary, J.K. and Kala, R. (1981): Linear transformations preserving best linear unbiased estimators in a general Gauss-Markoff model. Ann. Stat. 9 (1981), 913-916. Baksalary, J.K. and A. Markiewicz (1988): Admissible linear estimators in the general Gauss- Markov model, J. Statist. Planning and Inference 19 (1988), 349-359 Baksalary, J.K. and Puntanen, S. (1989): Weighted-Least-squares estimation in the general Gauss- Markov model. In: Statistical Data Analysis and Inference, Pap. Int. Conf., Neuchatel/Switzerl. (Y. Dodge, ed.), North-Holland, Amsterdam, pp. 355-368. Baksalary, J.K. and Liski, E.P. and G. Trenkler (1989): Mean square error matrix improvements and admissibility of linear estimators, J. Statist. Planning and Inference 23 (1989), 313-325 References 899

Baksalary, J.K. and F. Pukelsheim (1989): Some properties of matrix partial ordering, Linear Algebra and it Appl., 119 (1989), pp. 57-85 Baksalary, J.K. and F. Pukelsheim (1991): On the Lowner,¨ Minus and Star partial orderings of nonnegative definite matrices and their squares, Linear Algebra and its Applications 151 (1991), 135-141 Baksalary, J.K. and Rao, C.R., Markiewicz, A. (1992): A study of the influence of the “natural restrictions” on estimation problems in the singular Gauss-Markov model. J. Stat. Plann. Inference 31, 3 (1992), 335-351. Balakrishnan, N. and Basu, A.P. (eds.) (1995): The exponential distribution, Gordon and Breach Publishers, Amsterdam 1995 Balakrishnan, N. and R.A. Sandhu (1996): Best linear unbiased and maximum likelihood estimation for exponential distributions under general progressive type-II censored samples, Sankhya 58 (1996), 1-9 Bamler, R. and P. Hartl (1998): Synthetic aperture radar interferometry, Inverse Problems 14 (1998), R1-R54 Banachiewicz, T. (1937): Zur Berechnung der Determinanten, wie auch der Inversen und zur darauf basierten Au osung¨ der Systeme linearen Gleichungen, Acta Astronom. Ser. C3 (1937), 41-67 Bancroft, S. (1985): An algebraic solution of the GPS equations, IEEE Transaction on Aerospace and Electronic Systems AES-21 (1985) 56-59. Bandemer, H. (2005): Mathematik und Ungewissheit: Drei Essais zu Problemen der Anwendung, Edition avn Gutenberg platz, Leipzig 2005 Bandemer, H. et al. (1976): Optimale Versuchsplanning, Z. Auflage Akademic Verlag, Berlin 1976 Bandemer, H. et al. (1977): Theorie und Anwendung der optimalen Versuchsplanung I. Akademie- Verlag, Berlin Bandemer, H. and W. Nather (1980): Theorie and Anwendung der optimalen Versuchsplanung II, akademic Verlag, Berlin 1980 Bandemer, H. and S. Gottwald (1993): Einfhrung in die Fuzzy-Methoden, Akademic-Verlag, Berlin 1993 Bahndorf, J. (1991): Zur Systematisierung der Seilnetzberechnung und zur Optimierung von Seilnetzen. Deutsche Geodatische¨ Kommission, Reihe C, Nr. 373, Miinchen. Bansal, N.K., Hamedani, G.G. and H. Zhang (1999): Non-linear regression with multidimensional indices, Statistics & Probability Letters 45 (1999), 175-186 Barankin, E.W. (1949): Locally best unbiased estimates, Ann. Math. Statist. 20 (1949), 477-501 Barber, B.C. (1993): The non-isotropic two-dimensional random walk, Waves in Random Media, 3 (1993) 243-256 Barham, R.H. and W. Drane (1972): An algorithm for least squares estimation of nonlinear parameters when some of the parameters are linear, Technometrics 14 (1972), 757-766 Barlett, M. (1933): On the theory of statistical regression, Proc. Roy. Soc .. Edinb., 53, 260-283. Barlett, M. (1937): Property od sufficiency and statistical tests, Proc. Roy. Soc., A 160, 268-282 Barlett, M. (1947): Multivariate analysis, J. Roy. Stat. Soc., Supple., 9, 176-197. Barlow, R.E., Clarotti, C.A. and F. Spizzichino (eds.) (1993): Reliability and decision making, Chapman and Hall, Boca Raton 1993 Barlow, R.E. and F. Proschan (1966): Tolerance and confidence limits for classes of distributions based on failure rate, Ann. Math. Statist 37 (1966), 1593-1601 Barnard, J., McCulloch, R. and X.-L. Meng (2000): Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage, Statistica Sinica 10 (2000), 1281-1311 Barnard, M.M. (1935): The scalar variations of skull parameters in four series of Egyptian skulls, Ann. Eugen. 6 (1935), 352-371 Barndorff-Nielsen, O. (1978): Information and exponential families in statistical theory, J. Wiley, New York, 238 pp. Barndorff-Nielsen, O.E., Cox, D.R. and C. Kl¨uppelberg (2001): Complex stochastic systems, Chapman and Hall, Boca Raton, Florida 2001 Barnett, V. and Lewis, T. (1994): Outliers in Statistical Data. John Wiley, New York, 1994. 900 References

Barnett, V. (1999): Comparative statistical inference, 3rd ed., J. Wiley, New York 1999 Barone, J. and A. Novikoff (1978): A history of the axiomatic formulation of probability from Borel to Kolmogorov, Part I, Archive for History of Exact Sciences 18 (1978), 123-190 Barrlund, A. (1998): Efficient solution of constrained least squares problems with structure, SIAM J. Matrix Anal. Appl. 19 (1998), 154-160 Barrodale, I. and D.D. Oleski (1981): Exponential approximation using Prony’s method, The Numerical Solution of Nonlinear Problems, eds. Baker, C.T.H. and C. Phillips, 258-269 Bartelme, N. and Meissl, P. (1975): Ein einfaches, rasches und numerisch stabiles Verfahren zur Bestimmung des k¨urzesten Abstandes eines Punktes von einem spharoidischen¨ Rotationsellip- soid, Allgemeine Vermessungs-Nachrichten 82 (1975) 436-439. Bartlett, M.S. (1980): An introduction to stochastic processes with special reference to methods and applications, paperback edition, University press, Cambridge 1980 Bartlett, M.S. and D.G. Kendall (1946): The statistical -heterogeneity and the logarithmic transformation, Queen’s College Cambridge, Magdalen College Oxford, Cambridge/Oxford 1946 Bartoszynski, R. and M. Niewiadomska-Bugaj (1996): Probability and statistical inference, J. Wiley, New York 1996 Barut, A.O. and R.B. Haugen (1972): Theory of the conformally invariant mass, Annals of Physics 71 (1972), 519-541 Basset JR., G. and R. Koenker (1978): Asymptotic theory of least absolute error 73 (1978), 618-622 Basawa, I.V. (2001): Inference in stochastic processes in: D.N. Shanbhag and C.R. Rao. Handbook of statistics, pp. 55-77, Vol 19, Elsevier Science 2001 Basch, A. (1913): Uber eine Anwendung der graphostatischen Methode auf den Ausgleich von Beobachtungsergebnissen. OZfV 11, 11-18, 42-46. Baselga, S. (2007): Solution of Robust Estimation. J Surv. Eng. 2007, 133, 123-128. Basu, S. and Mukhopadhyay, S. (2000): Binary response regression with normal scale mixture links. Dey, D.K., Ghosh S.K.-and Mallick, B.K. eds., Generalized linear models: A Bayesian perspective, Marcel Dekker, New York Batchelor, G.K. (1946): Theory of axisymmetric turbulenz, Proc. Royal Soc. A186 (1946) 480 Batchelor, G.K. and A.A. Townsend (1950): The nature of turbulent motion at large wave numbers, Fluid Mech. (1952) 238-255 Batchelor, G.K. (1953): The theory of homogeneous turbulence, Cambridge University Press, Cambridge, 1953. Batchelor, G.K. (1967): The theory of homogenous turbulence, Cambridge (1967) Baselga, S. (2007): Critical Limitation in Use of’t Test for Gross Error Detection. J Surv. Eng. 2007, 133,52-55. Bateman, H. (1910): The transformation of the electrodynamical equations, Proc. London Math. Soc. 8 (1910), 223-264, 469-488 Bateman, H. (1910): The transformation of coordinates which can be used to transform one physical problem into another, Proc. London Math. Soc. 8 (1910), 469-488 Bates, D.M. and D.G. Watts (1980): Relative curvature measures of nonlinearity (with discussion), J. Roy. Statist. Soc. B42 (1980), 1-25 Bates, D.M. and M.J. Lindstorm (1986): Nonlinear least squares with conditionally linear param- eters, Proceedings of the Statistical Computation Section, American Statistical Association, Washington 1986 Bates, D.M. and D.G. Watts (1988a): Nonlinear and its applications, J. Wiley, New York 1988 Bates, D.M. and D.G. Watts (1988b): Applied nonlinear regression, J. Wiley, New York 1988 Bates, R.A., Riccomagno, E., Schwabe, R. and H.P. Wynn (1998): Lattices and dual lattices in optimal experimental design for Fourier models, Computational Statistics & Data Analysis 28 (1998), 283-296 References 901

Batschelet, E. (1965): Statistical methods for the analysis of problems in animal orientation and certain biological rhythms, Amer. Inst. Biol. Sciences, Washington Batschelet, E. (1971): Recent statistical methods for orientation, (Animal Orientation Symposium 1970 on Wallops Island), Amer. Inst. Biol. Sciences, Washington, D.C., 1971 Batschelet, E. (1981): Circular statistics in biology, Academic Press, New York London 1981 Bauer, H. (1992): Maß- und Integrationstheorie, 2. Au age, Walter de Gruyter, Berlin New York 1992 Bauer, H. (1996): , de Gruyter Verlag, Berlin New York 1996 Bayen, F. (1976): Conformal invariance in physics, in: Cahen, C. and M. Flato (eds.), Differential geometry and relativity, Reidel Publ., 171-195, Dordrecht 1976 Beale, E.M. (1960): Confidence regions in non-linear estimation, J. Roy. Statist. Soc. B22 (1960), 41-89 Beaton, A.E. and J.W. Tukey (1974): Technometrics 16 (1974), 147-185 Becker, T. and Weispfenning, V. (1993): Grobner¨ bases. A computational approach to commutative algebra. Graduate Text in Mathematics 141, Springer-Verlag, New York 1993. Becker, T., Weispfennig, V. and H. Kredel (1998): Grobner¨ bases: a computational approach to commutative algebra, Corr. 2. print., Springer-Verlag, Heidelberg Berlin New York 1998 Beckermann, B. and E.B. Saff (1999): The sensitivity of least squares polynomial approximation, Int. Series of Numerical Mathematics, Vol. 131: Applications and computation of orthogonal polynomials (eds. W. Gautschi, G.H. Golub, G. Opfer), 1-19, Birkhauser-Verlag,¨ Basel Boston Berlin 1999 Beckers, J., Harnad, J., Perroud, M. and P. Winternitz (1978): Tensor fields invariant under subgroups of the conformal group of space-time, J. Math. Phys. 19 (1978), 2126-2153 Beder, C. and Forstner, W, (2006): Direct Solutions for Computing Cylinders from Minima/ Sets of 3D Points. European Conference on ECCV 2006. Graz, Austria 2006, S. 135-146. Behnken, D.W. and N.R. Draper (1972): Residuals and their variance, Technometrics 11 (1972), 101-111 Behrens, W.A. (1929): Ein Beitrag zur Fehlerberechnung bei wenigen Beobachtungen, Land- wirtschaftliche Jahrb¨ucher 68 (1929), 807-837 Belikov, M.V. (1991): Spherical harmonic analysis and synthesis with the use of column-wise recurrence relations, manuscripta geodaetica 16 (1991), 384-410 Belikov, M.V. and K.A. Taybatorov (1992): An efficient algorithm for computing the Earth’s gravitational potential and its derivatives at satellite altitudes, manuscripta geodaetica 17 (1992), 104-116 Ben-Menahem, A. and Singh, S.J. (1981): Seismic waves and sources. Springer-Verlag New York 1981 Ben-Israel, A. and T. Greville (1974): Generalized inverses: Theory and applications, J. Wiley, New York 1974 Benbow, S.J. (1999): Solving generalized least-squares problems with LSQR, SIAM J. Matrix Anal. Appl. 21 (1999), 166-177 Benciolini. B. (1984): Continuous networks II. Erice Lecture Notes, this volume. Heidelberg. Benda, N. and R. Schwabe (1998): Designing experiments for adaptively fitted models, in: MODA 5 - Advances in model-oriented data analysis and experimental design, Proceedings of the 5th International Workshop in Marseilles, eds. Atkinson, A.C., Pronzato, L. and H.P. Wynn, Physica-Verlag, Heidelberg 1998 Bennett, B. M. (1951): Note on a solution of the generalized Behrens-Fisher problem, Ann.Insr:Srat:XIath., 2, 87-90. Bennett, R.J. (1979): Spatial time series, Pion Limited, London 1979 Benning, W. (1974): Der k¨urzeste Abstand eines in rechtwinkligen Koordinaten gegebenen Außenpunktes vom Ellipsoid, Allgemeine Vermessungs-Nachrichten 81 (1974) 429-433. Benning, W. (1987): Iterative ellipsoidische Lotfußpunktberechung, Allgemeine Vermessungs- Nachrichten 94 (1987) 256-260. 902 References

Benning, W. and Ahrens, B. (1979): Konzept und Realisierung eines Systems zur automatischen Fehlerlokalisierung und automatischen Berechnung von Naherungskoordinaten. N achrichten aus dem 6ffentlichen Vermessungsdienst N ordrhein-Westfalen, Heft 2, 107-124. Beran, R.J. (1968): Testing for uniformity on a compact , J. App. Prob. 5 (1968), 177-195 Beran, R.J. (1979): Exponential models for directional data, Ann. Statist. 7 (1979), 1162-1178 Beran, J. (1994): Statistical methods for long memory processes, Chapman and Hall, Boca Raton 1994 Berberan, A. (1992): Outlier detection and heterogeneous observations - a simulation case study, Australian Journal of Geodesy, Photogrammetry and Surveying 56 (1992), 49-61 Berberan, A. (1995): Multiple Outlier Detection-A Real Case Study. Surv. Rev. 1995, 33, 41-49. Bergbauer, K. and Lechner, W. and Schuchert, M. and Walk, R. (1979): Anlage, Beobachtung und Ausgleichung eines dreidimensionalen Testnetzes. Diplomarbeit Hochschule der bundeswehr. Nunchen 1979. Berger, M.P.F. and F.E.S. Tan (1998): Optimal designs for repeated measures experiments, Kwantitatieve Methoden 59 (1998), 45-67 Berman, A. and R.J. Plemmons (1979): Nonnegative matrices in the mathematical sciences, Academic Press, New York London 1979 Bertsekas, D.P. (1996): Incremental least squares methods and the extended Kalman filter, Siam J. Opt. 6 (1996), 807-822 Berry, J.C. (1994): Improving the James-Stein estimator using the Stein variance estimator, Statist. Probab. Lett. 20 (1994), 241-245 Bertuzzi, A., Gandolfi, A. and C. Sinisgalli (1998): Preference regions of ridge regression and OLS according to Pitman’s criterion, Sankhya: The Indian Journal of Statistics 60 (1998), 437-447 Bessel, F.W. (1838): Untersuchungenuber ¨ die Wahrscheinlichkeit der Beobachtungsfehler, Astronomische Nachrichten 15 (1838), 368-404 Betensky, R.A. (1997): Local estimation of smooth curves for longitudinal data, Statistics in Medicine 16 (1997), 2429-2445 Betti, B. and Crespi, M. and Sanso, F. (1993): A geometric illustration of ambiguity resolution in GPS theory and a Bayesian approach. Manuscr Geod 18:317-330 Beylkin, G. and N. Saito (1993): Wavelets, their autocorrelation function and multidimensional representation of signals, in: Proceedings of SPIE - The international society of optical , Vol. LB26, Int. Soc. for Optical Engineering, Bellingham 1993 Bezdek, J.C. (1973): Fuzzy Mathematics in Pattern Classification, Ph.D. Thesis, Cornell Univer- sity, Ithaca, NY Bhatia, R. (1996): , Springer-Verlag, Heidelberg Berlin New York 1996 Bhattacharyya, D.P. and R.D. Narayan (1939): Moments of the D2-statistic for population with unequal dispresions, Sankhya, 5,401-412. Bhattacharya, R.N. and R. Ranga Rao (1976): Normal approximation and asymptotic expansions, J. Wiley, New York 1976 Bhimasankaram, P. and Sengupta, D. (1996): The linear zero functions approach to linear models. Sankhya, Ser. B 58, 3 (1996), 338-351. Bhimasankaram, P. and SahaRay, R. (1997): On a partitioned linear model and some associated reduced models. Linear Algebra Appl. 264 (1997), 329-339. Bhimasankaram, P. and Sengupta, D., and Ramanathan, S. (1995): Recursive inference in a . Sankhya, Ser. A 57, 2 (1995), 227-255. Biacs, Z.F., Krakiwsky, E.J. and Lapucha, D. (1990): Reliability Analysis of Phase Observations in GPS Baseline Estimation. J Surv. Eng. 1990, 116, 204-224. Biancale, R., Balmino, G., Lemoine, J.-M., Marty, J.-M., Moynot, B., Barlier, F., Exertier, P., Laurain, O., Gegout, P., Schwintzer, P., Reigber Ch., Bode A., Konig, R., Massmann, F.-H., Raimondo, J.C., Schmidt, R. and Zhu, S.Y., (2000): A new global Earth’s gravity field model from satellite orbit perturbations: GRlMS-Sl. Geophys. Res. Lett., 27,3611-3614. References 903

Bibby, J. (1974): Minimum mean square error estimation, ridge regression, and some unanswered questions, colloquia mathematica societatis Janos Bolyai, Progress in statistics, ed. J. Gani, K. Sarkadi, I. Vincze, Vol. I, Budapest 1972, North Holland Publication Comp., Amsterdam 1974 Bickel, P.J., Doksum, K. and J.L. Hodges (1982): A Festschrift for Erich L. Lehmann, Chapman and Hall, Boca Raton 1982 Bickel, P.J. and K.A. Doksum (1981): An analysis of transformations revisited, J. Am. Statist. Ass. 76 (1981), 296-311 Bierman, G.J. (1977): Factorization Methods for discrete sequential estimation, Academic Press, New York London 1997 Bill, R. (1985): Kriteriummatrizen ebener geodatischer¨ Netze, Ph.D. Thesis, Akademic d. Wis- senschafien, Deutsche Geodatische¨ Kommission, M¨unchen, Bill, R. (1985b): Kriteriummatrizen ebener geodatischer¨ Netze, Deutsche Geodatische¨ Kommis- sion, M¨unchen, Reihe A, No. 102 Bill, R. and Kaltenbach H. (1986): Kriteriummatrizen ebener geodatischer¨ Netze - Zur Schutzung von Korrelations funktionen uvittels Polynomen and Splines, Acl. Vermessungsnaeir AVN 96 (1986) 148-156 Bilodeau, M. and D. Brenner (1999): Theory of multivariate statistics, Springer-Verlag, Heidelberg Berlin New York 1999 Bingham, C. (1964): Distributions on the sphere and projective plane, Ph. D. Thesis, Yale University 1964 Bingham, C. (1974): An antipodally symmetric distribution on the sphere, Ann. Statist. 2 (1974), 1201-1225 Bingham, C., Chang, T. and D. Richards (1992): Approximating the matrix Fisher and Bingham distributions: Applications to spherical regression and Procrustes analysis, Journal of Multivari- ate Analysis 41 (1992), 314-337 Bini, D. and V. Pan (1994): Polynomial and matrix computations, Vol. 1: Fundamental Algorithms, Birkhauser-Verlag,¨ Basel Boston Berlin 1994 Bill, R. (1984): Eine Strategie zur Ausgleichung und Analyse von Verdichtungsnetzen, Deutsche Geodatische¨ Kommission, Bayerische Akademie der Wissenschaften, Report C295, 91 pages, M¨unchen 1984 Bill, R. (1985): Kriterium matrizen chener geodatischer¨ Netze, Deutsche Geodatische¨ Kommis- sion, Series A, report 102, Munich 1985 Bill, R. and H. Kaltenbach (1985): Kriterium matrizen ebener geodesticher Netze, zur Schutzung von Korrelations functionen mittels Polynomen and Spline, All. Vermessungswesen 96 (1986), pp. 148-156 Birtill, J.W. and Whiteway, F.E. (1965): The application of phased arrays to the analysis of seismic body waves, Phil.Trans.Roy.Soc. London, A 258 (1965), 421-493 Bischof, C.H. and G. Quintana-Orti (1998): Computing rank-revealing QR factorizations of dense matrices, ACM Transactions on Mathematical Software 24 (1998), 226-253 Bischoff, W. (1992): On exact D-optimal designs for regression models with correlated observa- tions, Ann. Inst. Statist. Math. 44 (1992), 229-238 Bischoff, W. and Heck, B., Howind, J. and Teusch, A. (2005): A procedure for testing the assumption of homoscedasticity in least squares residuals: a case study of GPS carrier-phase observations, Journal of Geodesy, 78:397-404, 2005. Bischoff, W. and Heck, B. and Howind, J. and Teusch, A. (2006): A procedure for estimating the variance function of linear models and for checking the appropriateness of estimated variances: a case study of GPS carrier-phase observations. J Geod 79(12):694-704 Bradley, J.V. (1968): Distribution-free statistical tests, Englewood Cliffs, Prentice-Hall 1968 Briscoe, H.W. and Fleck, P.L (1965): Data recording and processing for the experimental large aperture seismic array, Proc. IEEE 53 (1965), 1852-1859 Bjerhammar, A. (1951): Rectangular reciprocal matrices with special reference to calculation, Bull. Geeod` eesique` 20 (1951), 188-210 904 References

Bjerhammar, A. (1951): Application of calculus of matrices to the method of least-squares with special reference to geodetic calculations, Trans. RIT, No. 49, Stockholm 1951 Bjerhammar, A. (1955): En ny matrisalgebra, SLT 211-288, Stockholm 1955 Bjerhammar, A. (1958): A generalized matrix algebra, Trans. RIT, No. 124, Stockholm 1958 Bjerhammar, A. (1969): Linear Prediction and Filtering, Royal Inst. Techn. Div. Geodesy, Stockholm 1969. Bjerhammar, A. (1973): Theory of errors and generalized matrix inverses, Elsevier, Amsterdam 1973 Bjorck,¨ A. (1967): Solving linear least squares problems by Gram-Schmidt orthogonalization, Nordisk Tidskr. Informationsbehandling (BIT) 7 (1967), 1-21 Bjorck,¨ A. (1990): Least Squares Methods. In: Handbook of , Eds.: P.G. Ciarlet, J.L. Lions, North Holland, Amsterdam Bjorck,¨ A. (1996): Numerical methods for least squares problems, SIAM, Philadelphia 1996 Bjorck,¨ A. and G.H. Golub (1973): Numerical methods for computing angles between linear subspaces, Mathematics of Computation 27 (1973), 579-594 Bjorkstr¨ om,¨ A. and R. Sundberg (1999): A generalized view on continuum regression, Scandina- vian Journal of Statistics 26 (1999), 17-30 Blackman, R.B. (1965): Linear data - smoothing and prediction in theory and practice, Reading 1965 Blaha, G. (1987): Nonlinear Parametric Least-Squares Adjustment. AFGL Technical Report 87- 0204, Air Force Geophysics Laboratory, Bedford, Mass. Blaha, G. (1991): Non-Iterative Geometric Approach to Nonlinear Parametric Least-Squares Adjustment with or without Constraints. Report No. PL-TR-91-2136, Phillips Laboratory, Air Force Systems Command, Hanscom Air Force Base Massachusetts. Blaha, G. and Besette, R.P. (1989): Nonlinear least squares method via an isomorphic geometrical setup, Bulletin Geodesique 63 (1989) 115-138. Blaker, H. (1999): Shrinkage and orthogonal decomposition, Scandinavian Journal of Statistics 26 (1999), 1-15 Blaschke, W.; Leichtweiss, K. (1973): Elementare Differentialgeometrie. Springer-Verlag, Berlin Heidelberg. Blewitt, G. (2000): Geodetic network optimization for geophysical parameters, Geophysical Research Letters 27 (2000), 2615-3618 Bloomfield, P. and W.L. Steiger (1983): Least absolute deviations - theory, applications and algorithms, Birkhauser-Verlag,¨ Basel Boston Berlin 1983 Bobrow, J.E. (1989): A direct minimization approach for obtaining the distance between convex polyhedra, Int. J. Robotics Research 8 (1989), 65-76 Boedecker, G. (1977): The development of an observation scheme for the variance-covariance matrix of the unknowns, Proceedings International Symposium on Optimization of Design and Computation of Control Networks, Sopron 1977. Boggs, P.T., Byrd, R.H. and R.B. Schnabel (1987): A stable and efficient algorithm for nonlinear orthogonal distance regression, SIAM J. Sci. Stat. Comput. 8 (1987), 1052-1078 Boik, R.J. (1986): Testing the rank of a matrix with applications to the analysis of interaction in ANOVA. J. Am. Stat. Assoc. 81 (1986), 243-248. Bollerslev, T. (1986): Generalized autoregressive conditional heteroskedasticity, J. Econometrics 31 (1986), 307-327 Boogaart, K.G. and van den A. Brenning (2001): Why is universal kriging better than IRFkkriging: estimation of variograms in the presence of trend, Proceedings of 2001 Annual Conference of the International Association for Mathematical Geology, September 6-12, 2001, Cancun, Mexico Boogaart, K.G. and van den H. Schaeben (2002a): Kriging of regionalized directions, axes, and orientations 1. Directions and axes, Mathematical Geology, to appear Boogaart, K.G. and van den H. Schaeben (2002b): Krigging of normalised directions, axes, Month. Geology 34 (2002) 479 References 905

Boon, F. and Ambrosius, B. (1997): Results of real-time applications of the LAMBDA method in GPS based aircraft landings. In: Proceedings KIS97, pp 339-345 Boon, F., de Jonge, P.J. and Tiberius, C.C.J.M. (1997): Precise aircraft positioning by fast ambiguity resolution using improved troposphere modelling. In: Proceedings ION GPS-97. vol. 2, pp 1877-1884 Booth, J.G. and J.P. Hobert (1996): Standard errors of prediction in generalized linear mixed models, J. Am. Statist. Ass. 93 (1996), 262-272 Bopp, H.; Krauss, H. (1978): Strenge oder herk6mmliche bedingte Ausgleichung mit Unbekan- nten bei nichtlinearen Bedingungsgleichungen? Allgemeine Vermessungsnachrichten, 85. Jg., Heft 1, 27-3l. Bordes L., Nikulin, M. and V. Voinov (1997): Unbiased estimation for a multivariate exponential whose components have a common shift, J. Multivar. Anal. 63 (1997), 199-221 Borg, I. and P. Groenen (1997): Modern multidimensional scaling, Springer Verlag, Berlin New York 1997 Borkowski, K.M. (1987): Transformation of geocentric to geodetic coordinates without approxi- mation, Astrophys. Space. Sci. 139 (1987) 1-4. Borkowski, K.M. (1989): Accurate algorithm to transform geocentric to geodetic coordinates, Bull. Geod. 63 (1989) 50-56. Borovkov, A.A. (1998): , Gordon and Breach Science Publishers, Amster- dam 1998 Borre, K. (1977): Geodetic elasticity theory. Bulletin Geodesique, 63-71. Borre, K. (1978): Error propagation in absolute geodetic networks - a continuous approach -. Studia geophysica et geodaetica, 213-223. Borre, K. (1979a): Covariance functions for random error propagation in large geodetic networks. Scientific Bulletin of the Stanislaw I Staszic University of Mining and Metallurgy, Krakow, 23-33. Borre, K. (1979b): On discrete networks versus continua. 2. Int. Symp. wei tgespannte Fl achentra.gwerke. Beri chtsheft 2. p. 79-85. Stuttgart. Borre, K. (1980): Elasticity and stress-strain relations in geodetic networks, in: Proceedings of the International School of Advanced Geodesy, ed. E. Grafarend and A. Marussi, p. 335-374, Florence. Borre, K. (2001): Plane networks and their applications, Birkhauser-Verlag,¨ Basel Boston Berlin 2001 Borre, K. and Meissl, P. (1974): Strength analysis of leveling type networks, an application of random walk theory, Geodaetisk Institute Meddelelse No. 50, Copenhagen. Borre, K. and T. Krarup (1974): Foundation of a Theory of Elasticity, for Geodetic Networks. 7. nordiske geodaetm0de i K0benhavn. Borre, K. and S.L. Lauritzen (1983): Some geometric aspects of adjustment, In. Festschrift to Torben Krarup, Eds. E. Kejlso et al., Geod. Inst., No. 58, pp. 70-90. Bos, M.S., Fernandes, R.M., Williams, S.D.P. and L. Bastos (2008): Fast error analysis of continuous GPS observations, J. Geodesy 82 (2008) 157-166 Bose, R.C. (1944): The fundamental theorem of linear estimation, Proc. 31st Indian Scientific Congress (1944), 2-3 Bose, R.C. (1947): The , Presidential Address to Statistics Section, 34th session of the Indian Science Congress Assoc. 1947 Bossler, J. (1973): A note on the meaning of generalized inverse solutions in geodesy, J. Geophys. Res. 78 (1973), 2616 Bossler, J., Grafarend, E. and R. Kelm (1973): Optimal design of geodetic nets II, J. Geophys. Res. 78 (1973), 5887-5897 Bossler, J., Grafarend, E. and R. Kelm (1973) : Optimal Design of Geodetic Nets II, J. Geophysical Research 78 (1973) 5837-5898 Boulware, D.G., Brown, L.S. and R.D. Peccei (1970): Deep inelastic electroproduction and conformal symmetry, Physical Review D2 (1970), 293-298 906 References

Bowring, B.R. (1976): Transformation from spatial to geographical coordinates, Survey Review 23 (1976) 323-327. Bowring, B.R. (1985): The accuracy of geodetic latitude and height equations, Survey Review 28 (1985) 202-206. Box, G.E.P. and D.R. Cox (1964): Ana analysis of transformations, J. Roy. Statist. Soc. B26 (1964), 211-252 Box, G.E.P. and G. Tiao (1973): Bayesian inference in statistical analysis, Addison-Wesley, Reading 1973 Box, G.E.P. and N.R. Draper (1987): Empirical model-building and response surfaces, J. Wiley, New York 1987 Box, M.J. (1971): Bias in nonlinear estimation, J. Roy. Statist. Soc. B33 (1971), 171-201 Branco, M.D. (2001): A general class of multivariate skew-elliptical distributions, J. Multivar. Anal. 79 (2001), 99-113 Brandt, S. (1992): Datenanalyse. Mit statistischen Methoden und Computerprogrammen, 3. Au., BI Wissenschaftsverlag, Mannheim 1992 Brandt, S. (1999): Data analysis: statistical and computational methods for scientists and engineers, 3rd ed., Springer-Verlag, Heidelberg Berlin New York 1999 Brandstatter,¨ G. (1974): Notiz zur analytischen Losung¨ des ebenen R¨uckwartsschnittes,¨ Osterreichische¨ Zeitschrift f¨ur Vermessungswesen 61 (1974) 134-136. Braess, D. (1986): Nonlinear approximation theory, Springer-Verlag, Heidelberg Berlin New York 1986 Branham, R.L. (1990): Scientific Data Analysis. An Introduction to Overdetermined Systems, Springer-Verlag, New York Brauner, H. (1981): Differentialgeometrie. Vieweg, Wiesbaden. Breckling, J. (1989): Analysis of directional time series: application to wind speed and direction, Springer-Verlag, Heidelberg Berlin New York 1989 Bremand, P. (1999): Markov chains, Gibbs fields, Monte Carlo simulation and queues, Spring Verlag, New York 1999 Breslow, N.E. and D.G. Clayton (1993): Approximate inference in generalized linear mixed models, J. Am. Statist. Ass. 88 (1993), 9-25 Brill, M. and E. Schock (1987): Iterative solution of ill-posed problems - a survey, in: Model optimization in exploration geophysics, ed. A. Vogel, Vieweg, Braunschweig 1987 Brillinger, E.D. (1964): An introduction to polyspectra, Economic Research Program Memoran- dum no 67, Princeton 1964 Bro, R. (1997): A fast non-negativity-constrained least squares algorithm, J. Chemometrics 11 (1997), 393-401 Bro, R. and S. de Jong (1997): A fast non-negativity-constrained least squares algorithm, Journal of Chemometrics 11 (1997), 393-401 Brock, J.E. (1968), Optimal matrices describing linear systems, AIAA J. 6 (1968), 1292-1296 Brockwell, P. and Davies, R. (2003). Time Series: Theorie and Methods. Springer, New York Brokken, F.B. (1983): Orthogonal Procrustes rotation maximizing congruence, Psychometrika 48 (1983) 343-352. Brovelli, M.A., Sanso, F. and G. Venuti (2003): A discussion on the Wiener-Kolmogorov prediction principle with easy-to-compute and robust variants, Journal of Geodesy 76 (2003), 673-683 Brown, B. and R. Mariano (1989): Measures of deterministic prediction bias in nonlinear models, Int. Econ. Rev. 30 (1989), 667-684 Brown, B.M., P. Hall, and G.A. Young (1997): On the effect of inliers on the spatial median, J. Multivar. Anal. 63 (1997), 88-104 Brown, H. and R. Prescott (1999): Applied mixed models in medicine, J. Wiley, New York 1999 Brown, K.G. (1976): Asymptotic behavior of Minque-type estimators of variance components, The Annals of Statistics 4 (1976), 746-754 Brown, P.J., Le, N.D. and J.V. Zidek (1994): Multivariate spatial interpolation and exposure to air pollutants. Can J Stat 2:489-509 References 907

Brown, W.S. (1971): On Euclid’s Algorithm and the Computation of Polynomial Greatest Common Divisors. Journal of the ACM, 18(4), 478-504. Brualdi, R.A. and H. Schneider (1983): Determinantal identities: Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir and Cayley, Linear Algebra Appl. 52/53 (1983), 765-791 Brunk, H.D. (1958): On the estimation of parameters restricted by inequalities, Ann. Math. Statist. 29 (1958), 437-454 Brunner, F.K. (1979): On the analysis of geodetic networks for the determination of the incremental strain tensor, Survey Review 25 (1979) 146-162. Brunner, F.K. (1999): Zur Prazision¨ von GPS Messungen, Geowiss. Mitteilungen, TU Wien, Heft 50:1-10, 1999. Brunner, F.K., Hartinger, H. and L. Troyer (1999): GPS signal diffraction modelling: the stochastic sigma-model, Journal of Geodesy 73 (1999), 259-267 Brunner, F.K. (2009): Ranm-veit analyse von GPs messengun mittels Turbulenz theorie, First holloquium E. Grafarend, Stuttgart 2009 Bruno, A.D. (2000): Power geometry in algebraic and differential equations, Elsevier, Amsterdam Lausanne New York Oxford Shannon Singapore Tokyo 2000 Brus, D.J. and de Gruijter, J.J. (1997): Random sampling or geostatistical modeling? Chosing between design-based and model-based sampling strategies for soil (with discussion). Geo- derma 80:1-44 Brus, D.J. and Heuvelink, G.B.M. (2007): Optimization of sample patterns for universal kriging of environmental variables. Geoderma 138: 86-95 Brzeezniak,` Z. and T. Zastawniak (1959): Basic stochastic processes, Springer-Verlag, Heidelberg Berlin New York 1959 Buchberger, B. (1965a): Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen PolynomideaL Dissertation der Universitat Innsbruck. Buchberger, B. (1965b): An algorithm for finding a basis for the residue class ring of a zero dimensional polynomial ideal (German), Ph.D. thesis, University of Innsbruck, Institute of Mathematics. Buchberger, B. (1970): Ein algorithmisches Kriterium f¨ur die Losbarkeit¨ eines algebraischen Gleichungsystems, Aequationes Mathematicae 4 (1970) 374-383. Buchberger, B. (1979): A criterion for detecting unnecessary reductions in the construction of Groebner bases. Proceedings of the 1979 European Symposium on Symbolic and Algebraic computation, Springer lecture notes in Computer Science 72, Springer-Verlag, pp. 3-21, Berlin- Heidelberg-New York 1979. Buchberger, B. (1985): Groebner Bases: An Algorithmic Method in Polynomial Ideal Theory. In: Multidimensional Systems Theory, Ed.: N.K. Bose, D. Reidel Publishing Company, Dordrecht- Boston-Lancaster. Buchberger, B. and Kutzler, B. (1986): Computer-Algebra fiir den Ingenieur. In: Mathematische Methoden in der Technik, Hrsg.: J. Lehn, H. Neunzert, H. Wacker, Band 4, Rechnerorientierte Verfahren, B.G. Teubner, Stuttgart Buchberger, B. (1999): Personal communication. Buchberger, B. and Winkler, F. (1998): Groebner bases and applications. London mathematical society lecture note series 251, Cambridge university press, 1998. Buell, C.E. (1972): Correlation functions for wind and geopotential on isobaric surfaces, Journal of Applied Meteorology, 1972. Bueso, M.C., Angulo, J.M., Qian, G. and Alonso, F.J. (1999): Spatial sampling design based on stochastic complexity. J. Multivar. Anal. 71: 94-110 Buhmann, M.D. (2001): Approximatipn and interpolation with radial functions, In: Multivariate Approximation and Applications, Cambridge University Press, Cambridge 2001, 25-43 Bunday, B.D., S.M.H. Bokhari, and K.H. Khan (1997): A new algorithm for the normal distribution function, Sociedad de Estadistica e Investigacion Operativa 6 (1997), 369-377 Bunke, H. and O. Bunke (1974): Identifiability and estimability, Math. Operationsforschg. Statist. 5 (1974), 223-233 908 References

Bunke, H. and O. Bunke (1986): Statistical inference in linear models, J. Wiley, New York 1986 Bunke, H. and O. Bunke (1989): Nonlinear regression, functional relations and robust methods, Vol 2, Wiley 1989 Bunke, O. (1977): Mixed models, empirical Bayes and Stein estimators, Math. Operationsforschg. Ser. Statistics 8 (1977), 55-68 Buonaccorsi, J., Demidenko, E. and T. Tosteson (2000): Estimation in longitudinal random effects models with measurement error, Statistica Sinica 10 (2000), 885-903 Burg, J.P (1964): Three-dimensional filtering with an array of seismometers, Geophysics 29 (1964), 693-713 Burns, F., Carlson, D., Haynsworth, E., and T. Markham (1974): Generalized inverse formulas using the Schur complement, SIAM J. Appl. Math. 26 (1974), 254-259 Businger, P. and G.H. Golub (1965): Linear least squares solutions by Householder transforma- tions, Numer. Math., 7 (1965), 269-276 Butler, N.A. (1999): The efficiency of in designed experiments subject to spatial or temporal variation, Statistics & Probability Letters 41 (1999), 73-81 Caboara, M. and E. Riccomagno (1998): An algebraic computational approach to the identifiability of Fourier models, J. Symbolic Computation 26 (1998), 245-260 Cadet, A. (1996): Polar coordinates in Rnp, application to the computation of the Wishart and Beta laws, Sankhya: The Indian Journal of Statistics 58 (1996), 101-114 Cai, J. (2004): Statistical inference of the eigenspace components of a symmetric random deformation tensor, Dissertation, Deutsche Geodatische¨ Kommission (DGK) Reihe C, Heft Nr. 577, 138 Seiten, M¨unchen, 2004 Cai, J. and Grafarend, E. and Schaffrin, B. (2004): The A-optimal regularization parameter in uniform Tykhonov-Phillips regularization - ˛-weighted BLE, IAG Symposia 127 “Hotine- Marussi Symposium on Mathematical Geodesy”, Matera, Italy, 17-21 June 2002, edited by F. Sanso, Springer, 309-324 Cai, J. and Grafarend, E. and Schaffrin B. (2005): Statistical inference of the eigenspace components of a two-dimensional, symmetric rank two random tensor, J. of Geodesy, Vo1. 78, 426-437 Cai, J. and Grafarend, E. (2007): Statistical analysis of the eigenspace components of the twodimensicnial, symmetric rank-two tensor derived from the space geodetic measurements (ITRF92-ITRF2000 data sets) in central Mediterranean and Western Europe, Geophysical Journal International, Vol. 168, 449-472 Cai, J. and Koivula, H. and Poutanen, M. (2008): The statistical analysis of the eigenspace com- ponents of the strain rate tensor derived from FinnRef GPS measurements (1997-2004), IAG Symposia 132 “VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy”, Wuhan, China, 29 May-2 June, 2006, eds. P. Xu, J. Liu and A. Dermanis, pp. 79-87, Springer, Berlin, Heidelberg Cai, J. and Hu, C. and Grafarend, E. and Wang, J. (2008): The uniform Tykhonov-Phillips regularization (a weighted S-homBLE) and its application in GPS rapid static positioning, in Fennoscandia, IAG Symposia 132 “VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy”, Wuhan, China, 29 May-2 June, 2006, eds. P. Xu, J. Liu and A. Dermanis, pp. 221-229, Springer, Berlin, Heidelberg Cai, J. and Wang, J. and Wu, J. and Hu, C. and Grafarend, E. and Chen, J. (2008): Horizontal deformation rate analysis based on multi-epoch GPS measurements in Shanghai, Journal of Surveying Engineenng, Vol. 134(4), 132-137 Cai, J. and Grafarend, E. and Hu, C. (2009): The total optimal criterion in solving the mixed integer linear model with GNSS carrier phase observations, Journal of GPS Solutions, Vol. 13, 221-230, doi: 10.1007 Is 10291-008-0 115-y Calder, C. and Cressie, N. (2007): Some topics in convolution-based modeling. In Proceedings of the 56th session of the International Statistics Institute, Lisbon. Cambanis, S. and I. Fakhre-Zakeri (1996): Forward and reversed time prediction of autoregressive sequences, J. Appl. Prob. 33 (1996), 1053-1060 References 909

Campbell, H.G. (1977): An introduction to matrices, vectors and linear programming, 2nd ed., Printice Hall, Englewood Cliffs 1977 Candy, J.V. (1988): Signal processing, McGrow Hill, New York 1988 Canny, J.F. (1988): The complexity of robot motion planning, ACM doctoral dissertation award, MIT Press, 1988. Canny, J.F., Kaltofen, E. and Yagati, L. (1989): Solving systems of nonlinear polynomial equations faster, Proceedings of the International Symposium on Symbolic and Algebraic Computations ISSAC, July 17-19, Portland, Oregon 1989. pp. 121-128. Carlin, B.P. and T.A. Louis (1996): Bayes and empirical Bayes methods, Chapman and Hall, Boca Raton 1996 Carlitz, L. (1963): The inverse of the error function, Pacific J. Math. 13 (1963), 459-470 Carlson, D., Haynsworth, E. and T. Markham (1974): A generalization of the Schur complement by means of the Moore-Penrose inverse, SIAM J. Appl. Math. 26 (1974), 169-179 Carlson, D. (1986): What are Schur complements, anyway? Linear Algebra and its Applications 74 (1986), 257-275 Carmo Do, M. (1983): Diiferentialgeometrie von Kurven und Flachen. Vieweg-Studium, Braun- schweig. Carroll, J.D., Green, P.E. and A. Chaturvedi (1999): Mathematical tools for applied multivariate analysis, Academic Press, San Diego 1999 Carroll, J.D. and P.E. Green (1997): Mathematical tools for applied multivariate analysis, Academic Press, San Diego 1997 Carroll, R.J. and D. Ruppert (1982a): A comparison between maximum likelihood and generalized least squares in a heteroscedastic linear model, J. Am. Statist. Ass. 77 (1982), 878-882 Carroll, R.J. and D. Ruppert (1982b): Robust estimation in heteroscedastic linear models, Ann. Statist., 10 (1982), pp. 429-441 Carroll, R.J., Ruppert, D. and L. Stefanski (1995): Measurement error in nonlinear models, Chapman and Hall, Boca Raton 1995 Carruthers, P. (1971): Broken scale invariance in particle physics, Phys. Lett. Rep. 1 (1971), 1-30 Caspary, W. (1987): Concepts of Network and Deformation Analysis, Monograph 11, The University of New South Wales, School of Surveying, N.S.W., Australia, 1987 Caspary, W.; Borutta, H. (1986): Geometrische Deformationsanalysemit robusten Schatzverfahren,¨ Allgemeine Vermessungsnachrichten 8-9/1986, S.315-326 Caspary, W. and Lohse, P. and Van Mierlo, J. (1991): SSG 4.120: Non-linear Adjustment. In: National Report of the Federal Republic of Germany on the Geodetic Activities in the Years 1987-1991, Eds.: E.W. Grafarend, K. Schnadelbach Deutsche Geodatische¨ Kommission, Reihe B, Nr.294. Caspary, W. and K. Wichmann (1994): Lineare Modelle. Algebraische Grundlagen und statistische Anwendungen, Oldenbourg Verlag, M¨unchen/Wien 1994 Castillo, J. (1994): The singly truncated normal distribution, a non-steep exponential family, Ann. Inst. Statist. Math 46 (1994), 57-66 Castillo, J. and P. Puig (1997): Testing departures from gamma, Rayleigh and truncated normal distributions, Ann. Inst. Statist. Math. 49 (1997), 255-269 Cattani, E., Dickenstein, A. and Sturmfels, B. (1998): Residues and resultants, J. Math. Sci. University of Tokyo 5 (1998) 119-148. Cayley, A. (1843): On the application os Quaternions to the theory of rotation, Phil. May. 33, (1848), pp. 196-200 Cayley, A. (1845): On Jacobi’s elliptic functions, in reply to the Rev. B. Bronwix and on quaternions, Philos, May. 261 (1845), pp. 208-211 Cayley, A. (1855): Sept differents memoires d’analyse, No. 3, Remarque sur la notation des fonctions algebriques, Journal f¨ur die reine und angewandte Mathematik 50 (1855), 282-285 Cayley, A. (1857): A memoir on the theory of matrices, Phil. Trans. Roy. Soc. London, 148 (1857), pp. 17-37 (collected works, vol. 2, 475-496) Cayley, A. (1858): A memoir on the theory of matrices, Phil. Transactions, Royal Society of London 148 (1858), 17-37 910 References

Cayley, A. (1863): On Jacobi’s elliptic functions, in reply to the Rev. B. Bronwin, and on quaternions (appendix only), in: The collected mathematical Papers, Johnson reprint Co., p. 127, New York, 1963 Cayley, A. (1885): On the Quaternion equation qQ Qq’ D 0, Messenger, 14 (1885), pp. 108-112 Cenkov, N.N. (1972): Statistical decision rule and optimal inference, Nauka 1972 Champagne, F.H. (1978): The fine scale structure of the turbulent velocity field, J. Fluid. Mech. 86 (1978) 67-108 Chaffee, J. and Abel, J. (1994): On the exact solutions of the pseudorange equations, IEEE Transactions on Aerospace and Electronic Systems 30 (1994) 1021-1030. Chan, K.-S. and H. Tong (2001): Chaos, a statistical perspective, Springer-Verlag, Heidelberg Berlin New York 2001 Chan, K.-S. and H. Tong (2002): A note on the equivalence of two approaches for specifying a Markov process, Bernoulli 8 (2002), 117-122 Chan, T.F. and P.C. Hansen (1991): Some applications of the rank revealing QR factorizations, Numer. Linear Algebra Appl., 1 (1991), 33-44 Chan, T.F. and P.C. Hansen (1992): Some applications of the rank revealing QR factorization, SIAM J. Sci. Statist. Comput., 13 (1992), 727-741 Chandrasekar, S. (1950): The theory of axisymmetric turbulence, Proc. Royal Soc. a2242 (1950) 557 Chandrasekar, S. and I.C.F. Ipsen (1995): Analysis of a QR algorithm for computing singular values, SIAM J. Matrix Anal. Appl. 16 (1995), 520-535 Chandrasekar, S., Gu, M. and A.H. Sayed (1998): A stable and efficient algorithm for the indefinite linear least-squares problem, SIAM J. Matrix Anal. Appl. 20 (1998), 354-362 Chandrasekar, S., Golub, G.H., Gu, M. and A.H. Sayed (1998): Parameter estimation in the presence of bounded data uncertainties, SIAM J. Matrix Anal. Appl. 19 (1998), 235-252 Chang, F.-C. and Y.-R. Yeh (1998): Exact A-optimal designs for quadratic regression, Statistica Sinica 8 (1998), 527-533 Chang, H. and Fu, A.Q. and Le, N.D. and Zidek J.V. (2005): Designing environmental monitoring networks for measuring extremes. http://www.samsi.info/TR/tr2005-04.pdf Chang, T. (1986): Spherical regression, Annals of Statistics 14 (1986), 907-924 Chang, T. (1988): Estimating the relative rotations of two tectonic plates from boundary crossings, J. Am. Statist. Ass. 83 (1988), 1178-1183 Chang, T. (1993): Spherical regression and the statistics of tectonic plate reconstructions, International Statis. Rev. 51 (1993), 299-316 Chang, X.W., Yang, X., Zhou, T. (2005): MLAMBDA: a modified LAMBDA method for integer ambiguity determination, Proceedings ION GNSS2005, Long Beach Chapman, D.G. and H. Robbins (1951): Minimum variance estimation without regularity assumptions, Ann. Math. Statist. 22 (1951), 581-586 Char, B.W. et al. (1990): MAPLE Reference Manual. Fifth Edition. Waterloo Maple Publishing Chartres, B.A. (1963): A geometrical proof of a theorem due to Slepian, SIAM Review 5 (1963), 335-341 Chatfield, C. and A.J. Collins (1981): Introduction to multivariate analysis, Chapman and Hall, Boca Raton 1981 Chatterjee, S. and A.S. Hadi (1986): Influential observations, high points, and outliers in linear regression, Stat. Sci. 1 (1986), pp. 379-416 Chatterjee, S. and A.S. Hadi (1988): Sensitivity analysis in linear regression, J. Wiley, New York 1988 Chatterjee, S. and M. Machler¨ (1997): Robust regression: a weighted least-squares approach, Commun. Statist. Theor. Meth. 26 (1997), 1381-1394 Chaturvedi, A. and A.T.K. Wan (1998): Stein-rule estimation in a dynamic linear model, J. Appl. Stat. Science 7 (1998), 17-25 Chaturvedi, A. and A.T.K. Wan (1999): Estimation of regression coefficients subject to interval constraints in models with non-spherical errors, Indian Journal of Statistics 61 (1999), 433-442 Chaturvedi, A. and A.T.K. Wan (2001): Stein-rule restricted regression estimator in a linear regres- sion model with nonspherical disturbances, Commun. Statist.-Theory Meth. 30 (2001), 55-68 References 911

Chauby, Y.P. (1980): Minimum norm quadratic estimators of variance components, Metrika 27 (1980), 255-262 Chen, Hsin-Chu. (1998): Generalized reexive matrices: Special properties and applications, Society for Industrial and Applied Mathematics, 009 (1998), 141-153 Chen, L: Math. Phys. 167 (1995) 443-469 Chen, X. (2001): On maxima of dual function of the CDT subproblem, J. Comput. Mathematics 19 (2001), 113-124 Chen Y.-S. (2001): Outliers detection and confidence interval modification in fuzzy regression Fuzzy Sets Syst. 119, 2 (2001), 259-272. Chen, Z. and J. Mi (1996): Confidence interval for the mean of the exponential distribution, based on grouped data, IEEE Transactions on Reliability 45 (1996), 671-677 Chen, V.C.P., Tsui, K.L., Barton, R.R. and Meckesheimer, M. (2006): A review on design, modeling and applications of computer experiments. IIE Trans 38:273-291 Chen, Y.Q., Kavouuras, M. and Chrzanowski, A. (1987): A Strategy for Detection of Outlying Observations in Measurements of High Precision. The Canadian Surveyor. 41:529-540. Cheng, C.L. and van J.W. Ness (1999): Statistical regression with measurement error, Arnold Publ., London 1999 Cheng, C.L. (1998): Polynomial regression with errors in variables, J. Roy. Statist. Soc. B60 (1998), 189-199 Cherioito, P. (2001): Mixed fractional Brownian motion, Bernoulli 7 (2001) 913-934 Chiang, C.-Y. (1998): Invariant parameters of measurement scales, British Journal of Mathematical and Statistical Psychology 51 (1998), 89-99 Chiang, C.L. (2003): Statistical methods of analysis, University of California, Berkeley, USA 2003 Chikuse, Y. (1999): Procrustes analysis on some special manifolds, Commun. Statist. Theory Meth. 28 (1999), 885-903 Chilees,´ J.P. and P. Delfiner (1999): Geostatistics - modelling spatial uncertainty, J. Wiley, New York 1999 Chiodi, M. (1986): Procedures for generating pseudo-random numbers from a normal distribution of order, Riv. Stat. Applic. 19 (1986), 7-26 Chmielewski, M.A. (1981): Elliptically symmetric distributions: a review and bibliography, International Statistical Review 49 (1981), 67-74 Chow, Y.S. and H. Teicher (1978): Probability theory, Springer-Verlag, Heidelberg Berlin New York 1978 Chow, T.L. (2000): Mathematical methods for physicists, Cambridge University Press, Cambridge 2000 Christensen, R. (1991): Linear models for multivariate time series and spatial data. Springer, Berlin Christensen, R. (1996): Analysis of variance, design and regression, Chapman and Hall, Boca Raton 1996 Chrystal, G. (1964): Textbook of Algebra (Vol. 1), Chelsea, New York 1964. Chrzanowski, A. and Chen, Y.Q. (1998): Deformation monitoring, analysis, and prediction - status report, Proc. FIG XIX into Congress, Helsinki, Vo1. 6, pp. 84-97 Chrzanowski, A. Chen, Y.Q. and Secord, M. (1983): On the strain analysis of tectonic movements using fault crossing geodetic surveys, Tectonophysics, 97, 297-315: Crocetto, N. and Vettore, A. (2001): Best unbiased estimation of variance-covariance components: From condition adjustment to a generalized methodology. J. Inf. Optimization Sci. 22, 1 (2001), 113-122. Chiles, J.P. and P. Delfiner (1999): Geostatistics: modeling spatial uncertainty, Wiley series, New York 1999 Chui, C.K. and G. Chen (1989): Linear Systems and optimal control, Springer-Verlag, Heidelberg Berlin New York 1989 Chui, C.K. and G. Chen (1991): Kalman filtering with real time applications, Springer-Verlag, Heidelberg Berlin New York 1991 912 References

Ciarlet, P.G. (1988): Mathematical elasticity, Vol. 1: three-dimensional elasticity, North Holland Publ. Comp., Amsterdam Claerbout, J.F. (1964): Detection of p - waves from weak sources at great distances, Geophysics 29 (1964), 197-211 Clark, G.P.Y. (1980): Moments of the least squares estimators in a nonlinear regression model, JR. Statist. Soc. B42 (1980), 227-237 Clerc-Beerod,` A. and S. Morgenthaler (1997): A close look at the hat matrix, Student 2 (1997), 1-12 Cobb, L., Koppstein, P. and N.H. Chen (1983): Estimation and moment recursions relations for multimodal distributions of the exponential family, J. Am. Statist. Ass. 78 (1983), 124-130 Cobb, G.W. (1997): Introduction to design and analysis of experiments, Springer-Verlag, Heidelberg Berlin New York 1997 Cochran, W. (1972): Some effects of errors of measurement on linear regression, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 527-539, UCP, Berkeley 1972 Cochran, W. (1972): Stichprobenverfahren, de Gruyter, Berlin 1972 Cohen, A. (1966): All admissible linear estimates of the mean vector, Ann. Math. Statist. 37 (1966), 458-463 Cohen, C. and A. Ben-Israel (1969): On the computation of canonical correlations, Cahiers Centre eEtudes` Recherche Opeer` 11 (1969), 121-132 Cohen J., Kesten M., and Newman C. (eds.) (1985): Random matrices and their applications, Amer. Math. Soc., Providence Collett, D. (1992): Modelling binary data, Chapman and Hall, Boca Raton 1992 Collet, D. and T. Lewis (1981): Discriminating between the von Mises and wrapped normal distributions, Austr. J. Statist. 23 (1981), 73-79 Colton, D., Coyle, J. and P. Monk (2000): Recent developments in inverse acoustic scattering theory, SIAM Review 42 (2000), 369-414 Comte, F. and Rozenholc, Y. (2002): Adaptive estimation of volatility functions in (auto-) regressive models, Stoel cesses and their Applications 97, 111-145, 2002. Cook, R.D., Tsai, C.L. and B.C. Wei (1986): Bias in nonlinear regression, Biometrika 73 (1986), 615-623 Cook, R.D. and S. Weisberg (1982): Residuals and influence in regression, Chapman and Hall, London 1982 Cook, R.D. and Goldberg, M.L. (1986): Curvatures for parameter subsets in nonlinear regression. Annals of Statistics, 14. Corbeil, R.R. and S.R. Searle (1976): restricted maximum likelihood (REML) estimation of variance components in the mixed model, Technometrics, 18 (1976), pp. 31-38 Cottle, R.W. (1974): Manifestations of the Schur complement, Linear Algebra Appl. 8 (1974), 189-211 Coulman, C.E. and J. Vernin (1991): Significance of anisotropy and the outer scale of turbulence for optical and radio seeing, Applied Optics 30 (1991) 118-126 Cox, L.B. and J.S.Y. Wang (1993): Fractal surfaces: measurement and applications in the earth Sciences. Fractals 1 1 (1993), pp. 87-115 Cox, A.J. and N.J. Higham (1999): Row-wise backward stable elimination methods for the equality constrained least squares problem, SIAM J. Matrix Anal. Appl. 21 (1999), 313-326 Cox, D., Little, J. and O’Shea, D. (1997): Ideals, Varieties, and Algorithms, An introduction to computational and commutative algebra, Springer-Verlag, New York 1997. Cox, D., Little, J. and O’Shea, D. (1998): Using algebraic geometry. Graduate Text in Mathematics 185, Springer-Verlag, New York 1998. Cox, D.A. (1998): Introduction to Grobner¨ bases, Proceedings of Symposia in Applied Mathematics 53 (1998) 1-24. Cox, D.B. Brading, J.D.W. (1999): Integration of LAMBDA ambiguity resolution with Kalman filter for relative navigation of spacecraft. In: Proceedings ION NTM 99, pp 739-745 Cox, D.R. and D.V. Hinkley (1979): Theoretical statistics, Chapman and Hall, Boca Raton 1979 Cox, D.R. and V. Isham (1980): Point processes, Chapman and Hall, Boca Raton (1980) References 913

Cox, D.R. and E.J. Snell (1989): Analysis of binary data, Chapman and Hall, Boca Raton 1989 Cox, D.R. and N. Wermuth (1996): Multivariate dependencies, Chapman and Hall, Boca Raton 1996 Cox, D.R. and N. Reid (2000): The theory of the design of experiments, Chapman & Hall, Boca Raton 2000 Cox, D.R. and P.J. Salomon (2003): Components of variance Chapman and Hall/CRC, Boca Raton London New York Washington DC Cox, R., Litte, J. and D. O’shea (1997) Ideals, variates and algorithms, an introduction Cox, T.F. and Cox, M.A. (1994): Multidimensional scaling, St. Edmundsbury Press, St. Edmunds, Suffolk 1994. Cox, T.F. and M.A.A. Cox (2001): Multidimensional scaling, Chapman and Hall, Boca Raton, Florida 2001; Chapman & Hall/CRC, Boca Raton London New York Washington D.C. 2003 Craig, H.V.: a) Bull. Amerie. Soc. 36, 558 (1930J, 37, 731 (1931), 39, 919 (1933); b) Americ. J. Math. 57, 457 (1935), 58, 833 (1936), 59, 764 (1937), 61, 791 (1939J. Craig, A.T. (1943): Note on the independence of certain quadratic forms, The Annals of Mathematical Statistics 14 (1943), 195-197 Cressie, N. (1991): Statistics for spatial data. Wiley, New York Croceto, N. (1993): Point projection of topographic surface onto the reference ellipsoid of revolution in geocentric Cartesian coordinates, Survey Review 32 (1993) 233-238. Cross, P.A. and K. Thapa (1979): The optimal design of levelling networks. Surv. Rev. 25, 68-79. Cross, P.A. (1985): The optimal design of levelling networks, Survey Review 25 (1979) 68-79 Cross, P.A. (1985): Numerical methods in network design, in: Grafarend, E.W. and F. Sanso (eds.), Optimization and design of geodetic networks, Springer-Verlag, Heidelberg Berlin New York 1985, 429-435 Crosilla, F. (1983a): A criterion matrix for a second order design of control networks, Bull. Geod. 57 (1983a) 226-239. Crosilla, F. (1983b): Procrustean transformation as a tool for the construction of a criterion Matrix for control networks, Manuscripta Geodetica 8 (1983b) 343-370. Crosilla, F. and A. Beinat, (2005): A forward scarth method for robust general procrustes analysis, Udine/Italy 2005 Crowder, M. (1987): On linear and quadratic estimating function, Biometrika 74 (1987), 591-597 Crowder, M.J. and D.J. Hand (1990): Analysis of repeated measures, Chapman and Hall, Boca Raton 1990 Crowder, M.J., Kimber, A., Sweeting, T., and R. Smith (1993): Statistical analysis of reliability data, Chapman and Hall, Boca Raton 1993 Crowder, J.M., Sweeting, T. and R. Smith (1994): Statistical analysis of reliability data, Chapman and Hall, Boca Raton 1994 Csorg¨ o,¨ M. and L. Horvath (1993): Weighted approximations in probability and statistics, J. Wiley, New York 1993 Csorg¨ o,¨ S. and L. Viharos (1997): Asymptotic normality of least-squares estimators of tail indices, Bernoulli 3 (1997), 351-370 Csorg¨ o,¨ S. and J. Mielniczuk (1999): Random-design regression under long-range dependent errors, Bernoulli 5 (1999), 209-224 Cummins, D. and A.C. Webster (1995): Iteratively reweighted partial least-squares: a performance analysis by Monte Carlo simulation, J. Chemometrics 9 (1995), 489-507 Cunningham, E. (1910): The principle of relativity in electrodynamics and an extension thereof, Proc. London Math. Soc. 8 (1910), 77-98 Cz¨uber, E. (1891): Theorie der Beobachtungsfehler, Leipzig 1891 D’Agostino, R. and M.A. Stephens (1986): Goddness-of-fit techniques, Marcel Dekker, New York 1986 Daalen, D. van (1986): The Astrometry Satellite Hipparcos. Proc. I. Hotine-Marussi Symp. Math. Geodesy, Rome 1985, Milano 1986, 259-284. 914 References

Dach, R. (2000): Einfluß von Auflasteffekten auf Prazise¨ GPS-Messungen, DGK, Reihe C, Heft Nr. 519. Dai, L., Nagarajan, N., Hu, G. and Ling, K. (2005): Real-time attitude determination for micro satellites by LAMBDA method combined with Kalman filtering. In: AIAA proceedings 22nd ICSSC, Monterey Daniel, J.W. (1967): The conjugate gradient method for linear and nonlinear operator equations, SIAM J. Numer. Anal. 4 (1967), 10-26 Dantzig, G.B. (1940): On the nonexistence of tests of Student’s hypothesis having power functions independent of 2, Ann. Math. Statist. 11 (1949), 186-192 Das, I. (1996): Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM J. Optim. 3 (1998), 631ff. Das, R. and B.K. Sinha (1987): Robust optimum invariant unbiased tests for variance components. In Proc. of the Second International Tampere Conference in Statistics. T. Pukkila and S. Puntanen (eds.), University of Tampere/Finland (1987), 317-342 Das Gupta, S., Mitra, S.K., Rao, P.S., Ghosh, J.K., Mukhopadhyay, A.C. and Y.R. Sarma (1994): Selected papers of C.R. Rao, Vol. 1, J. Wiley, New York 1994 Das Gupta, S., Mitra, S.K., Rao, P.S., Ghosh, J.K., Mukhopadhyay, A.C. and Y.R. Sarma (1994): Selected papers of C.R. Rao, Vol. 2, J. Wiley, New York 1994 Davenport, J.H., Siret, Y. and Tournier, E. (1988): Computer algebra. Systems and algorithms for algebraic computation, Academic Press Ltd., St. Edmundsbury, London 1988. David, F.N. (1937): A note on unbiased limits for the correlation coefficient, Biometrika, 29, 157-160 David, F.N. (1938): Tables of the Ordinates and Probability Integral o/the Distribution of the Correlation Coefficient in Small Samples, London, Biometrika. David, F.N. (1953): A note on the evaluation of the multivariate normal integral, Biometrika, 40, 458-459 David, F.N. (1954): Tables of the ordinates and probability integral of the distribution of the correlation coefficient in small samples, Cambridge University Press, London 1954 David, F.N. and N.L. Johnson (1948): The probability integral transformation when parameters are estimated from the sample, Biometrika 35 (1948), 182-190 David, H.A. (1957): Some notes on the statistical papers of Friedrich Robert Helmert (1943-1917), Bull. Stat. Soc. NSW 19 (1957), 25-28 David, H.A. (1970): Order Statistics, J. Wiley, New York 1970 David, H.A., Hartley, H.O. and E.S. Pearson (1954): The distribution of the ratio in a single normal sample, of range to standard deviation, Biometrika 41 (1954), 482-293 Davidian, M. and A.R. Gallant (1993): The nonlinear mixed effects model with a smooth random effects density, Biometrika 80 (1993), 475-488 Davidian, M., and D.M. Giltinan (1995): Nonlinear models for repeated measurement data, Chapman and Hall, Boca Raton 1995 Davis, R.A. (1997): M-estimation for linear regression with infinite variance, Probability and Mathematical Statistics 17 (1997), 1-20 Davis, R.A. and W.T.M. Dunsmuir (1997): Least absolute deviation estimation for regression with ARMA errors, J. Theor. Prob. 10 (1997), 481-497 Davis, J.H. (2002): Foundations of deterministic and stochastic control, Birkhauser-Verlag,¨ Basel Boston Berlin 2002 Davison, A.C. and D.V. Hinkley (1997): Bootstrap methods and their application, Cambridge University Press, Cambridge 1997 Dawe, D.J. (1984): Matrix and finite element displacement analysis of structures, Clarendon Press, Oxford Decreusefond, L. and A.S. Ust¨¨ unel (1999): Stochastic analysis of the fractional Brownian motion, Potential Anal. 10 (1999), 177-214 Dedekind, R. (1901): Gauß in seiner Vorlesunguber ¨ die Methode der kleinsten Quadrate, Berlin 1901 References 915

Defant, A. and K. Floret (1993): Tensor norms and operator ideals, North Holland, Amsterdam 1993 Deitmar, A. (2002): A first course in harmonic analysis, Springer-Verlag, Heidelberg Berlin New York 2002 Demidenko, E. (2000): Is this the least squares estimate?, Biometrika 87 (2000), 437-452 Denham, M.C. (1997): Prediction intervals in partial least-squares, J. Chemometrics 11 (1997), 39-52 Denham, W. and S. Pines (1966): Sequential estimation when measurement function nonlinearity is comparable to measurement error, AIAA J4 (1966), 1071-1076 Denis, J.-B. and A. Pazman (1999): Bias of LS estimators in nonlinear regression models with constraints. Part II: Bi additive models, Applications of Mathematics 44 (1999), 375-403 Dermanis, A. (1977): Geodetic linear estimation techniques and the norm choice problem, Manuscripta geodetica 2 (1977), 15-97 Dermanis, A. (1978): Adjustment of geodetic observations in the presence of signals, International School of Anvanced Geodesy, Erice, Sicily, May-June 1978, Bollettino di Geodesia e Scienze Affini 38 (1979), 513-539 Dermanis, A. (1980): Adjustment of geodetic observations in the presence of signals. In: Proceedings of the international school of advanced geodesy. Bollettino di Geodesia e Scienze Affini. Vol. 38, pp. 419-445 Dermanis, A. (1998): Generalized inverses of nonlinear mappings and the nonlinear geodetic datum problem, Journal of Geodesy 72 (1998), 71-100 Dermanis, A. and E. Grafarend (1981): Estimability analysis of geodetic, astrometric and geodynamical quantities in Very Long Baseline Interferometry, Geophys. J. R. Astronom. Soc. 64 (1981), 31-56 Dermanis, A. and F. Sanso (1995): Nonlinear estimation problems for nonlinear models, manuscripta geodaetica 20 (1995), 110-122 Dermanis, A. and R. Rummel (2000): Data analysis methods in geodesy, Lecture Notes in Earth Sciences 95, Springer-Verlag, Heidelberg Berlin New York 2000 Dette, H. (1993): A note on E-optimal designs for weighted polynomial regression, Ann. Stat. 21 (1993), 767-771 Dette, H. (1997): Designing experiments with respect to ’standardized’ optimality criteria, J. R. Statist. Soc. B59 (1997), 97-110 Dette, H. (1997): E-optimal designs for regression models with quantitative factors - a reasonable choice?, The Canadian Journal of Statistics 25 (1997), 531-543 Dette, H. and W.J. Studden (1993): Geometry of E-optimality, Ann. Stat. 21 (1993), 416-433 Dette, H. and W.J. Studden (1997): The theory of canonical moments with applications in statistics, probability, and analysis, J. Wiley, New York 1997 Dette, H. and T.E. O’Brien (1999): Optimality criteria for regression models based on predicted variance, Biometrika 86 (1999), 93-106 Deutsch, F. (2001): Best approximation in inner product spaces, Springer-Verlag, Heidelberg Berlin New York 2001 Dewess, G. (1973): Zur Anwendung der Schatzmethode¨ MINQUE auf Probleme der Prozeß- Bilanzierung, Math. Operationsforschg. Statistik 4 (1973), 299-313 Dey, D. and Ghosh, S. and Mallick, B. (2000): Generalized linear models: A Bayesian perspective. Marcel Dekker, New York DiCiccio, T.J. and B. Efron (1996): Bootstrap confidence intervals, Statistical Science 11 (1996), 189-228 Diebolt, J. and J. Z¨uber (1999): Goodness-of-fit tests for nonlinear heteroscedastic regression models, Statistics & Probability Letters 42 (1999), 53-60 Dieck, T. (1987): Transformation groups, W de Gruyter, Berlin/New York 1987 Diggle, P.J., Liang, K.Y. and S.L. Zeger (1994): Analysis of longitudinal data, Clarendon Press, Oxford 1994 Diggle, P., Lophaven S. (2006): Bayesian geostatistical design. Scand. J. Stat. 33:53-64 916 References

Ding, C.G. (1999): An efficient algorithm for computing quantiles of the noncentral chi-squared distribution, Computational Statistics & Data Analysis 29 (1999), 253-259 Dixon, A.L. (1908): The elimination of three quantics in two independent variables, Proc. London Mathematical Society series 2 6 (1908) 468-478. Dixon, G.M. (1994): Division Algebras: , Quaternions, Complex Numbers and the Algebraic Design of Physics, Kluwer Aca. Publ., Dordrecht-Boston-London 1994 Dixon, W.J. (1951): Ratio involving extreme values, Ann. Math. Statistics 22 (1951), 68-78 Dobbie, M.J. and Henderson, B.L. and Stevens, D.L. Jr. (2008): Sparse sampling: spatial design for monitoring stream networks. Stat. Surv. 2: 113-153 Dobson, A.J. (1990): An introduction to generalized linear models, Chapman and Hall, Boca Raton 1990 Dobson, A.J. (2002): An introduction to generalized linear models, 2nd ed., Chapman/Hall/CRC, Boca Raton 2002 Dodge, Y. (1987): Statistical data analysis based on the L1-norm and related methods, Elsevier, Amsterdam 1987 Dodge, Y. (1997): LAD Regression for Detecting Outliers in Response and Explanatory Variables, J. Multivar. Anal. 61 (1997), 144-158 Dodge, Y. and D. Majumdar (1979): An algorithm for finding least square generalized inverses for classification models with arbitrary patterns, J. Statist. Comput. Simul. 9 (1979), 1-17 Dodge, Y. and J. Jureckovea` (1997): Adaptive choice of trimming proportion in trimmed least-squares estimation, Statistics & Probability Letters 33 (1997), 167-176 Donoho, D.L. and P.J. H¨uber (1983): The notion of breakdown point, Festschrift f¨ur Erich L. Lehmann, eds. P.J. Bickel, K.A. Doksum and J.L. Hodges, Wadsworth, Belmont, Calif. 157-184, 1983 Dorea, C.C.Y. (1997): L1-convergence of a class of algorithms for global optimization, Student 2 (1997) Dorrie, H. (1948): Kubische und biquadratische Gleichungen. Leibniz-Verlag, Miinchen Downs, T.D. and A.L. Gould (1967): Some relationships between the normal and von Mises distributions, Biometrika 54 (1967), 684-687 Draper, N.R. and R. Craig van Nostrand (1979): Ridge regression and James-Stein estimation: review and comments, Technometrics 21 (1979), 451-466 Draper, N.R. and J.A. John (1981): Influential observations and outliers in regression, Technometrics 23 (1981), 21-26 Draper, N.R. and F. Pukelsheim (1996): An overview of design of experiments, Statistical Papers 37 (1996), 1-32 Draper, N.R. and F. Pukelsheim (1998): Mixture models based on homogenous polynomials, J. Stat., Planning and Inference, 71 (1998), pp. 303-311 Draper, N.R. and F. Pukelsheim (2002): Generalized Ridge Analysis Under Linear Restrictions, With Particular Applications to Mixture Experiments Problems, Technometrics, 44, 250-259. Draper, N.R. and F. Pukelsheim (2003): Canonical reduction of second order fitted models subject to linear restrictions, Statistics and Probability Letters, 63 (2003), pp. 401-410 Drauschke, M., Forstner, W. and Brunn, A. (2009): Multidodging: Ein effizienter Algorithmus zur automatischen Verbesserung von digitalisierten Luftbildern. Seyfert, Eckhardt (Hg.): Publikationen der DGPF, Band 18: Zukunft mit Tradition. Jena 2009, S. 61-68. Drauschke, M. and Roscher, R. and Labe, T. and Forstner, W. (2009): Improving Image Segmen- tation using Multiple View Analysis. Object Extraction for 3D City Models, Road Databases and Traffic Monitoring - Concepts, Algorithms and Evaluatin (CMRT09). 2009, S. 211-216. Driscoll, M.F. (1999): An improved result relating quadratic forms and Chi-Square Distributions, The American Statistician 53 (1999), 273-275 Driscoll, M.F. and B. Krasnicka (1995): An accessible proof of Craig’s theorem in the general case, The American Statistician 49 (1995), 59-62 Droge, B. (1998): Minimax regret analysis of orthogonal series regression estimation: selection versus shrinkage, Biometrika 85 (1998), 631-643 References 917

Dryden, I.L. (1998): General registration and shape analysis. STAT 96/03. Stochastic Geometry: Likelihood and Computation, by W.S. Kendell, O. Barndoff-Nielsen and M.N.N. van Lieshout, Chapman and Hall/CRC Press, 333-364, Boca Raton 1998. Drygas, H. (1970): The coordinate-free approach to Gauss-Markov estimation. SpringerVerlag, Berlin-Heidelberg-New York, 1970. Drygas, H. (1972): The estimation of residual variance in regression analysis, Math. Operations Forsch. Atatist., 3 (1972), pp. 373-388 Drygas, H. (1975a): Weak and strong consistency of the least squares estimators in regression models. Z. Wahrscheinlichkeitstheor. Verw. Geb. 34 (1975), 119-127. Drygas, H. (1975b): Estimation and prediction for linear models in general spaces, Math. Operationsforsch. Statistik 6 (1975), 301-324 Drygas, H. (1977): Best quadratic unbiased estimation in variance-covariance component models, Math. Operationsforsch. Statistik, 8 (1977), pp. 211-231 Drygas, H. (1983): Sufficiency and completeness in the general Gauss-Markov model, Sankhya Ser. A45 (1983), 88-98 Duan, J.C. (1997): Augmented GARCH (p,q) process and its diffusion limit, J. Econometrics 79 (1997), 97-127 Duda, R.O., Hart, P.E. and Stork, D.G. (2000): Pattern classification, 2ed., Wiley, New York, 2000 Duncan, W.J. (1944): Some devices for the solution of large sets of simultaneous linear equations, London, Edinburgh and Dublin Philosophical Magazine and Journal of Science (7th series) 35 (1944), 660-670 Dunfour, J.M. (1986): Bias of s2 in linear regression with dependent errors, The American Statistician 40 (1986), 284-285 Dunnett, C.W. and M. Sobel (1954): A bivariate generalization of Student’s t-distribution, with tables for certain special cases, Biometrika 41 (1954), 153-69 Dupuis, D.J., Hamilton, D.C. (2000): Regression residuals and test statistics: Assessing naive outlier deletion. Can. J. Stat. 28, 2 (2000), 259-275 Durand, D. and J.A. Greenwood (1957): Random unit vectors II : usefulness of Gram-Charlier and related series in approximating distributions, Ann. Math. Statist. 28 (1957), 978-986 Durbin, J. and G.S. Watson (1950): Testing for serial correlation in least squares regression, Biometrika 37 (1950), 409-428 Durbin, J. and G.S. Watson (1951): Testing for serial correlation in least squares regression II, Biometrika 38 (1951), 159-177 Dvorak, G. and Benveniste, Y. (1992): On transformation strains and uniform fields in multiphase elastic media, Proc. R. Soc. Lond., A437, 291-310 Ecker, E. (1977): Ausgleichung nach der Methode der kleinsten Quadrate, Ost.¨ Z. Vermessungswesen 64 (1977), 41-53 Eckert, M (1935): Eine neue achentrene¨ (azimutale) Erdkarte, Petermann’s Mitteilungen 81 (1935), 190-192 Eckhart, C. and G. Young (1939): A principal axis transformation for non-Hermitean matrices, Bull. Amer. Math. Soc. 45 (1939), 188-121 Eckl, M.C., Snay, R.A., Solder, T., Cline, M.W. and G.L. Mader (2001): Accuracy of GPS-derived positions as a function of interstation distance and observing-session duration, Journal of Geodesy 75 (2001), 633-640 Edelman, A. (1989): Eigenvalues and condition numbers of random matrices, PhD dissertation, Massachussetts Institute of Technology 1989 Edelman, A. (1998): The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl. 20 (1998), 303-353 Edelman,A.,Elmroth,E.andB.Kagstrom¨ (1997): A geometric approach to of matrices and matrix pencils. Part I: Versal deformations, SIAM J. Matrix Anal. Appl. 18 (1997), 653-692 Edelman, A., Arias, T.A. and Smith, S.T. (1998): The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl. 20 (1998), 303-353 918 References

Edgar, G.A. (1998): Integral, probability, and fractal measures, Springer-Verlag, Heidelberg Berlin New York 1998 Edgeworth, F.Y. (1883): The law of error, Philosophical Magazine 16 (1883), 300-309 Eeg, J. and T. Krarup (1973): Integrated geodesy, Danish Geodetic Institute, Report No. 7, Copenhagen 1973 Effros, E.G. (1997): Dimensions and C* algebras, Regional Conference Series in Mathematics 46, Rhode Island 1997 Efron, B. and R.J. Tibshirani (1994): An introduction to the bootstrap, Chapman and Hall, Boca Raton 1994 Eibassiouni, M.Y. and J. Seely (1980): Optimal tests for certain functions of the parameters in a covariance matrix with linear structure, Sankya 42 (1980), 64-77 Eichhorn, A. (2005): Ein Beitrag zur parametrischen Identifikation von dynamischen Strukturmodellen mit Methoden der adaptiven Kalman Filterung, Deutsche Geodatische¨ Kommission, Bayerische Akademic der Wissenschaften, Reihe C 585, M¨unchen 2005 Einstein, A. (1905): Ueber die von der molekularkinetische Theorie der Waerme geforderte Berechnung von in Fluessigkeiten suspendierten Teilchen, Ann. Phys. 17 (1905) 549-560 Ekblom, S. and S. Henriksson (1969): Lp-criteria for the estimation of location parameters, SIAM J. Appl. Math. 17 (1969), 1130-1141 Elden, L. (1977): Algorithms for the regularization of ill-conditioned least squares problems, 17 (1977), 134-145 Elhay, S., Golub, G.H. and J. Kautsky (1991): Updating and downdating of orthogonal polynomials with data fitting applications, SIAM J. Matrix Anal. Appl. 12 (1991), 327-353 Elian, S.N. (2000): Simple forms of the best linear unbiased predictor in the general linear regression model, American Statistician 54 (2000), 25-28 Ellis, R.L. and I. Gohberg (2003): Orthogonal systems and convolution operators, Birkhauser-¨ Verlag, Basel Boston Berlin 2003 Ellis, S.P. (1998): Instability of least squares, least absolute correlation and least median of squared linear regression, Stst. Sci., 13 (1998), pp. 337-350 Ellis, S.P. (2000): Singularity and outliers in linear regression with application to least squares, least absolute deviation, and least median of squares linear regression. Metron 58, 1-2 (2000), 121-129. Ellenberg, J.H. (1973): The joint distribution of the standardized least squares residuals from a general linear regression, J. Am. Statist. Ass. 68 (1973), 941-943 Elpelt, B. (1989): On linear statistical models of commutative quadratic type, Commun. Statist.-Theory Method 18 (1989), 3407-3450 El-Basssiouni, M.Y. and Seely, J. (1980): Optimal tests for certain functions of the parameters in a covariance matrix with linear structure, Sankya A42 (1980), 64-77 Elfving, G. (1952): Optimum allocation in linear regression theory, Ann. Math. Stat. 23 (1952), 255-263 El-Sayed, S.M. (1996): The sampling distribution of ridge parameter estimator, Egyptian Statistical Journal, ISSR - Cairo University 40 (1996), 211-219 Embree, P.J., Burg, P. and Backus, M.M. (1963): Wide band velocity filtering - the pie slid process, Geophysics 28 (1963), 948-974 Engeln-Mullges, G. and Reutter, F. (1990): Formelsammlung zur numerischen Mathematik mit C-Programmen. Bibliographisches Institut Mannheim & F. A. Brockhaus AG Engl, H.W., Hanke, M. and A. Neubauer (1996): Regularization of inverse problems, Kluwer Academic Publishers, Dordrecht 1996 Engl, H.W., A.K. Louis, and W. Rundell (1997): Inverse problems in geophysical applications, SIAM, Philadelphia 1997 Engler, K., Grafarend, E.W., Teunissen, P. and J. Zaiser (1982): Test computations of three- dimensional geodetic networks with observables in geometry and gravity space, Proceedings of the International Symposium on Geodetic Networks and Computations. Vol. VII, 119-141 Report B258/VII. Deutsche Geodatische¨ Kommission, Bayerische Akademie der Wissenschaften, M¨unchen 1982. References 919

Eringen, A.C. (1962): Non linear theory of continuous media, McGraw Hill Book Comp., New York Ernst, M.D. (1998): A multivariate generalized Laplace distribution, Computational Statistics 13 (1998), 227-232 Eshagh, M. and Sjoberg¨ (2008): The modified best quadratic unbiased non-negative estimator (MBQUNE) of variance components. Stud. Geophysics Geod. 52 (2008) 305-320 Ethro, U. (1991): Statistical Test of Significance for Testing Outlying Observations. Survey Review. 31:62-70. Euler, N. and W.H. Steeb (1992): Continuous symmetry, Lie algebras and differential equations, B.I. Wissenschaftsverlag, Mannheim 1992 Even Tzur, G. (2004): Variance Factor Estimation for Two-Step Analysis of Deformation Net- works. Journal of surveying engineering. Journal of Surveying Engineering, 130(3): 113-118. Even Tzur, G. (2006): Datuln Definition and its Influence on the Reliability of Geodetic Networks. ZN, 131: 87-95. Even Tzur, G. (2009): Two-Steps Analysis of Movement of the Kfar-Hanassi Network. FIG Working week 2009, Eilat, Israel. Everitt, B.S. (1987): Introduction to optimization methods and their application in statistics, Chapman and Hall, London 1987 Fahrmeir, L. and G. Tutz (2001): Multivariate statistical modelling based on generalized linear models, Springer-Verlag, Heidelberg Berlin New York 2001 Fakeev, A.G. (1981): A class of iterative processes for solving degenerate systems of linear algebraic equations, USSR. Comp. Maths. Math. Phys. 21 (1981), 15-22 Falk, M., H¨usler, J. and R.D. Reiss (1994): Law of small numbers, extremes and rare events, Birkhauser-Verlag,¨ Basel Boston Berlin 1994 Fan, J. and I. Gijbels (1996): Local polynomial modelling and its applications, Chapman and Hall, Boca Raton 1996 Fang, K.-T. and Y. Wang (1993): Number-theoretic methods in statistics, Chapman and Hall, Boca Raton 1993 Fang, K.-T. and Y.-T. Zhang (1990): Generalized multivariate analysis, Science Press Beijing, Springer Verlag, Bejing, Berlin New York 1990 Fang, K.-T., Kotz, S. and K.W. Ng (1990): Symmetric multivariate and related distributions, Chapman and Hall, London 1990 Farahmand, K. (1996): Random polynomials with complex coefficients, Statistics & Probability Letters 27 (1996), 347-355 Farahmand, K. (1999): On random algebraic polynomials, Proceedings of the American Math. Soc. 127 (1999), 3339-3344 Faraway, J. (2006). Extending the linear model with R. Chapman and Hall, CRE. Farebrother, R.W. (1988): Linear least squares computations, Dekker, New York 1988 Farebrother, R.W. (1999): Fitting linear relationships, Springer-Verlag, Heidelberg Berlin New York 1999 Farrel, R.H. (1964): Estimators of a location parameter in the absolutely continuous case, Ann. Math. Statist. 35 (1964), 949-998 Fasseo,´ A. (1997): On a rank test for autoregressive conditional heteroscedasticity, Student 2 (1997), 85-94 Faulkenberry, G.D. (1973): A method of obtaining prediction intervals, J. Am. Statist. Ass. 68 (1973), 433-435 Fausett, D.W. and C.T. Fulton (1994): Large least squares problems involving Kronecker products, SIAM J. Matrix Anal. Appl. 15 (1994), 219-227 Fazekas, I. and Kukush, A. S. Zwanzig (2004): Correction of nonlinear orthogonal regression estimator. Ukr. Math. J. 56, 1101-1118 Fedorov, V.V. (1972): Theory of Optimal Experiments. Academic Press Fedorov, V.V. and Hackl, P. (1994): Optimal experimental design: spatial sampling. Calcutta Stat Assoc Bull 44:173-194 920 References

Federov, V. V. and Muller, ¨ W.G. (1988): Two approaches in optimization of observing networks, in Optimal Design and Analysis of Experiments, Y. Dodge, V.V. Federov & H.P. Wynn, eds, North-Holland, Amsterdam, pp. 239-256 Fedorov, V.V. and Flagnagan, D. (1997): Optimal monitoring on Merer‘s expansion of covariance , J. Comb. Inf. Syst. Sci. 23(1997) 237-250 Fedorov, V.V. and P. Hackl (1997): Model-oriented design of experiments, Springer-Verlag, Heidelberg Berlin New York 1997 Fedorov, V.V., Montepiedra, G. and C.J. Nachtsheim (1999): Design of experiments for locally weighted regression, J. Statist. Planning and Inference 81 (1999), 363-382 Fedorov, V.V. and M¨uller, W.C. (2007): Optimum desighn of correlated fields via covariance kernel expansion, in: Lopez Fidalgo, Rodriguez, J. and Forney, B. (eds) Physica Verlag Heidelberg Feinstein, A.R. (1996): Multivariate analysis, Yale University Press, New Haven 1996 Feldmann, R.V. (1962): Matrix theory I: Arthur Cayley - founder of matrix theory, Mathematics teacher, 57, (1962), pp. 482-484 Felus, Y.A. and R.C. Burtch (2005): A new procrustes algorithm for three dimensional datum conversion, Ferris State University 2005 Fengler, M., Freeden, W. and V. Michel (2003): The Kaiserslautern multiscale geopotential model SWITCH-03 from orbit pertubations of the satellite CHAMP and its comparison to the models EGM96, UCPH2002-02-0.5, EIGEN-1s, and EIGEN-2, Geophysical Journal International (submitted) 2003 Fenyo, S. and H.W. Stolle (1984): Theorie und Praxis der linearen Integralgleichungen 4. Berlin Feuerverger, A. and P. Hall (1998): On statistical inference based on record values, Extremes 1:2 (1998), 169-190 Fiebig, D.G., Bartels, R. and W.Kramer¨ (1996): The Frisch-Waugh theorem and generalized least squares, Econometric Reviews 15 (1996), 431-443 Fierro, R.D. (1996): Pertubation analysis for twp-sided (or complete) orthogonal decompositions, SIAM J. Matrix Anal. Appl. 17 (1996), 383-400 Fierro, R.D. and J.R. Bunch (1995): Bounding the subspaces from rank revealing two-sided orthogonal decompositions, SIAM J. Matrix Anal. Appl. 16 (1995), 743-759 Fierro, R.D. and P.C. Hansen (1995): Accuracy of TSVD solutions computed from rank-revealing decompositions, Numer. Math. 70 (1995), 453-471 Fierro, R.D. and P.C. Hansen (1997): Low-rank revealing UTV decompositions, Numer. Algorithms 15 (1997), 37-55 Fill, J.A. and D.E. Fishkind (1999): The Moore-Penrose generalized inverse for sums of matrices, SIAM J. Matrix Anal. Appl. 21 (1999), 629-635 Finsterwalder, S. and Scheufele, W. (1937): Das R¨uckwartseinschneiden im Raum, Sebastian Finsterwalder zum 75 Geburtstage, pp. 86-100, Verlag Hebert Wichmann, Berlin 1937. Fischer, F.A. (1969): Einfuhrung in die Statische Ubertragungstheorie,¨ Bib. Institute, Maurheim, Zurigh 1969 Fischler, M.A. and Bolles, R.C. (1981): Random Sample Consensus: A Paradigm for Medell Fitting with Application to Image Analysis and Automated Cartography, Communications of the ACM 24 (1981) 381-395 Fiserova, E. (2004): Estimation in universal models with restrictions. Discuss. Math., Probab. Stat. 24, 2 (2004), 233-253. Fiserova, E. (2006): Testing hypotheses in universal models. Discuss. Math., Probab. Stat. 26 (2006), 127-149 Fiserova, E. and Kubacek, L. (2003) Sensitivity analysis in singular mixed linear models with constraints. Kybernetika 39, 3 (2003), 317-332 Fiserova, E. and Kubacek, L. (2004): Statistical problems of measurement in triangle. Folia Fac. Sci. Nat. Univ. Masarykianae Brunensis, Math. 15 (2004), 77-94 Fiserova, E. and Kubacek, L. (2003): Insensitivity regions and outliers in mixed models with constraints. Austrian Journal of Statistic 35, 2-3 (2003), 245-252 Fisher, N.I. (1993): Statistical Analysis of Circular Data, Cambridge University Press, Cambridge 1993 References 921

Fisher, N.I. and Hall, P. (1989): Bootstrap confidence regions for directional data, J. Am. Statist. Ass. 84 (1989), 996-1002 Fisher, N.J. (1985): Spherical medians, J. Roy. Statist. Soc. B47 (1985), 342-348 Fisher, N.J. and A.J. Lee (1983): A correlation coefficient for circular data, Biometrika 70 (1983), 327-332 Fisher, N.J. and A.J. Lee (1986): Correlation coefficients for random variables on a sphere or hypersphere, Biometrika 73 (1986), 159-164 Fisher, R.A. (1915): Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population, Biometrika 10 (1915), 507-521 Fisher, R.A. (1935): The fiducial argument in statistical inference, Annals of Eugenics 6 (1935), 391-398 Fisher, R.A. (1939): The sampling distribution of some statistics obtained from nonlinear equations, Ann. Eugen. 9 (1939), 238-249 Fisher, R.A. (1953): Dispersion on a sphere, Pro. Roy. Soc. Lond. A217 (1953), 295-305 Fisher, R.A. (1956): Statistical Methods and Scientific Inference, Edinburg: Oliver and Boyd, 1956 Fisher, R.A. and F. Yates (1942): Statistical tables for biological, agricultural and medical research, 2nd edition, Oliver and Boyd, Edinburgh 1942 Fisz, M. (1971): Wahrscheinlichkeitsrechnung und mathematische Statistik, Berlin (Ost) 1971 Fitzgerald, W.J., Smith, R.L., Walden, A.T. and P.C. Young (2001): Non-linear and nonstationary signal processing, Cambridge University Press, Cambridge 2001 Fitzgibbon, A., Pilu, M. and Fisher, R.B. (1999): Direct least squares fitting of ellipses, IEEE Transactions on Pattern Analysis and Machine Intelligence 21 (1999) 476-480. Fletcher, R. and C.M. Reeves (1964): Function minimization by conjugate gradients, Comput. J. 7 (1964) 149-154 Fletcher, R. (1987): Practical Methods of Optimization. Second Edition, John Wiley & Sons, Chicester. Fletling, R. (2007): Fuzzy clusterung zur Analyse von Uberwachungsmessungen,¨ in: F.K. Brunner (ed.) Ingenienr vermessung, pp. 311-316, Wichmann Verlag, Heidelberg 2007 Flury, B. (1997): A first course in multivariate statistics, Springer-Verlag, Heidelberg Berlin New York 1997 Focke, J. and G. Dewess (1972): Uber¨ die Schatzmethode¨ MINQUE von C.R. Rao und ihre Verallgemeinerung, Math. Operationsforschg. Statistik 3 (1972), 129-143 Forstner,¨ W. (1976): Statistical Test Methods for Blunder Detection in Planimetric Block Triangulation. Presented paper to Comm. III, ISP Helsinki 1976 Forstner,¨ W. (1978a): PrOfung auf grobe Bildkoordinatenfehler bei der relativen Orientierung? BuL, 1978, 205-212 Forstner,¨ W. (1978b): Die Suche nach groben Fehlern in photogrammetrischen Lageblocken, Dissertation der Universitat Stuttgart . Forstner,¨ W. (1979a): Ein Verfahren zur Schatzung von Varianz- und Kovarianzkomponenten, Ally. Vermess. Nachrichten 86 (1979), pp. 446-453 Forstner,¨ W. (1979b): On Internal and External Reliability of Photogrammetric Coordinates. Proceedings of the Annual Convention of the ASP-ACSM, Washington 1979 Forstner,¨ W. (1979c): Konvergenzbeschleunigung bei der a posteriori Varianzschatzung,¨ Zeitschrift f¨ur Vermessungswesen 104 (1979), 149-156 Forstner,¨ W. (1979d): Ein Verfahren zur Schatzung¨ von Varianz- und Kovarianz-Komponenten, Allgemeine Vermessungsnachrichten 86 (1979), 446-453 Forstner,¨ W. (1980a): The Theoretical Reliability of Photogrammetric Coordinates. Archives of the ISPRS. XIV Congress of the Int. Society for Photogrammetry Comm. 111, Hamburg, 1980 Forstner,¨ W. (1980b): Zur PrOfung zusatzlicher Parameter in Ausgleichungen. ZN, 1980, 105, 510-519 Forstner,¨ W. (1983): Reliability and Discernability of Extended Gauss-Markov Models. Ackermann, F. (ed.) Deutsche Geodatische¨ Kommission, A98, 1983, 79-103 922 References

Forstner,¨ W. (1985): Determination of the Additive Noise Variance in Observed Autoregressive Processes using Variance Component Estimation Technique. Statistics and Decision, Supplement Issue No. 2. M¨unchen 1985, S. 263-274. Forstner,¨ W. (1987): Reliability Analysis of Parameter Estimation in Linear Models with Applications to Mensuration Problems in Computer Vision. CVGIP - Computer Vision, Graphics, and Image Processing. 1987, S. 273-310. Forstner,¨ W. (1990): Modelle intelligenter Bildsensoren und ihre Qualitat.Grol1Kopf,R.E.(ed.)¨ Springer, 1990, 254, 1-21 Forstner,¨ W. (1993a): Image Matching. In: Haralick, R.M. I Shapiro, L.G. (Hg.): Computer and -RObot Vision. Addison-Wesley, S. 289-379 Forstner,¨ W. (1993c): Uncertain Spatial Relationships and their Use for Object location in Digital/mages. Forstner, W.; Haralick, R.M. Radig, B. (ed.)lnstitut f¨ur Photogrammetrie, Universitat Bonn, 1992 (Buchbeitrag) Forstner,¨ W. (1994a): Diagnostics and Performance Evaluation in Computer Vision. Performance versus Methodology in Computer Vision, NSF/ARPA Workshop. Seattle 1994, S. 11-25. Forstner,¨ W. (1994b): Generic Estimation Procedures for Orientation with Minimum and Redundant Information Technical Report. Institute for Photogrammetry, University Bonn. Forstner,¨ W. (1995a): A 2D-data Model for Representing Buildings. Technical Report, Institut f¨ur Photogrammetrie, Universitat Bonn Forstner,¨ W. (1995b): The Role of Robustness in Computer Vision. Proc. Workshop “Milestones in CCfmi5uier Vision”. Vorau 1995. Forstner,¨ W. (1997a):Evaluation of Restoration Filters. Technical Report, Institut f¨ur Photogrammetrie, Universitat Bonn Forstner,¨ W. (1997b): Parameter free information Preserving filter and Noise Variance Equalization, Technical Report, Institut f¨ur Photogrammetrie, Universitat Bonn Forstner,¨ W. (1998): On the Theoretical Accuracy of Multi Image Matching, Restoration and Triangulation. Festschrift zum 65. Geburtstag von Prof. Dr.-Ing. mult. G. Konecny. Institut f¨ur Photogrammetrie, Universitat Hannover 1998 Forstner,¨ W. (1999a): On Estimating Rotations. Heipke, C. / Mayer, H. (Hg.): Festschrift f¨ur Prof. Dr.-Ing. Heinrich Ebner zum 60. Geburtstag. Lehrstuhl f¨ur Photogrammetrie und Fernerkundung, TU M¨unchen 1999. Forstner,¨ W. (1999b): Uncertain Neighborhood Relations of Point Sets and Fuzzy Delaunay Triangulation. Proceedings of DAGM Symposium Mustererkennung. Bonn, Germany 1999. Forstner,¨ W. (1999c): Choosing Constraints for Points and Lines in Image Triplets 1999. Technical Report, Institut f¨ur Photogrammetrie, University Bonn. Forstner,¨ W. (1999d): Interior Orientation from Three Vanishing Points, Technical Report, Institut f¨ur Photogrammetrie, Universitat Bonn Forstner,¨ W. (1999e): Tensor-based Distance Transform. Technical Report, Institut f¨ur Photogrammetrie, Universitat Bonn. Forstner,¨ W. (2000): Optimally Reconstructing the Geometry of Image Triplets. Vernon, David (Hg.): Appeared in: Computer Vision - ECCV 2000. 2000, S. 669-684. Forstner,¨ W. (2001a): Algebraic Projective Geometry and Direct Optimal Estimation of Geometric Entities. Appeared at the Annual OeAGM 2001 Workshop. Forstner,¨ W. (2001b): Direct optimal estimation of geometric entities using algebraic projective geometry. Festschrift anlasslich des 60. Geburtstages von Prof. Dr.-Ing. Bernhard Wrobel. Technische Universitat Darmstadt 2001, S. 69-87. Forstner,¨ W. (2002): Computer Vision and Photogrammetry – Mutual Questions: Geometry, Statistics and Cognition. Bildteknik/lmage Science, Swedish Society for Photogrammetry and Remote Sensing. 2002, S. 151-164. Forstner,¨ W. (2003): Notions of Scale in Geosciences. Neugebauer, Horst J. I Simmer, Clemens (Hg.): Dynamics of Multi-Scale Earth Systems. 2003, S. 17-39. Forstner,¨ W. (2005): Uncertainty and Projective Geometry. Bayro Corrochano, Eduardo (Hg.): Handbook of Geometric Computing. 2005, S. 493-535. References 923

Forstner,¨ W. (2009): Computer Vision and Remote Sensing - Lessons Learned. Fritsch, Dieter (Hg.): Photogrammetric Week 2009. Heidelberg 2009, S. 241-249. Forstner,¨ W. and Schroth, R. (1981): On the estimation of covariance matrices for photogrammetric image coordinates. VI: Adjustment procedures of geodetic networks, 43-70. Forstner,¨ W. and Wrobel, B. (1986): Digitale Photogrammetrie, Springer (Buch) Forstner,¨ W. and Gulch, E. (1987): A Fast Operator for Detection and Precise Location of Distinct Points, Corners and Centres of Circular Features. Proceedings of the ISPRS Intercommission Workshop, 1987. Jg. 1987. Forstner,¨ W. and Vosselmann, G. (1988): The Precision of a Digital Camera. ISPRS 16th Congress. Kyoto 1988, S. 148-157. Forstner,¨ W. and Braun, C. (1993): Direkte Schatzung von Richtungen und Rotationen. Institut f¨ur Photogrammetrie, Bonn Forstner,¨ W. and Shao, J. (1994): Gabor Wavelets for Texture Edge Extraction. ISPRS Commission III Symposium on Spatial Information from Digital Photogrammetry and Computer Vision. Munich, Germany Forstner,¨ W. and Brugelmann, R. (1994): ENOVA - Estimation of Signal Dependent Noise Variance. 3rd ECCV, Stockholm Forstner,¨ W. and Moonen, B. (1999): A Metric for Covariance Matrices. Krumm, F. Schwarze, V.S.(Hg.):Quovadisgeodesia...?,FestschriftforErikW.Grafarendontheoccasion of his 60th birthday. TR Dept. of Geodesy and Geoinformatics, Stuttgart University 1999. Forstner,¨ W. and B. Moonen (2003): A metric for covariance matrices, in: E. Grafarend, F. Krumm and V. Schwarze: Geodesy - the Challenge of the 3rd Millenium, 299-309, Springer-Verlag, Heidelberg Berlin New York 2003 Forstner,¨ W. and Dickscheid, T. and Schindler, F. (2009): Detecting Interpretable and Accurate Scale-Invariant Keypoint. 12th IEEE International Conference on Computer Vision (ICCV’09). Kyoto, Japan 2009, S. 2256-2263. Forsgren, A. and W. Murray (1997): Newton methods for large-scale linear inequality-constrained minimization, Siam J. Optim. to appear Forsythe, A.R. (1960): Calculus of Variations. New York Forsythe, A.B. (1972): Robust estimation of straight line regression coefficients by minimizing p-th power deviations, Technometrics 14 (1972), 159-166 Foster, L.V. (2003): Solving rank-deficient and ill-posed problems using UTV and QR factorizations, SIAM J. Matrix Anal. Appl. 25 (2003), 582-600 Fotiou, A. and D. Rossikopoulos (1993): Adjustment, variance component estimation and testing with the affine and similarity transformations, Zeitschrift f¨ur Vermessungswesen 118 (1993), 494-503 Fotiou, A.(1998): A pair of closed expressions to transform geocentric to geodetic coordinates, Zeitschrift f¨ur Vermessungswesen 123 (1998) 133-135. Fotopoulos, G. (2003): An Analysis on the Optimal Combination of Geoid, Orthometric and Ellipsoidal Height Data. Report No. 20185, Department of Geomatics Engineering, University of Calgary, Calgary, Canada. Fotopoulos, G., (2005): Calibration of geoid error models via a combined adjustment of ellipsoidal, orthometric and gravimetrical geoid height data. 1. Geodesy, 79, 111-123. Forstner, W., (1979): Ein Verfahren zur Achatzung von varianz und kovarianzkomponenten. Allgemeine Vermessungs-Nachrichten, 86, 446-453. Foucart, T. (1999): Stability of the inverse correlation matrix. Partial ridge regression, J. Statist. Planning and Inference 77 (1999), 141-154 Fox, A.J. (1972): Outliers in time series. J. Royal Stat. Soc., Series B, 43, (1972), 350-363 Fox, M. and H. Rubin (1964): Admissibility of quantile estimates of a single location parameter, Ann. Math. Statist. 35 (1964), 1019-1031 Franses, P.H. (1998): Time series models for business and economic forecasting, Cambridge University Press, Cambridge 1998 Fraser, D.A.S. (1963): On sufficiency and the exponential family, J. Roy. Statist. Soc. 25 (1963), 115-123 924 References

Fraser, D.A.S. (1968): The structure of inference, J. Wiley, New York 1968 Fraser, D.A.S. and I. Guttman (1963): Tolerance regions, Ann. Math. Statist. 27 (1957), 162-179 Freeman, R.A. and P.V. Kokotovic (1996): Robust nonlinear control design, Birkhauser-Verlag,¨ Basel Boston Berlin 1996 Freund, P.G.O. (1974): Local scale invariance and gravitation, Annals of Physics 84 (1974), 440-454 Frey, M. and J.C. Kern (1997): The Pitman Closeness of a Class of Scaled Estimators, The American Statistician, May 1997, Vol. 51 (1997), 151-154 Frisch, U. (1995): Turbulence, the legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge 1995 Fristedt, B. and L. Gray (1995): A modern approach to probability theory, Birkhauser-Verlag,¨ Basel Boston Berlin 1997 Frobenius, F.G. (1893): Gedachtnisrede¨ auf Leopold Kronecker (1893), Ferdinand Georg Frobenius, Gesammelte Abhandlungen, ed. J.S. Serre, Band III, 705-724, Springer-Verlag, Heidelberg Berlin New York 1968 Frobenius, G. (1908): Uber¨ Matrizen aus positiven Elementen, Sitzungsberichte der Koniglich¨ Preussischen Akademie der Wissenschaften von Berlin, 471-476, Berlin 1908 Frohlich,¨ H. and Hansen, H.H. (1976): Zur Lotfußpunktrechnung bei rotationsellipsoidischer Bezugsflache,¨ Allgemeine Vermessungs-Nachrichten 83 (1976) 175-179. Fuentes, M. (2002): lnterpolation of non stationary air pollution processes: a spatial spectral approach. In statistical Modeling, vol. 2, pp. 281-298. Fuentes, M. and Smith, R. (2001): A new class of non stationary models. In Tech. report at North Carolina State University, Institute of Statistics Fuentes, M., Chaudhuri, A. and Holland, D.M. (2007): Bayesian entropy for spatial sampling design of environmental data. J. Environ. Ecol. Stat. 14:323-340 Fujikoshi, Y. (1980): Asymptotic expansions for the distributions of sample roots under non-normality, Biometrika 67 (1980), 45-51 Fukushima, T. (1999): Fast transform from geocentric to geodetic coordinates, Journal of Geodesy 73 (1999) 603-610. Fuller, W.A. (1987): Measurement error models, Wiley, New York 1987 Fulton, T., Rohrlich, F. and L. Witten (1962): Conformal invariance in physics, Reviews of Modern Physics 34 (1962), 442-457 Furno, M. (1997): A robust heteroskedasticity consistent covariance matrix estimator, Statistics 30 (1997), 201-219 Galil, Z. (1985): Computing d-optimum weighing designs: Where statistics, , and computation meet, in: Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. II, eds. L.M. LeCam and R.A. Olshen, Wadsworth 1985 Gallant, A.R. (1987): Nonlinear statistical models, J. Wiley, New York 1987 Gallavotti, G. (1999): Statistical mechanics: A short treatise, Springer-Verlag, Heidelberg Berlin New York 1999 Gander, W. (1981): Least squares with a quadratic constraint, Numer. Math. 36 (1981), 291-307 Gander, W., Golub, G.H. and Strebel, R. (1994): Least-Squares fitting of circles and ellipses, BIT No. 43 (1994) 558-578. Gandin, L.S. (1963): Objective analysis of meteorological fields. Gidrometeorologicheskoe Izdatel’stvo (GIMIZ), Leningrad Gao, X.S. and Chou, S.C. (1990): Implicitization of rational parametric equations. Technical report, Department of Computer Science TR-90-34, University of Texas, Austin 1990. Gao, S. and T.M.F. Smith (1995): On the nonexistence of a global nonengative minimum bias invariant quadratic estimator of variance components, Statistics and Probability letters 25 (1995), 117-120 Gao, S. and T.M.F. Smith (1998): A constrained MINQU estimator of correlated response variance from unbalanced dara in complex surveys, Statistica Sinica 8 (1998), 1175-1188 References 925

Gao, Y., Lahaye, F., Heroux, P., Liao, X., Beck, N. and M. Olynik (2001): Modeling and estimation of C1-P1 bias in GPS receivers, Journal of Geodesy 74 (2001), 621-626 Garce``ıa-Escudero, L.A., Gordaliza, A. and C. Matrean` (1997): k-medians and trimmed k-medians, Student 2 (1997), 139-148 Garcia-Ligero, M.J., Hermoso, A. and J. Linares (1998): Least squared estimation for distributed parameter systems with uncertain observations: Part 1: Linear prediction and filtering, Applied Stochastic Models and Data Analysis 14 (1998), 11-18 Garderen K.J. van, (1999): Exact geometry of autoregressive models, Journal of Time Series Analysis 20 (1999), 1-21 Gaspari, G. and Cohn, S.E. (1999): Construction of correlation I in two and three dimensions, Q. 1. R. Meteorol. Soc., 757, 1999. Gastwirth, J.L. and H. Rubin (1975): The behaviour of robust estimators on dependent data, Ann. Stat., 3 (1975), pp. 1070-1100 Gatti, M. (2004): An empirical method of estimation of the variance-covariance matrix in GPS network design, Survey Review 37, (2004), pp. 531-541 Gauss, C.F. (1809): Theoria Motus, Corporum Coelesium, Lib. 2, Sec. III, Perthes u. Besser Publ., 205-224, Hamburg 1809 Gauss, C.F. (1816): Bestimmung der Genauigkeit der Beobachtungen, Z. Astronomi 1 (1816), 185-197 Gauss, C.F. (1923): Anwendung der Wahrscheinlichkeitsrechnung auf eine Aufgabe der praktischen Geometrie, Gauss Works IV: 1923 Gautschi, W. (1982): On generating orthogonal polynomials, SIAM Journal on Scientific and Statistical Computing 3 (1982), 289-317 Gautschi, W. (1985): Orthogonal polynomials - constructive theory and applications, J. Comput. Appl. Math. 12/13 (1985), 61-76 Gautschi, W. (1997): Numerical analysis - an introduction, Birkhauser-Verlag,¨ Basel Boston Berlin 1997 Gauss, C.F. (1809): Theoria motus corporum coelestium. Gattingen Geisser, S. (1975): The predictive sample reuse method with applications. J. Math. Statist. 28: 385-394 Gelb, A. (1974): Applied optimal estimation, Ed., MIT Press, Cambridge/Mass and London Gelfand, A.E. and D.K. Dey (1988): Improved estimation of the disturbance variance in a linear regression model, J. Econometrics 39 (1988), 387-395 Gelfand, I.M., Kapranov, M.M. and Zelevinsky, A.V. (1990): Generalized Euler Integrals and A-Hypergeometry Functions, Advances in Mathematics 84 (1990) 255-271. Gelfand, I.M., Kapranov, M.M. and Zelevinsky, A.V. (1994): Discriminants, resultants and multidimensional determinants, Birkhauser,¨ Boston 1994. Gelderen, M. van and R. Rummel (2001): The solution of the general geodetic boundary value problem by least squares, Journal of Geodesy 75 (2001), 1-11 Gelman, A., Carlin, J.B., Stern, H.S. and D.B. Rubin (1995): Bayesian data analysis, Chapman and Hall, London 1995 Genton, M.G. (1998): Asymptotic variance of M-estimators for dependent Gaussian random variables, Statistics and Probability Lett. 38 (1998), 255-261 Genton, M.G. and Y. Ma (1999): Robustness properties of dispersion estimators, Statistics & Probability Letters 44 (1999), 343-350 Genugten, B. and Van Der, B. (1997): Testing in the restricted linear model using canonical partitions. Linear Algebra Appl. 264 (1997), 349-353. Gephart, J. and Forsyth D. (1984): An improved method for determining the regional stress tensor - using earthquake focal mechanism data: application to the San Fernando earthquake sequence, J. geophys. Res., B89, 9305-9320 Gere, G.M. and W. Weaver (1965): Matrix algebra for engineers, Van Nostrand Co., New York 1956 Ghosh, M., Mukhopadhyay, N. and P.K. Sen (1997): Sequential estimation, J. Wiley, New York 1997 926 References

Ghosh, S. (1996): Wishart distribution via induction, The American Statistician 50 (1996), 243-246 Ghosh, S. (1999): Multivariate analysis, design of experiments, and survey sampling, Marcel Dekker, Basel 1999 Ghosh, S., Beran, J. and J. Innes (1997): Nonparametric conditional quantile estimation in the presence of long memory, Student 2 (1997), 109-117 Ghosh, S. (ed.) (1999): Multivariate analysis, design of experiments, and survey sampling, Marcel Dekker, New York 1999 Giacolone, M. (1997): Lp-norm estimation for nonlinear regression models, Student 2 (1997), 119-130 Giering, O. (1984): Bemerkungen zum ebenen Trilaterationsproblem. Deutsche Geodatische¨ Kommission, Reihe A, Nr. 101. Giering, O. (1986): Analytische Behandlung des raumlichen Trilaterationsproblems 4, 6, 0, o. Deutsche Geodatische¨ Kommission, Reihe A, Nr. 104 Gil, A. and J. Segura (1998): A code to evaluate prolate and oblate spheroidal harmonics, Computer Physics Communications 108 (1998), 267-278 Gilbert, E.G. and C.P. Foo (1990): Computing the distance between general convex objects in three-dimensional space, JEEE Transactions on Robotics and Automation 6 (1990), 53-61 Gilchrist, W. (1976): Statistical forecasting, Wiley, London 1976 Gill, P.E., Murray, W. and Wright, M.H. (1981): Practical Optimization. Academic Press, London. Gill, P.E., Murray, W. and Saunders, M.A. (2002): Snopt: An SQP algorithm for large scale constrained optimization, Siam J. Optim. 12 (2002), 979-1006 Gillard, D., Wyss, M. and J. Nakata (1992): A seismotectonic model for Western Hawaii based on stress tensor inversion from fault plane solutions, J. Geophys., Res., B97, 6629-6641 Giri, N. (1977): Multivariate statistical inference, Academic Press, New York London 1977 Giri, N. (1993): Introduction to probability and statistics, 2nd edition, Marcel Dekker, New York 1993 Giri, N. (1996a): Multivariate statistical analysis, Marcel Dekker, New York 1996 Giri, N. (1996b): Group invariance in statistical inference, World Scientific, Singapore 1996 Girko, V.L. (1979): Distribution of eigenvalues and eigenvectors of hermitian stochastic matrices, Ukrain. Math. J., 31, 421-424 Girko, V.L. (1985): Spectral theory of random matrices, Russian Math. Surveys, 40, 77-120 Girko, V.L. (1988): Spectral theory of random matrices, Nauka, Moscow 1988 Girko, V.L. (1990): Theory of random determinants, Kluwer Academic Publishers, Dordrecht 1990 Girko, V.L. and A.K. Gupta (1996): Multivariate elliptically contoured linear models and some aspects of the theory of random matrices, in: Multidimensional statistical analysis and theory of random matrices, Proceedings of the Sixth Lukacs Symposium, eds. Gupta, A.K. and V.L. Girko, 327-386, VSP, Utrecht 1996 Glatzer, E. (1999):uber ¨ Versuchsplanungsalgorithmen bei korrelierten Beobachtungen, Master’s thesis, Wirtschaftsuniversitat¨ Wien Gleick, J. (1987): Chaos, viking, New York 1987 Gleser, L.J. and I. Olkin (1972): Estimation for a regression model with an unknown covariance matrix, in: Proceedings of the sixth Berkeley symposium on mathematical statistics and probability, Vol. 1, 541-568, University of California Press, Berkeley 1972 Glimm, J. (1960): On a certain class of operator algebras, Trans. American Mathematical Society 95 (1960), 318-340 Gnedenko, B.V. and A.N. Kolmogorov (1968): Limit distributions for sums of independent random variables, Addison-Wesley Publ., Reading, Mass. 1968 Gnedin, A.V. (1993): On multivariate extremal processes, J. Multivar. Anal. 46 (1993), 207-213 Gnedin, A.V. (1994): On a best choice problem with dependent criteria, J. Applied Probability 31 (1994), 221-234 Gneiting, T. (1999): Correlation functions for atmospheric data analysis, Q. J. R. Meteorol. Soc. 125 (1999), 2449-2464 References 927

Gneiting, T. and Savati, Z. (1999): The characterization problem for isotropic covariance functions, Analy. Royal Met. Society 115 (1999) 2449-2450 Gnot, S. and Michalski, A. (1994): Tests based on admissible estimators in two variance components models, Statistics 25 (1994), 213-223 Gnot, S. and Trenkler, G. (1996): Nonnegative quadratic estimation of the mean squared errors of minimax estimators in the linear regression model, Acta Applicandae Mathematicae 43 (1996), 71-80 Godambe, V.P. (1991): Estimating Functions, Oxford University Press 1991 Godambe, V.P. (1995): A unified theory of sampling from finite populations, J. Roy. Statist. Soc. B17 (1955), 268-278 Gobel,¨ M. (1998): A constructive description of SAGBI bases for polynomial invariants of permutation groups, J. Symbolic Computation 26 (1998), 261-272 Goldberger, A.S. (1962): Best linear unbiased prediction in the generalized linear regression model, J. Am. Statist. Ass. 57 (1962), 369-375 Goldberger, A.S. (1964): Economic theory, Wiley, New York, 1964 Goldberg, M.L., Bates, D.M. and Watts, D.G. (1983): Simplified methods for assessing nonlinearity. American Statistical Association/Business and Economic Statistics Section, 67-74. Goldie, C.M. and S. Resnick (1989): Records in a partially ordered set, Annals Probability 17 (1989), 678-689 Goldie, C.M. and S. Resnick (1995): Many multivariate records, Stochastic Processes Appl. 59 (1995), 185-216 Goldie, C.M. and S. Resnick (1996): Ordered independent scattering, Commun. Statist. Stochastic Models 12 (1996), 523-528 Goldman, A.J. and Zelen, M. (2003): Weak generalized inverses and minimum variance linear unbiased estimation. J. Res. Natl. Bur. Stand., Sect. B 68 (1964), 151-172. Goldstine, H. (1977): A history of numerical analysis from the 16th through the 19th century, Springer-Verlag, Heidelberg Berlin New York 1977 Golshstein, E.G. and N.V. Tretyakov (1996): Modified Lagrangian and monotone maps in optimization, J. Wiley, New York 1996 Golub, G.H. (1968): Least squares, singular values and matrix approximations, Aplikace Matematiky 13 (1968), 44-51 Golub, G.H. (1973): Some modified matrix eigenvalue problems, SIAM Review 15 (1973), 318-334 Golub, G.H. and C.F. van Loan (1983): Matrix Computations. North Oxford Academic, Oxford. Golub, G.H. and C.F. van Loan (1996): Matrix computations, 3rd edition, John Hopkins University Press, Baltimore 1996 Golub, G.H. and W. Kahan (1965): Calculating the singular values and pseudo-inverse of a matrix, SIAM J Numer. Anal. 2 (1965), 205-224 Golub, G.H. and U. von Matt (1991): Quadratically constrained least squares and quadratic problems, Numer. Math. 59 (1991), 561-580 Golub, G.H., Hansen, P.C. and O’Leary, D.P. (1999): and total least squares, SIAM J. Matrix Anal. Appl. 21 (1999), 185-194 Geomez,` E., Geomez-Villegas,` M.A. and Mare``ın, J.M. (1998): A multivariate generalization of the power exponential family of distributions, Commun. Statist. - Theory Meth. 27 (1998), 589-600 Gonin, R. and A.H. Money (1987): A review of computational methods for solving the nonlinear L 1 norm estimation problem, in: Statistical data analysis based on the L1 norm and related methods, Ed. Y. Dodge, North Holland 1987 Gonin, R. and A.H. Money (1989): Nonlinear Lp-norm estimation, Marcel Dekker, New York 1989 Goodall, C. (1991): Procrustes methods in the statistical analysis of shape, J. Roy. Stat. Soc. B53 (1991), 285-339 Goodman, J.W. (1985): Statistical optics, J. Wiley, New York 1985 Gordon, A.D. (1997): L1-norm and L2-norm methodology in cluster analysis, Student 2 (1997), 181-193 Gordon, A.D. (1999): Classification, 2nd edition, Chapman and Hall, Yew York 1999 928 References

Gordon, L. and M. Hudson (1977): A characterization of the Von Mises Distribution, Ann. Statist. 5 (1977), 813-814 Gordon, R. and Stein, S. (1992): Global tectonics and space geodesy, Science, 256, 333-342 Gordonova, V.I. (1973): The validation of algorithms for choosing the regularization parameter, Zh. vychisl. Mat. mat. Fiz. 13 (1973), 1328-1332 Gorman, O.T.W. (2001): Adaptive estimation using weighted least squares, Aust. N. Z. J. Stat. 43 (2001), 287-297 Gosset, W.S. (1908): The probable error of a mean, Biometrika, 6, 1-25. Gotthardt, E. (1940): Zur Unbestimmtheit des raumlichen¨ R¨uckwartseinschnitte¨ s, Mitteilungen der Ges. f. Photogrammetry e.V., Janner¨ 1940, Heft 5. Gotthardt, E. (1971): Grundsutzliches zur Fehlertheorie and Ausgleichung von Polygonzugen and Polygonnetzen, Wichmann Verlag, Karlsruhe 1971 Gotthardt, E. (1974): Ein neuer gefahrlicher¨ Ort zum raumlichen¨ R¨uckwartseinschneiden,¨ Bildm. u. Luftbildw., 1974. Gotthardt E. (1978): Einf¨uhrung in die Ausgleichungsrechnung, 2nd ed., Wichmann, Karlsruhe 1978 Gould, A.L. (1969): A regression technique for angular varietes, Biometrica 25 (1969), 683-700 Gower, J.C. (1974): The median center, Applied Statistics 2, (1974), pp. 466-470 Grabisch, M. (1998): Fuzzy Integral as a Flexible and Interpretable Tool of Aggregation, In (Ed. B. Bouchon-Meunier, Aggregation and Fusion of Imperfect Information, pp. 51-72, Physica Verlag, Heidelberg, 1998 Grafarend, E.W.: a) DGK C 153, M¨unchen 1970; b) AVN 77, 17 (1970); c) Vermessungstechnik 19, 66 (1971); d) ZfV 96, 41 (1971); e) ZAMM. imDruck. Grafarend, E.W. (1967a): Bergbaubedingte Deformation und ihr Deformationstensor, Bergbauwissenschaften 14 (1967), 125-132 Grafarend, E.W. (1967b): Allgemeiner Fehlertensor bei a priori und a posteriori-Korrelationen, Zeitschrift f¨ur Vermessungswesen 92 (1967), 157-165 Grafarend, E.W. (1969): Helmertsche Fußpunktkurve oder Mohrscher Kreis? Allgemeine Vermessungsnachrichten 76 (1969), 239-240 Grafarend, E.W. (1970a): Praeidiktion und Punktamasse, AVN (1970), S. 17 Grafarend, E.W. (1970b): Verallgemeinerte Methode der kleinsten Quadrate f¨ur zyklische Variable, Zeitschrift f¨ur Vermessungswesen 4 (1970), 117-121 Grafarend, E.W. (1970c): Die Genauigkeit eines Punktes im mehrdimensionalen Euklidischen Raum, Deutsche Geodatische¨ Kommission bei der Bayerischen Akademie der Wissenschaften C 153, M¨unchen 1970 Grafarend, E.W. (1970d): Fehlertheoretische Unscharferelation,¨ Festschrift Professor Dr.-Ing. Helmut Wolf, 60. Geburtstag, Bonn 1970 Grafarend, E.W. (1971a): Mittlere Punktfehler und Vorwartseinschneiden,¨ Zeitschrift f¨ur Vermessungswesen 96 (1971), 41-54 Grafarend, E.W. (1971b): Isotropietests von Lotabweichungen Westdeutschlands, Z. Geophysik 37 (1971), 719-733 Grafarend, E.W. (1972a): Nichtlineare Pradiktion,¨ Zeitschrift f¨ur Vermessungswesen 97 (1972), 245-255 Grafarend, E.W. (1972b): Isotropietests von Lotabweichungsverteilungen Westdeutschlands II, Z. Geophysik 38 (1972), 243-255 Grafarend, E.W. (1972c): Genauigkeitsmaße geodatischer¨ Netze, Deutsche Geodatische¨ Kommission bei der Bayerischen Akademie der Wissenschaften A73, M¨unchen 1972 Grafarend, E.W. (1973a): Nichtlokale Gezeitenanalyse, Mitt. Institut f¨ur Theoretische Geodasie¨ No. 13, Bonn 1973 Grafarend, E.W. (1973b): Optimales Design geodatische¨ Netze 1 (zus. P. Harland), Deutsche Geodatische¨ Kommission bei der Bayerischen Akademie der Wissenschaften A74, M¨unchen 1973 References 929

Grafarend, E.W. (1973c): Eine Lotabweichungskarte Westdeutschlands nach einem geodatisch¨ konsistenten Kolmogorov-Wiener Modell , Deutsche Geodatische¨ Kommission, Bayerische Akademie der Wissenschaften, Report A 82, M¨unchen 1975 Grafarend, E.W. (1974): Optimization of geodetic networks, Bollettino di Geodesia e Scienze Affini 33 (1974), 351-406 Grafarend, E.W. (1975a): Three dimensional Geodesy 1. The holonomity problem, Zeitschrift f¨ur Vermessungswesen 100 (1975) 269-280. Grafarend, E.W. (1975b): Second order design of geodetic nets, Zeitschrift f¨ur Vermessungswesen 100 (1975), 158-168 Grafarend, E.W. (1976): Geodetic applications of stochastic processes, Physics of the Earth and Planetory Interiors 12 (1976), 151-179 Grafarend, E.W. (1977a): Geodasie - Gaufische oder Cartansche Flachengeometrie. Allgemeine Vermessungs-Nachrichten, 84. Jg., Heft 4, 139-150. Grafarend, E.W. (1977b): Stress-strain relations in geodetic networks Report 16, Geodetic Institute, University of Uppsala. Grafarend, E.W. (1978): Operational geodesy, in: Approximation Methods in Geodesy, eds. H. Moritz and H. S¨unkel, 235-284, H. Wichmann Verlag, Karlsruhe 1978 Grafarend, E.W. (1981): Die Beobachtungsgleichungen der dreidimensionalen Geodasie¨ im Geometrie- und Schwereraum. Ein Beitrag zur operationellen Geodasie,¨ Zeitschrift f¨ur Vermessungswesen 106 (1981) 411-429. Grafarend, E.W. (1982): Six lectures on geodesy and global geodynamics, In: H. Moritz and H. Snkel (Ed.), Lecture Notes, Mitt. Geod .. lnst. Techn. UnL Graz, 41, 531-685 Grafarend, E.W. (1983): Stochastic models for point manifolds, in: Mathematical models of geodetic/photogrammetric point determination with regard to outliers and systematic errors, ed. F.E. Ackermann, Report A98, 29-52, Deutsche Geodatische¨ Kommission, Bayerische Akademie der Wissenschaften, M¨unchen 1983 Grafarend, E.W. (1984): Variance-covariance component estimation of Helmert type in the Gauss-Helmert model, Zeitschrift f¨ur Vermessungswesen 109 (1984), 34-44 Grafarend, E.W. (1985a): Variance-covariance component estimation, theoretical results and geodetic applications, Statistics and Decision, Supplement Issue No. 2 (1985), 407-447 Grafarend, E.W. (1985b): Criterion matrices of heterogeneously observed three-dimensional networks, manuscripta geodaetica 10 (1985), 3-22 Grafarend, E.W. (1985c): Criterion matrices for deforming networks, in: Optimization and Design of Geodetic Networks, E. Grafarend and F. Sanso (eds.), 363-428, Springer-Verlag, Heidelberg Berlin New York 1985 Grafarend, E.W. (1986a): Generating classes of equivalent linear models by nuisance parameter elimination - applications to GPS observations, manuscripta geodaetica 11 (1986) 262-271 Grafarend, E.W. (1986b): Three dimensional deformation analysis: global vector spherical harmonic and local element representation, Tectonophysics, 130, 337-359 Grafarend, E.W. (1988): Azimuth transport and the problem of orientation within geodetic traverses and geodetic networks, Vermessung, Photogrammetrie, Kulturtechnik 86 (1988) 132-150. Grafarend, E.W. (1989a): Four lectures on special and general relativity, Lecture Notes in Earth Sciences, F. Sanso and R. Rummel (eds.), Theory of Satellite Geodesy and Gravity Field Determination, Nr. 25, 115-151, Springer-Verlag Berlin New York 1989 Grafarend, E.W. (1989b): Photogrammetrische Positionierung, Festschrift Prof. Dr.-Ing. Dr. H.C. Friedrich Ackermann zum 60. Geburtstag, Institut f¨ur Photogrammetrie, Universitat¨ Stuttgart, Report 14, 45-55, Suttgart Grafarend, E.W. (1990): Dreidimensionaler Vorwartsschnitt. Zeitschrift fiir Vermessungswesen, 10, 414-419. Grafarend, E.W. (1991a): Relativistic effects in geodesy, Report Special Study Group 4.119, International Association of Geodesy, Contribution to Geodetic Theory and Methodology ed. F. Sanso, 163-175, Politecnico di Milano, Milano/Italy 1991 930 References

Grafarend, E.W. (1991b): The Frontiers of Statistical Scientific Theory and Industrial Applications (Volume II of the Proceedings of ICOSCO-I), American Sciences Press, 405-427, New York 1991 Grafarend, E.W. (1991c): Application of Geodesy to Engineering. IAG-Symposium No. 108, Eds. K. Linkwitz, V. Eisele, H. J. Monicke,¨ Springer-Verlag, Berlin-Heidelberg-New York 1991. E. Grafarend, T. Krarup, R. Syffus: Journal of Geodesy 70 (1996) 276-286 Grafarend, E.W. (1998): Helmut Wolf - das wissenschaftliche Werk/the scientific work , Heft A115, Deutsche Geodatische¨ Kommission, Bayerische Akademie der Wissenschaften, C.H. Beck’sche Verlagsbuchhandlung, 97 Seiten, M¨unchen 1998 Grafarend, E.W. (2000): Mixed integer-real valued adjustment (IRA) problems, GPS Solutions 4 (2000), 31-45 Grafarend, E.W. and Kunz, J. (1965): Der R¨uckwartseinschnitt¨ mit dem Vermessungskreisel, Bergbauwissenschaften 12 (1965) 285-297. Grafarend, E. and E. Livieratos (1978): Rand defect analysis of satellite geodetic networks I : geometric and semi-dynamic mode, manuscipta geodaetica 3 (1978) 107-134 Grafarend, E. and K. Heinz (1978): Rank defect analysis of satellite geodetic networks II : dynamic mode, manuscipta geodaetica 3 (1978) 135-156 Grafarend, E.W. and P. Harland (1973) : Optimales Design geodaetischer Netze I, Deutsche Geodaetische Kommission, Bayerische Akademie der Wissenschaften, Series A, C.H. Beck Verlag, Munich 1973 Grafarend, E.W. and B. Schaffrin (1974): Unbiased free net adjustment, Surv. Rev. XXII, 171 (1974), 200-218 Grafarend, E.W., Heister, H., Kelm, R., Kropff, H. and B. Schaffrin (1979): Optimierung geodatischer¨ Messoperationen , 499 pages, H. Wichmann Verlag, Karlsruhe 1979 Grafarend, E.W. and G. Offermanns (1975): Eine Lotabweichungskarte Westdeutschlands nach einem geodatisch¨ konsistenten Kolmogorov-Wiener Modell, Deutsche Geodatische¨ Kommission bei der Bayerischen Akademie der Wissenschaften A82, M¨unchen 1975 Grafarend, E.W. and B. Schaffrin (1976): Equivalence of estimable quantities and invariants in geodetic networks, Z. Vermessungswesen 191 (1976), 485-491 Grafarend, E.W., Schmitt, G. and B. Schaffrin (1976): Uber¨ die Optimierung lokaler geodatischer¨ Netze (Optimal design of local geodetic networks), 7th course, High precision Surveying Engineering (7. Int. Kurs f¨ur Ingenieurvermessung hoher Prazision)¨ 29 Sept - 8 Oct 1976, Darmstadt 1976 Grafarend, E.W. and Richter, B. (1977): Generalized Laplace condition, Bull. Geod. 51 (1977) 287-293. Grafarend, E.W. and B. Richter (1978): Threedimensional geodesy II - the datum problem -, Zeitschrift f¨ur Vermessungswesen 103 (1978), 44-59 Grafarend, E.W. and A. d’Hone (1978): Gewichtsschatzung¨ in geodatischen¨ Netzen, Deutsche Geodatische¨ Kommission bei der Bayerischen Akademie der Wissenschaften A88, M¨unchen 1978 Grafarend, E.W. and B. Schaffrin (1979): Kriterion-Matrizen I - zweidimensional homogene und isotope geodatische¨ Netze - ZfV 104 (1979), 133-149 Grafarend, E.W., J.J. Mueller, H.B. Papo, and B. Richter (1979): Concepts for reference frames in geodesy and geodynamics: the reference directions, Bull. Geeod` eesique` 53 (1979), 195-213 Grafarend, E.W., Heister, H., Kelm, R., Knopff, H. and Schaffrin, B. (1979): Optimierung Geodatischer¨ Messoperationen, Herbat Wichmann Verlag, Karlsruhe 1979. Grafarend, E.W. and R.H. Rapp (1980): Advances in geodesy. Selected papers from Rev. Geophys. Space Phys., Richmond, Virg., Am Geophys Union,Washington Grafarend, E.W. and A. Kleusberg (1980): Expectation and variance component estimation of multivariate gyrotheodolite observations, I. Allgemeine Vermessungs-Nachrichten 87 (1980), 129-137 Grafarend, E.W., Kleusberg, A. and B. Schaffrin (1980): An introduction to the variance- covariance component estimation of Helmert type, Zeitschrift f¨ur Vermessungswesen 105 (1980), 161-180 References 931

Grafarend, E.W. and B. Schaffrin (1982): Kriterion Matrizen II: Zweidimensionale homogene und isotrope geodatische¨ Netze, Teil II a: Relative cartesische Koordinaten, Zeitschrift f¨ur Vermessungswesen 107 (1982), 183-194, Teil IIb: Absolute cartesische Koordinaten, Zeitschrift f¨ur Vermessungswesen 107 (1982), 485-493 Grafarend, E.W., Knickemeyer, E.H. and B. Schaffrin (1982): Geodatische¨ Datumtransformatio- nen, Zeitschrift f¨ur Vermessungswesen 107 (1982), 15-25 Grafarend, E.W., Krumm, F. and B. Schaffrin (1985): Criterion matrices of heterogeneously observed threedimensional networks, manuscripta geodaetica 10 (1985), 3-22 Grafarend, E.W. and F. Sanso (1985): Optimization and design of geodetic networks, Springer- Verlag, Heidelberg Berlin New York 1985 Grafarend, E.W. and V. M¨uller (1985): The critical configuration of satellite networks, especially of Laser and Doppler type, for planar configurations of terrestrial points, manuscripta geodaetica 10 (1985), 131-152 Grafarend, E.W. and F. Krumm (1985): Continuous networks I, in: Optimization and Design of Geodetic Networks. E. Grafarend and F. Sanso (eds.), 301-341, Springer-Verlag, Heidelberg Berlin New York 1985 Grafarend, E.W., Krumm, F. and B. Schaffrin (1985): Criterion matrices of heterogenously observed three dimensional networks, manuscripta geodetica 10 (1985) 3-22 Grafarend, E.W., Krumm, F. and B. Schaffrin (1986): Kriterion-Matrizen III: Zweidimensionale homogene und isotrope geodatische¨ Netze, Zeitschrift f¨ur Vermessungswesen 111 (1986), 197-207 Grafarend, E.W., Krumm, F. and B. Schaffrin (1986): Kriterion-Matrizen III: Zweidimensional homogene und isotrope geodatische¨ Netze, Zeitschrift f¨ur Vermessungswesen 111 (1986), 197-207 Grafarend, E.W. and B. Schaffrin (1988): Von der statistischen zur dynamischen Auffasung geodatischer¨ Netze, Zeitschrift f¨ur Vermessungswesen 113 (1988), 79-103 Grafarend, E.W. and B. Schaffrin (1989a): The Planar Trisection Problem. Festschrift to Torben Krarup, Eds.: E. Kejlso, K. Poder, C.C. Tscherning, Geodaetisk Institute, No. 58, Kobenhavn, 149-172. Grafarend, E.W. and B. Schaffrin (1989b): The geometry of nonlinear adjustment - the planar trisection problem, Festschrift to Torben Krarup eds. E. Kejlso, K. Poder and C.C. Tscherning, Geodaetisk Institut, Meddelelse No. 58, 149-172, Kobenhavn 1989 Grafarend, E.W. and A. Mader (1989): A graph-theoretical algorithm for detecting configuration defects in triangular geodetic networks, Bull. Geeod` eesique` 63 (1989), 387-394 Grafarend, E.W., Lohse, P. and Schaffrin, B. (1989): Dreidimensionaler R¨uckwartsschnitt,¨ Zeitschrift f¨ur Vermessungswesen 114 (1989) 61-67, 127-137, 172-175, 225-234, 278-287. Grafarend, E.W. and B. Schaffrin (1991): The planar trisection problem and the impact of curvature on non-linear least-squares estimation, Comput. Stat. Data Anal. 12 (1991), 187-199 Grafarend, E.W. and Lohse, P. (1991): The minimal distance mapping of the topographic surface onto the (reference) ellipsoid of revolution, Manuscripta Geodaetica 16 (1991) 92-110. Grafarend, E.W. and B.Schaffrin (1993): Ausgleichungsrechnung in linearen Modellen, Brockhaus, Mannheim 1993 Grafarend, E.W. and Xu, P. (1994): Observability analysis of integrated INS/GPS system, Bollettino di Geodesia e Scienze Affini 103 (1994), 266-284 Grafarend, E.W., Krumm, F. and F. Okeke (1995): Curvilinear geodetic datum transformations, Zeitschrift f¨ur Vermessungswesen 120 (1995), 334-350 Grafarend, E.W. and P. Xu (1995): A multi-objective second-order optimal design for deforming networks, Geophys. Journal Int. 120 (1995), 577-589 Grafarend, E.W. and Keller, W. (1995): Setup of observational functionals in gravity space as well as in geometry space, Manuscripta Geodetica 20 (1995) 301-325. Grafarend, E.W., Krumm, F. and Okeke, F. (1995): Curvilinear geodetic datum transformation, Zeitschrift f¨ur Vermessungswesen 120 (1995) 334-350. Grafarend, E.W., Syffus, R. and You, R.J. (1995): Projective heights in geometry and gravity space, Allgemeine Vermessungs-Nachrichten 102 (1995) 382-402. 932 References

Grafarend, E.W., Krarup, T. and R. Syffus (1996): An algorithm for the inverse of a multivariate homogeneous polynomial of degree n, Journal of Geodesy 70 (1996), 276-286 Grafarend, E.W. and G. Kampmann (1996): C10(3): The ten parameter conformal group as a datum transformation in three dimensional Euclidean space, Zeitschrift f¨ur Vermessungswesen 121 (1996), 68-77 Grafarend, E.W. and Shan, J. (1996): Closed-form solution of the nonlinear pseudo-ranging equa- tions (GPS), Artificial Satellites, Planetary Geodesy No. 28, Special issue on the 30th anniver- sary of the Department of Planetary Geodesy, Vol. 31, No. 3, pp. 133-147, Warszawa 1996. Grafarend, E.W. and Shan, J. (1997a): Closed-form solution of P4P or the three-dimensional resection problem in terms of Mobius¨ barycentric coordinates, Journal of Geodesy 71 (1997) 217-231. Grafarend, E.W., and Shan, J. (1997b): Closed form solution of the twin P4P or the combined three dimensional resection-intersection problem in terms of Mobius¨ barycentric coordinates, Journal of Geodesy 71 (1997) 232-239. Grafarend, E.W. and Shan J. (1997c): Estimable quantities in projective networks, Zeitschrift f¨ur Vermessungswesen, Part I, 122 (1997), 218-226, Part II, 122 (1997), 323-333 Grafarend, E.W. and Okeke, F. (1998): Transformation of conformal coordinates of type Mercator from global datum (WGS 84) to local datum (regional, national), Marine Geodesy 21 (1998) 169-180. Grafarend, E.W. and Syfuss, R. (1998): Transformation of conformal coordinates of type Gauss-Kr¨uger or UTM from local datum (regional, national, European) to global datum (WGS 84) part 1: The transformation equations, Allgemeine Vermessungs-Nachrichten 105 (1998) 134-141. Grafarend, E.W. and Ardalan, A. (1999): World geodetic datum 2000, Journal of Geodesy 73 (1999) 611-623. Grafarend, E.W. and Awange, J.L. (2000): Determination of vertical deflections by GPS/LPS measurements, Zeitschrift f¨ur Vermessungswesen 125 (2000) 279-288. Grafarend, E.W. and J. Shan (2002): GPS Solutions: closed forms, critical and special configurations of P4P, GPS Solutions 5 (2002), 29-42 Grafarend, E.W. and J. Awange (2002): Algebraic solution of GPS pseudo-ranging equations, GPS Solutions 5 (2002), 20-32 Grafarend, E.W. and J. Awange (2002): Nonlinear adjustment of GPS observations of type pseudo-ranges, GPS Solutions 5 (2002), 80-93 Graham, A. (1981): Kronecker products and matrix calculus, J. Wiley, New York 1981 Gram, J.P. (1883): Uber¨ die Entwicklung reeller Functionen in Reihen mittelst der Methode der kleinsten Quadrate, J. Reine Angew. Math. 94 (1883), 41-73 Granger, C.W.J. and Hatanka, M. (1964): Spectral analysis of economic time series, Princeton 1964 Granger, C.W.J. and P. Newbold (1986): Forecasting economic time series, 2nd ed., Academic Press, New York London 1986 Granger, C.W.J. and T. Terasvirta¨ (1993): Modelling nonlinear economic relations, Oxford University Press, New York 1993 J.T. Graves: Transactions of the Irish Academy 21 (1848) 338 Graybill, F.A. (1954): On quadratic estimates of variance components, The Annals of Mathematical Statistics 25 (1954), 267-372 Graybill, F.A. (1961): An intorduction to linear statistical models, Mc Graw-Hill, New York, 1961 Graybill, F.A. (1983): Matrices with applications in statistics, 2nd ed., Wadsworth, Beltmont 1983 Graybill, F.A. and R.A. Hultquist (1961): Theorems concerning Eisenhart’s model II, The Annals of Mathematical Statistics 32 (1961), 261-269 Green, B. (1952): The orthogonal approximation of an oblique structure in factor analysis, Psychometrika 17 (1952), 429-440 Green, P.J. and B.W. Silverman (1993): Nonparametric regression and generalized linear models, Chapman and Hall, Boca Raton 1993 Green, P.E., Frosch, R.A. and Romney, C.F. (1965): Principles of an experimental large aperture seismic array, Proc. IEEE 53 (1965) 1821-1833 References 933

Green, P.E., Kelly, E.J. and Levin, M.J. (1966): A comparison of seismic array processing methods, Geophys. J. R. astr. Soc. 11 (1966) 67-84 Greenbaum, A. (1997): Iterative methods for solving linear systems, SIAM, Philadelphia 1997 Greenwood, J.A. and D. Durand (1955): The distribution of length and components of the sum of n random unit vectors, Ann. Math. Statist. 26 (1955), 233-246 Greenwood, P.E. and G. Hooghiemstra (1991): On the domain of an operator between supremum and sum, Probability Theory Related Fields 89 (1991), 201-210 Gregersen, S. (1992): Crustal stress regime in Fennoscandia from focal mechanisms, J. geophys. Res., B97, 11821-11827 Grenander, U. (1981): Abstract inference, J. Wiley, New York 1981 Greub, W.H. (1967): Multilinear algebra, Springer Verlag, Berlin 1967 Grewal, M.S., Weill, L.R. and Andrews, A.P. (2001): Global Positioning Systems, Inertial Navigation and Integration, John Wiley & Sons, New York 2001. Griffith, D.F. and D.J. Higham (1997): Learning LaTeX, SIAM, Philadelphia 1997 Grigoriu, M. (2002): , Birkhanser, Boston-Basel-Baein 2002 Grimstad, A. and T.Mannseth (2000): Nonlinearity, sale and sensitivity for parameter estimation problems, SIAM J. Sci. Comput. 21 (2000), 2096-2113 Grodecki, J. (1999): Generalized maximum-likelihood estimation of variance components with inverted gamma prior, Journal of Geodesy 73 (1999), 367-374 Grobner,¨ W. (1968): Algebraische Geometrie I. Bibliographisches Institut, Mannheim. Grobner,¨ W. (1970): Algebraische Geometrie II. Bibliographisches Institut, Mannheim Grobner,¨ W. and N. Hofreiter (eds., 1973): Integraltafel, zweiter Teil, bestimmte Integrale. 5. ’verbesserte Auflage, Wien. Grochenig,¨ K. (2001): Foundations of time-frequency analysis, Birkauser¨ Verlag, Boston Basel Berlin 2001 Groenigen, van J.W. and Siderius, W. and Stein, A. (1999): Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma 87:239-259 Groß, J. (1996): On a class of estimators in the general Gauss-Markov model, Commun. Statist. - Theory Meth. 25 (1996), 381-388 Groß, J. (1996): Estimation using the linear regression model with incomplete ellipsoidal restrictions, Acta Applicandae Mathematicae 43 (1996), 81-85 Groß, J. (1998): Statistical estimation by a linear combination of two given statistics, Statistics and Probability Lett. 39 (1998), 379-384 Groß, J. (2003): Linear regression. Springer, Berlin, 2003. Groß, J. and G. Trenkler (1997): When do linear transforms of ordinary least squares and Gauss-Markov estimator coincide?, Sankhya 59 (1997), 175-178 Groß, J., Trenkler, G. and E.P. Liski (1998): Necessary and sufficient conditions for superiority of misspecified restricted least squares regression estimator, J. Statist. Planning and Inference 71 (1998), 109-116 Groß, J., Puntanen, S. (2000): Estimation under a general partitioned linear model. Linear Algebra Appl. 321, 1-3 (2000), 131-144. Groß, J., Trenkler, G. and H.J. Werner (2001): The equality of linear transforms of the ordinary least squares estimator and the best linear unbiased estimator, Sankhya: The Indian Journal of Statistics 63 (2001), 118-127 Großmann, W. (1973): Grundz¨uge der Ausgleichungsrechnung, Springer-Verlag, Heidelberg Berlin New York 1973 Großman, N. (1980): Four Lectures on Geometry for-Geodesists. In: Proceedings of the International School of Advanced Geodesy, Erice (Italy), May 18.-June 2.1978, Eds.: E. W. Grafarend, A. Marussi, published by the University FAF, Munich. Groten, E. (1964): Symposium “Extension of the Gravity Anomalies to Unsurveyed Areas”, Columbus (Ohio) 1964 Groten, E. (1964): lnst. f. Astr. Phys. Geod., Publ. No. 39, Miinchen 1967. Grubbs, F.E. (1973): Errors of measurement, precision, accuracy and the statistical comparison of measuring instruments, Technometrics 15 (1973), 53-66 934 References

Grubbs, F.E. and G. Beck (1972): Extension of sample sizes and precentage points for significance tests of outlying observations, Technometrics 14 (1972), 847-854 Gruen, A. and Kahmen, H. (Eds.) (1989): Optical 3-D Measurement Techniques. Wichmann, Karlsruhe. Gr¨undig, L. (1975): Die Berechnung vorgespannter Seil- und Hangenetze unter der Beriicksich- tigung ihrer topologischen und physikalischen Eigenschaften und der Ausgleichungsrechnung. Sonderforschungsbereich 64, Universitat Stuttgart, Mitteilungen 34/1975. Gr¨undig, L. (1976): Ausgleichung grofier geodatischer¨ Netze, Bestimmung von Naherungskoordinaten, Ausgleichungstechniken und Fehlersuche. VII. Internationaler Kurs fiir Ingenieurvermessungen, Darmstadt, 41-51. Grunert, J.A. (1841): Das Pothenotsche Problem in erweiterter Gestalt; nebst Bemerkungen uber¨ seine Anwendungen in der Geodasie,¨ Grunerts Archiv f¨ur Mathematik und Phsyik 1 pp. 238-241, 1841. Guckenheimer, J., Myers, M. and Sturmfels, B. (1997): Computing Hopf birfucations, SIAM J. Numerical Analysis 34 (1997) 1-21. Guenther, W.C. (1964): Another derivation of the non-central Chi-Square distribution, J. Am. Statist. Ass. 59 (1964), 957-960 Gui, Q. and J. Zhang (1998): Robust biased estimation and its applications in geodetic adjustments, Journal of Geodesy 72 (1998), 430-435 Gui, Q.M. and J.S. Liu (2000): Biased estimation in the Gauss-Markov model, Allgemeine Vermessungsnachrichten 107 (2000), 104-108 Gulliksen, H. and S.S. Wilks (1950), Regression tests for several samples Psychometrica, 15, 91-114 Gullikson, M. (1995a): The partial Procrustes problem - A first look, Department of Computing Science, Umea University, Report UMINF-95.11, Sweden 1995. Gullikson, M. (1995b): Algorithms for the partial Procrustes problem, Department of Industrial Technology, Mid Sweden University s-891 18, Report 1995:27, Ornskoldsvik, Sweden 1995. Gullikson, M. and Soderkvist,¨ I. (1995): Surface fitting and parameter estimation with nonlinear least squares, Zeitschrift f¨ur Vermessungswesen 25 (1989) 611-636. Gullikson, M., Soederkvist, I. and P.A. Wedin (1997): Algorithms for constrained and weighted nonlinear least-squares, Siam J. Optim. 7 (1997), 208-224 Gullikson, M. and P.A. Wedin (2000): The use and properties of Tikhonov filter matrices, SIAM J. Matrix Anal. Appl. 22 (2000), 276-281 Gumbel, E.J., Greenwood, J.A. and D. Durand (1953): The circular normal distribution: theory and tables, J. Am. Statist. Ass. 48 (1953), 131-152 Gundlich, B. and Koch, K.R. (2002): Confidence regions for GPS baselines by Bayesian statistics. J Geod 76:55-62 Guolin, L. (2000): Nonlinear curvature measures of strength and nonlinear diagnosis, Allgemeine Vermessungsnachrichten 107 (2000), 109-111 Gupta, A.K. and D.G. Kabe (1997): Linear restrictions and two step multivariate least squares with aplications, Statistics & Probability Letters 32 (1997), 413-416 Gupta, A.K. and D.K. Nagar (1998): Quadratic forms in disguised matrix T-variate, Statistics 30 (1998), 357-374 Gupta, S.S. (1963): Probability integrals of multivariate normal and multivariate t1, Annals of Mathematical Statistics 34 (1963), 792-828 Gurtin, M.E. (1981): An introduction to continuum mechanics, Academic Press, New York Guttman, I. (1970): Statistical tolerance regions, Griffin, London 1970 Guttman, L. (1946): Enlargement methods for computing the inverse matrix, Ann. Math. Statist. 17 (1946), 336-343 Guttorp, P. and Sampson, P. (1994). Methods for estimating heterogeneous spatial covariance. In Patil, G. and Rao, C. eds., Handbook of Statistics, vol. 12, pp. 661-689. Guu, S.M., Lur, Y.Y. and C.T. Pang (2001): On infinite products of fuzzy matrices, SIAM J. Matrix Anal. Appl. 22 (2001), 1190-1203 References 935

Haantjes, J. (1937): Conformal representations of an n-dimensional Euclidean space with a non- definite fundamental form on itself, in: Nederl. Akademie van Wetenschappen, Proc. Section of Sciences, Vol. 40, 700-705, Noord-Hollandsche Uitgeversmaatschappij, Amsterdam 1937 Haantjes, J. (1940): Die Gleichberechtigung gleichformig¨ beschleunigter Beobachter f¨ur die elektromagnetischen Erscheinungen, in: Nederl. Akademie van Wetenschappen, Proc. Section of Sciences, Vol. 43, 1288-1299, Noord-Hollandsche Uitgeversmaatschappij, Amsterdam 1940 Habermann, S.J. (1996): Advanced statistics, volmue I: description of populations, Springer- Verlag, Heidelberg Berlin New York 1996 Hadamard, J. (1893): Leson sur la propagation des ondes et les quations de l’hydrodynamique, Paris 1893, reprint Chelsea Publ., New York 1949 Hadamard, J. (1899): Theorem sur les series entieres, Acta Math. 22 (1899), 1-28 Hadamard, J. Lecons sur la propagation des ondes et les equations´ de l’hydrodynamique, Paris 1893, reprint Chelsea Publ., New York 1949 Hardle,¨ W., Liang, H. and J. Gao (2000): Partially linear models, Physica-Verlag, Heidelberg 2000 Hager, W.W. (1989): Updating the inverse of a matrix, SIAM Rev. 31 (1989), 221-239 Hager, W.W. (2000): Iterative methods for nearly singular linear systems, SIAM J. Sci. Comput. 22 (2000), 747-766 Hahn, M. and R. Bill (1984): Ein Vergleich der L1- und L2-Norm am Beispiel. Helmerttransfor- mation, AVN 11-12, pp. 440, 1984 Hahn, W. and P. Weibel (1996): Evolutionare¨ Symmetrietheorie, Wiss. Verlagsgesellschaft, Stuttgart 1996 Hajos G. (1970): Einfiihrung in die Geometrie. BSB B. G. Teubner, Leipzig. Hald, A. (1998): A history of mathematical statistics from 1750 to 1930, J. Wiley, New York 1998 Hald, A. (2000): The early history of the cumulants and the Gram-Charlier series, International Statistical Review 68 (2000), 137-153 Halmos, P.R. (1946): The theory of unbiased estimation, Ann. Math. Statist. 17 (1946), 34-43 Hamilton, W.C. (1964): Statistics in Physical Science. The Ronald Press Company, New-York Hammer, E. (1896): Zur graphischen Ausgleichung beim trigonometrischen Einschneiden von Punkten, Optimization methods and softwares 5 (1995) 247-269. Hammersley, J.M. (1950): On estimating restricted parameters, J. R. Statist. Soc. B12 (1950), 192 Hampel, F.R. (1971) A general qualitative definition of robustness, Ann. Math. Phys. Statist. 42 (1971) DOI 10.1214/aoms/1177693054 Hampel, F.R. (1973): Robust estimation: a condensed partial survey, Zeitschrift f¨ur Wahrscheinlichkeitstheorie und verwandte Gebiete 27 (1973), 87-104 Hampel, F.R. (1974): The influence curve and its role in robust estimation, J. Ann. Stat. Assoc., 69 (1974), pp. 383-393 Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and W.A. Stahel (1986): Robust statistics, J. Wiley, New York 1986 Han, S. (1995): Ambiguity resolution techniques using integer least squares estimation for rapid static or kinematic positioning. In: Symposium Satellite Navigation Technology: 1995 and beyond, Brisbane, Australia, 10 p Han, S. C., Kwon, J. H. and Jekeli, C. (2001): Accurate absolute GPS positioning through satellite clock error estimation, Journal of Geodesy 75 (2001) 33-43. Han, Y.Y. (1992): of finite strain tensors in tectonodeformation mechanics, Se. China, B35, 102-116 Hanagal, D.D. (1996): UMPU tests for testing symmetry and stress-passing in some bivariate exponential models, Statistics 28 (1996), 227-239 Hand, D.J. and M.J. Crowder (1996): Practical longitudinal data analysis, Chapman and Hall, Boca Raton 1996 Hand, D.J., Daly, F., McConway, K., Lunn, D. and E. Ostrowski (1993): Handbook of small data sets, Chapman and Hall, Boca Raton 1993 Hand, D.J. and C.C. Taylor (1987): Multivariate analysis of variance and repeated measures, Chapman and Hall, Boca Raton 1987 936 References

Handl, A. (2010): Multivariate Analysemethoden. Theorie und Praxis multivariater Verfahren unter besonderer Ber¨ucksichtigung von S-PLUS, Springer-Verlag, Heidelberg Berlin New York Hanke, M. (1991): Accelerated Landweber iterations for the solution of ill-posed equations, Numer. Math. 60 (1991), 341-375 Hanke, M. and P.C. Hansen (1993): Regularization methods for large-scale problems, Surveys Math. Indust. 3 (1993), 253-315 Hanselman, D. and Littlefield, B. (1997): The student edition of Matlab, Prentice-Hall, New Jersey 1997. Hansen, E. (1992): Global Optimization Using Interval Analysis, Marcel Dekker, New York Hansen, P.C. (1987): The truncated SVD as a method for regularization, BIT 27 (1987), 534-553 Hansen, P.C. (1990): The discrete Picard condition for discrete ill-posed problems, BIT 30 (1990), 658-672 Hansen, P.C. (1990): Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank, SIAM J. Sci. Statist. Comput. 11 (1990), 503-518 Hansen, P.C. (1994): Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems, Numer. Algorithms 6 (1994), 1-35 Hansen, P.C. (1995): Test matrices for regularization methods, SIAM J. Sci. Comput. 16 (1995), 506-512 Hansen, P.C. (1998): Rank-deficient and discrete ill-posed problems, SIAM, Philadelphia 1998 Hanssen, R.F. (2001): Radar infriometry, Kluwer Academic Pule, Dordecht-Boston-London 2001 Hanssen, R.F., Teunissen, P.J.G. and Joosten, P. (2001): Phase ambiguity resolution for stacked radar interferometric data. In: Proc KIS2001, international symposium on kinematic systems in geodesy, Geomatics and Navigation, Banff, pp 317-320 Haralick, R.M., Lee, C., Ottenberg, K., and Nolle,¨ M. (1991): Analysis and Solution of the Three Point Perspective Pose Estimation Problem, Proc. IEEE Org. on Computer Vision and Pattern Recognition, pp. 592-598, 1991. Haralick, R.M., Lee, C., Ottenberg, K., and Nolle,¨ M. (1994): Review and Analysis of Solution of the Three Point Perspective Pose Estimation Problem, International Journal of Computer Vision 13 3 (1994) 331-356. Hardtwig, E. (1968): Fehler- und Ausgleichsrechung, Bibliographisches Institut, Mannheim 1968 Harley, B.I. (1954): A note on the probability integral of the correlation coefficient, Biometrika, 41, 278-280 Harley, B.I. (1956): Some properties of an angular transformation for the correlation coefficient, Biometrika 43 (1956), 219-223 Harris, B. (1967): Spectral analysis of time series, New York 1967 Harter, H.L. (1964): Criteria for best substitute interval estimators with an application to the normal distribution, J. Am. Statist. Ass. 59 (1964), 1133-1140 Harter, H.L. (1974/75): The method of least squares and some alternatives (five parts) International Statistics Review 42 (1974), 147-174, 235-264, 43 (1975), 1-44, 125-190, 269-278 Harter, H.L. (1977): The non-uniqueness of absolute values regression, Commun. Statist. Simul. Comput. 6 (1977), 829-838 Hartley, H.O. and J.N.K. Rao (1967): Maximum likelihood estimation for the mixed analysis of variance model, Biometrika 54 (1967), 93-108 Hartinger, H. and Brunner, F.K. (1999): Variances of GPS Phase Observations: The SIGMA- Model. GPS Solution 2/4: 35-43, 1999 Hartman, P. and G.S. Watson (1974): Normal distribution functions on spheres and the modified Bessel function, Ann.Prob. 2 (1974), 593-607 Hartmann, C., Van Keer Berghen, P., Smeyersverbeke, J. and D.L. Massart (1997): Robust orthogonal regression for the outlier detection when comparing two series of measurement results, Analytica Chimica Acta 344 (1997), 17-28 Hartung, J. (1978): Zur Verwendung von Vorinformation in der Regressionsanalyse, Tech. report, Inst. f¨ur Angew. Statistik, Universitat¨ Bonn, Germany 1978 Hartung, J. (1981): Non-negative minimum biased invariant estimation in variance componet models, Annals of Statistics 9(1981), 278-292 References 937

Hartung, J. (1982): Statistik, pp. 611-613, Oldenburg Verlag, Miinchen Hartung, J. (1999): Ordnungserhaltende positive Varianzschatzer¨ bei gepaarten Messungen ohne Wiederholungen, Allg. Statistisches Archiv 83 (1999), 230-247 Hartung, J. and B. Voet (1986): Best invariant unbiased estimators for the mean squared error of variance component estimators, J. Am. Statist. Ass. 81 (1986), 689-691 Hartung, J. and Elpelt, B. (1989): Multivariate Statistik, Oldenbourg Verlag, M¨unchen 1989 Hartung, J., Elpelt, B. and K.H. Klosener¨ (1995): Statistik, Oldenbourg Verlag, M¨unchen 1995 Hartung, J. and K.H. Jockel¨ (1982): Zuverlassigkeits-¨ und Wirtschaftlichkeits¨uberlegungen bei Straßenverkehrssignalanlagen, Qualitat¨ und Zuverlassigkeit¨ 27 (1982), 65-68 Hartung, J. and D. Kalin (1980): Zur Zuverlassigkeit¨ von Straßenverkehrssignalanlagen, Qualitat¨ und Zuverlassigkeit¨ 25 (1980), 305-308 Hartung, J. and H.J. Werner (1980): Zur Verwendung der restringierten Moore-Penrose-Inversen beim Testen von linearen Hypothesen, Z. Angew. Math. Mechanik 60 (1980), T344-T346 Harvey, A.C. (1993): Time series models, 2nd ed., Harvester Wheatsheaf, New York 1993 Harville, D.A. (1976): Extension of the Gauss-Markov theorem to include the estimation of random effects, Annals of Statistics 4 (1976), 384-395 Harville, D.A. (1977): Maximum likelihood approaches to variance component estimation and to related problems, J. Am. Statist. Ass. 72 (1977), 320-339 Harville, D.A. (1997): Matrix algebra from a statistician’s perspective, Springer-Verlag, Heidelberg Berlin New York 1997 Harville, D.A. (2001): Matrix algebra: exercises and solutions, Springer-Verlag, Heidelberg Berlin New York 2001 Haselett, J. (1989): Space time modeling in meterology- a review, Bul. Int. Statist. 53 (1989) 229-246 Hasselman, K., Munk, W. and MacDonald, G. (1963): Bispectrum of ocean waves in: M. Rosenblatt: Timeseries analysis, New York 1963 Hassibi, A. and S. Boyd (1998): Integer parameter estimation in linear models with applications to GPS, JEEE Trans. on Signal Processing 46 (1998), 2938-2952 Haslett, J. (1989): Space time modeling in meteorology - a review, Bull. lnt. Stat. lnst., 53, 229-246, 1989 Haslett, J. and K. Hayes (1998): Residuals for the linear model with structure, J. Roy. Statist. Soc. B60 (1998), 201-215 Hastie, T.J. and R.J. Tibshirani (1990): Generalized additive models, Chapman and Hall, Boca Raton 1990 Hauser, M.A., Potscher,¨ B.M. and E. Reschenhofer (1999): Measuring persistence in aggregate output: ARMA models, fractionally integrated ARMA models and nonparametric procedures, Empirical Economics 24 (1999), 243-269 Haussdorff, F. (1901): Beitrage¨ zur Wahrscheinlichkeitsrechnung, Koniglich¨ Sachsische¨ Gesellschaft der Wissenschaften zu Leipzig, berichte Math. Phys. Chasse 53 (1901), 152-178 Hawkins, D.M. (1993): The accuracy of elemental set approximation for regression, J. Am. Statist. Ass. 88 (1993), 580-589 Hayakawa, T. and Puri, M.L. (1985): Asymptotic distributions of likelihood ratio criterion for testing latent roots and latent vectors of a covariance matrix under an elliptical population, Biometrica, 72, 331-338 Hayes, K. and J. Haslett (1999): Simplifying general least squares, American Statistician 53 (1999), 376-381 O. Hazlett: On the theory of associative division algebras, Trans. American Math. Soc. 18 (1917) 167-176 He, K. (1995): The robustness of bootstrap estimator of variance, J. Ital. Statist. Soc. 2 (1995), 183-193 He, X. (1991): A local breakdown property of robust tests in linear regression, J. Multivar. Anal. 38, 294-305, 1991 He, X., Simpson, D.G. and Portnoy, S.L. (1990): Breakdown robustness of tests, J. Am. Statist. Ass. 85, 446-452, 1990 938 References

Healy, D.M. (1998): Spherical Deconvolution, J. Multivar. Anal. 67 (1998), 1-22 Heck, B. (1981): Der Ein uß einzelner Beobachtungen auf das Ergebnis einer Ausgleichung und die Suche nach Ausreißern in den Beobachtungen, Allgemeine Vermessungsnachrichten 88 (1981), 17-34 Heck, B.(1987): Rechenverfahren und Auswertemodelle der Landesvermessung, Wichmann Verlag, Karlsruhe 1987. Heideman, M.T., Johnson, D.H. and C.S. Burrus (1984): Gauss and the history of the fast Fourier transform, JEEE ASSP Magazine 1 (1984), 14-21 Heiligers, B. (1994): E-optimal designs in weighted polynomial regression, Ann. Stat. 22 (1994), 917-929 Hein, G. (1986): Integrated geodesy. In: Suenkel H (ed), Mathematical and numerical techniques in physical geodesy. Lecture Notes in Earth Sciences vol. 7. Springer, Heidelberg, pp. 505-548 Hein, G. and Landau, H. (1983): A contribution to 3D - operational geodesy, Part 3: Opera - a multi-purpose program for operational adjustment of geodetic observations of terrestrial type. Deutsche Geodatische¨ Kommission, 8ayerische Akademie der Wissenschaften, Report B 264, M¨unchen Heine, V. (1955): Models for two-dimensional stationary stochastic processes, Biometrika 42 (1955), 170-178 Heinrich, L. (1985): Nonuniform estimates, moderate and large derivations in the central limit theorem for m-dependent random variable, Math. Nachr. 121 (1985), 107-121 Heitz, S. (1967): Habilitationsschrift, Bonn 1967 Hekimoglu, S. (1998): Application of equiredundancy design to M-estimation, Journal of Surveying Engineering 124 (1998), 103-124 Hekimoglu, S. and M. Berber (2003): Effectiveness of robust methods in heterogeneous linear models, Journal of Geodesy 76 (2003), 706-713 Helmert, F.R. (1875): Uber¨ die Berechnung des wahrscheinlichen Fehlers aus einer endlichen Anzahl wahrer Beobachtungsfehler, Z. Math. U. Physik 20 (1875), 300-303 Helmert, F.R. (1876): Diskussion der Beobachtungsfehler in Koppes Vermessung f¨ur die Gotthardtunnelachse, Z. Vermessungswesen 5 (1876), 129-155 Helmert, F.R. (1876): Die Genauigkeit der Formel von Peters zur Berechnung der wahrscheinlichen Beobachtungsfehler direkter Beobachtungen gleicher Genauigkeit, Astronomische Nachrichten 88 (1876), 113-120 Helmert, F.R. (1876): Die Genauigkeit der Formel von Peters zur Berechnung des wahrscheinlichen Fehlers direkter Beobachtungen gleicher Genauigkeit, Astron. Nachrichten 88 (1976), 113-132 Helmert, F.R. (1876a): Uber¨ die Wahrscheinlichkeit der Potenzsummen der Beobachtungsfehler, Z. Math. U. Phys. 21 (1876), 192-218 Helmert, F.R. (1907): Die Ausgleichungsrechnung nach der Methode der kleinsten Quadrate, mit Anwendungen auf die Geodasie,¨ die Physik und die Theorie der Messinstrumente, B.G. Teubner, Leipzig Berlin 1907 Helmert, F.R. (1924): Die Ausgleichungsrechnung nach der. Methode der Kleinsten Quadrate. 3. Auflage. Teubner. Leipzig. 1924 Henderson, H.V. (1981): The vec-, the vec operator and Kronecker products: a review, Linear and Multilinear Algebra 9 (1981), 271-288 Henderson, H.V. and S.R. Searle (1981): Vec and vech operators for matrices, with some uses in Jacobians and multivariate statistics Henderson, H.V. and S.R. Searle (1981): On deriving the inverse of a sum of matrices, SIAM Review 23 (1981), 53-60 Henderson, H.V., Pukelsheim, F. and S.R. Searle (1983): On the history of the Kronecker product, Linear and Multilinear Algebra 14 (1983), 113-120 Hendriks, H. and Z. Landsman (1998): Mean location and sample mean location on manifolds: Asymptotics, tests, confidence regions, J. Multivar. Anal. 67 (1998), 227-243 Hengst, M. (1967): Einfuehrung in die Mathematische Statistik und ihre Anwendung, Bibliographisches Institut, Mannheim 1967 References 939

Henrici, P. (1962): Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices, Numer. Math. 4 (1962), 24-40 Hensel, K. (1968): Leopold Kronecker’s Werke, Chelsea Publ. Comp., New York 1968 Herzberg, A.M. and A.V. Tsukanov (1999): A note on the choice of the best selection criterion for the optimal regression model, Utilitas Mathematica 55 (1999), 243-254 Hesse, K. (2003): Domain decomposition methods in multiscale geopotential determination from SST and SGG, Berichte aus der Mathematik, Shaker Verlag, Aachen 2003 Hetherington, T.J. (1981): Analysis of directional data by exponential models, Ph.D. Thesis, University of California, Berkeley 1981 Heuel, S. and Forstner, W. (2001): Matching, Reconstructing and Grouping 30 Lines From Multi- ple Views Using Uncertain Projective Geometry. CVPR 2001, Posters Session 4.2001, S. 721. Heyde, C.C. (1997): Quasi-likelihood and its application. A general approach to optimal parameter estimation, Springer-Verlag, Heidelberg Berlin New York 1997 Hickernell, F.J. (1999): Goodness-of-fit statistics, discrepancies and robust designs, Statistics and Probability Letters 44 (1999), 73-78 Hida, T. and Si, S. (2004): An innovation approach to random fields: application of white noice theory, World Scientific 2004 Higham, N.J. and F. Tisseur (2000): A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra, SIAM J. Matrix Anal. Appl. 21 (2000), 1185-1201 Hinze, J.O. (1975): Turbulence, Mc Graw Hill, New York 1975 Heikkinen, M. (1982): Geschlossene Formeln zur Berechnung raumlicher¨ geodatischer¨ Koordi- naten aus rechtwinkligen Koordinaten, Zeitschrift f¨ur Vermessungswesen 107 (1982) 207-211. Hein, G. (1982a): A contribution to 3D-operational Geodesy (Principles and observation equations of terrestrial type), DGK Reihe B, Heft Nr. 258/VII pp. 31-64. Hein, G. (1982b): A contribution to 3D-operational Geodesy part 2, DGK Reihe B, Heft Nr. 258/VII pp. 65-85. Heiskanen, W. A. and Moritz, H. (1976): Physical Geodesy, Freeman and Company, London 1976. Hemmleb, G. (1986): Vor hundert Fahren wurde Friedvich Robert Helmert Direkto des Pvenssischen Geodetischen Institutes, Vermessungstechnik 34, (1986), pp. 178 Hide, R. (2010): A path od discovery in geophysical fluid dynamics, Royal Astron. Soc., Astronomy and Geophysics, 51 (2010) 4.16-4.23 Hinde, J. (1998): Overdispersion: models and estimation, Comput. Stat. & Data Anal. 27 (1998), 151-170 Hinkley, D. (1979): Predictive likelihood, Ann. Statist. 7 (1979), 718-728 Hinkley, D., Reid, N. and E.J. Snell (1990): Statistical theory and modelling, Chapman and Hall, Boca Raton 1990 Hiroven, R.A.: a) Publ. Inst. Geod. Photogr. Cart., Ohio State University Report No.4, 1956; b) Ann. Acad. Scient. 1962. Hirvonen, R.A. (1971): Adjustment by least squares in geodesy and photogrammetry, Frederick Ungar Publ. Co., New York Hirvonen, R.A. and Moritz, H. (1963): Practical computation of gravity at high altitudes, Institute of Geodesy, Photogrammetry and Cartography, Ohio State University, Report No. 27, Ohio 1963. Hjorth, J.S.U. (1993): Computer intensive statistical methods, Chapman and Hall, Boca Raton 1993 Ho, L.L. (1997): Regression models for bivariate counts, Brazilian J. Probability and Statistics 11 (1997), 175-197 Hoaglin, D.C. and R.E. Welsh (1978): The Hat Matrix in regression and ANOVA, The American Statistician 32 (1978), 17-22 Hodge, W.V.D. (1941): Theory and applications of harmonic integrals, Cambridge University Press, Cambridge 1941 Hodge, W.V.D. and D. Pedoe (1968): Methods of algebraic geometry, I, Cambridge University Press, Cambridge 1968 940 References

Hoel, P.G. (1965): Minimax distance designs in two dimensional regression, Ann. Math. Statist. 36 (1965), 1097-1106 Hoel, P.G., S.C. Port and C.J. Stone (1972): Introduction to stochastic processes, Houghton Mifflin Publ., Boston 1972 Hoerl, A.E. and Kennard, R.W. (1970): Ridge regression: biased estimation for nonorthogonal problems, Technometrics 12 (1970), 55-67 Hoerl, A.E. and R.W. Kennard (2000): Ridge regression: biased estimation for nonorthogonal problems, Technometrics 42 (2000), 80-86 Hopke,¨ W. (1980): Fehlerlehre und Ausgleichungsrechnung, De Gruyter, Berlin 1980 Hoffmann, K. (1992): Improved estimation of distribution parameters: Stein-type estimators, Teubner-Texte zur Mathematik, Stuttgart/Leipzig 1992 Hofmann, B. (1986): Regularization for applied inverse and ill-posed problems, Teubner Texte zur Mathematik 85, Leipzig 1986 Hofman-Wellenhof, B., Lichtenegger, H. and Collins, J. (1994): Global Positioning System: Theory and practice, Springer-Verlag, Wien 1994. Hofmann-Wellenhof, B., Moritz, H. (2005): Physical Geodesy, Springer Wien, New York Hogg, R.V. (1972): Adaptive robust procedures: a partial review and some suggestions for future applications and theory, J. Am. Statist. Ass. 43 (1972), 1041-1067 Hogg, R.V. and R.H. Randles (1975): Adaptive distribution free regression methods and their applications, Technometrics 17 (1975), 399-407 Hong, C.S. and H.J. Choi (1997): On L1 regression coefficients, Commun. Statist. Simul. Comp. 26 (1997), 531-537 Hora, R.B. and R.J. Buehler (1965): Fiducial theory and invariant estimation, Ann. Math. Statist. 37 (1965), 643-656 Horaud, R., Conio, B. and Leboulleux, O. (1989): An Analytical Solution for the Perspective 4-Point Problem, Computer Vision, Graphics and Image Processing 47 (1989) 33-44. Horn, R.A. (1989): The Hadamard product, in Matrix Theory and Applications, C.R. Johnson, ed., Proc. Sympos. Appl. Math. 40 (1989), 87-169 Horn, R.A. and C.R. Johnson (1990): Matrix analysis, Cambridge University Press, Cambridge 1990 Horn, R.A. and C.R. Johnson (1991): Topics on Matrix analysis, Cambridge University Press, Cambridge 1991 Horn, S.D. and R.A. Horn (1975): Comparison of estimators of heteroscedastic variances in linear models, Am. Stat. Assoc., 70, 872-879. Hornoch, A.T. (1950):uber ¨ die Zur¨uckf¨uhrung der Methode der kleinsten Quadrate auf das Prinzip des arithmetischen Mittels, Osterr.¨ Zeitschrift f¨ur Vermessungswesen 38 (1950), 13-18 Hoschek, J. and Lasser, D. (1992): Grundlagen der geometrischen Datenverarbeitung. B.G. Teubner, Stuttgart. Hosking, J.R.M. and J.R. Wallis (1997): Regional frequency analysis. An approach based on L-moments, Cambridge University Press 1997 Hosoda, Y. (1999): Truncated least-squares least norm solutions by applying the QR decomposition twice, trans. Inform. Process. Soc. Japan 40 (1999), 1051-1055 Hotelling, H. (1931): The generalization of Student’s ratio, Ann. Math. Stat., 2, 360-378. Hotelling, H. (1933): analysis of a complex of statistical variables into principal components, J. Educ. Psych., 24, 417-441, 498-520. Hotelling, H. (1951): A generalized T test and measure of multivariate dispersion, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley and Los Angeles, 23-41. Hotelling, H. (1953): New light on the correlation coefficient and its transform, J. Roy. Statist. Soc. B15 (1953), 225-232 Householder, A.S. (1958): Unitary Triangulation of a Nonsymmetric Matrix. J. Assoc. Compo Mach., Vol. 5, 339. Howind, J., Bohringer,¨ M., Mayer, M., Kutterer, H., Lindner, K.v. and Heck, B (2000): Korrelationsstudien bei GPS-Phasenbeobachtungen. In: Dietrich, R. (ed): Deutsche Beitrage¨ References 941

zu GPS-Kampagnen des Scientific Committee on Antartic Research (SCAR) 1995-1998, Deutsche Geodatische¨ Kommission B310: 201-205, Munich, 2000. Hoyle, M.H. (1973), Transformations - an introduction and a bibliography, Int. Statist. Review 41 (1973), 203-223 Hsu, J.C. (1996): Multiple comparisons, Chapman and Hall, Boca Raton 1996 Hsu, P.L. (1938a): Notes on Hotelling’s, generalized T, Ann. Math. Stat., 9, 231-243 Hsu, P.L. (1938b): On the best unbiassed quadratic estimate of the variance, Statist. Res. Mem., Univ. London 2 (1938), 91-104. Hsu, P.L. (1940a): On generalized analysis of variance (1), Biometrika, 31, 221-237 Hsu, P.L. (1940s): An algebraic derivation of the distribution of rectangular coordinates, Proc. Edinburgh Math. Soc. 6 (1940), 185-189 Hsu, R. (1999): An alternative expression for the variance factors in using Iterated Almost Unbiased Estimation, Journal of Geodesy 73 (1999), 173-179 Hsu, Y.S., Metry, M.H. and Y.L. Tong (1999): Hypotheses testing for means of dependent and heterogeneous normal random variables, J. Statist. Planning and Inference 78 (1999), 89-99 Huang, J.S. (1999): Third-order expansion of mean squared error of medians, Statistics & Probability Letters 42 (1999), 185-192 H¨uber, P.J. (1964): Robust estimation of a location parameter, Annals Mathematical Statistics 35 (1964), 73-101 H¨uber, P.J. (1972): Robust statistics: a review, Annals Mathematical Statistics 43 (1972), 1041-1067 H¨uber, P.J. (1981): Robust Statistics, J. Wiley, New York 1981 H¨uber, P.J. (1984): Finite sample breakdown of M- and P- estimators, Ann. Stat., 12 (1984), pp. 119-126 H¨uber, P.J. (1985): Projection persuit, Annals of Statistics 13, (1984), pp. 435-475 Huckeman, S., Hotz, T. and A. Munk (2007): Intrinsic shape analysis: PCA for Riemannian manifolds modulo isometric Lie group actions, Statistica Sinicia 2007 Huckeman, S. (2009): On the meaning of the mean slope, Digital Signal Processing 16 (2009) 468-478 Huckeman, S. (2010): On the meaning of mean slope, arXiv. (1002.07950.) (stat. ME), preprint 2010 Huet, S., A. Bouvier, M.A. Gruet and E. Jolivet (1996): Statistical tools for nonlinear regression, Springer-Verlag, Heidelberg Berlin New York 1996 Huffel, van S. and H. Zha (1991a): The restricted total least squares problem: Formulation, algorithm, and properties, SIAM J. Matrix Anal. Appl. 12 (1991), 292-309 Huffel, van S. and H. Zha (1991b): The total least squares problem, SIAM J. Matrix Anal. Appl. 12 (1991), 377-407 Huffel, van S. and H. Zha (1993): The total least square problem, in: C.R. Rao (ed.), Handbook of Statistics, Vol. 2, pp. 337-408, North Holland, Amsterdam-London-New York-Tokyo 1993 Hugentobler, U. and Dach, R. and Fridez, P. (2004): Bernese GPS Software Version 5.0. University of Bern, 2004. Humak K M. S. (1977): Statistische Methoden der Modellbildung Band I. Statistische Inferenz f¨ur lineare Parameter. Akademie-Verlag, Berlin, 1977. Hunter, D.B. (1995): The evaluation of Legendre functions of the second kind, Numerical Algorithms 10 (1995), 41-49 Huwang, L. and Y.H.S. Huang (2000): On errors-in-variables in polynomical regression-Berkson case, Statistica Sinica 10 (2000), 923-936 Hwang, C. (1993): Fast algorithm for the formation of normal equations in a least-squares spherical harmonic analysis by FFT, manuscripta geodaetica 18 (1993), 46-52 Ibragimov, F.A. and R.Z. Kasminskii (1981): Statistical estimation, asymptotic theory, Springer- Verlag, Heidelberg Berlin New York 1981 ICD (2000): Interface Control Document, Navstar GPS Space Segment/Navigation User Interfaces, ICDGPS-200C 942 References

Ihorst, G. and G. Trenkler (1996): A general investigation of mean square error matrix superiority in linear regression, Statistica 56 (1996), 15-23 Imhof, L. (2000): Exact designs minimizing the integrated variance in quadratic regression, Statistics 34 (2000), 103-115 Imhof, J.P. (1961): Computing the distribution of quadratic forms in normal variables, Biometrika 48 (1961), 419-426 Imon, A.H.M.R. (2002): On deletion residuals. Calcutta Stat. Assoc. Bull. 53, 209-210 (2002), 65-79. Inda, de M.A. et al. (1999): Parallel fast Legendre transform, proceedings of the ECMWF Workshop Towards TeraComputing - the Use of Parallel Processors in Meteorology”, Worls Scientific Publishing Co 1999 Ireland, K. and Rosen, M. (1990): A classical introduction to modern number theory, Springer- Verlag, New York 1990. Irle, A. (1990): Sequentialanalyse: Optimale sequentielle Tests, Teubner Skripten zur Mathematischen Stochastik. Stuttgart 1990 Irwin, J.O. (1937): On the frequency distribution of the means of samples from a population having any law of frequency with finite moments with special reference to Pearson’s Type II, Biometrika 19 (1937), 225-239 Isham, V. (1993): Statistical aspects of chaos, in: Networks and Chaos, Statistical and Probabilistic Aspects (ed. D.E. Barndorff-Nielsen et al.), 124-200, Chapman and Hall, London 1993 Ishibuchi, H., Nozaki, K. and Tanaka H. (1992): Distributed representation of fuzzy rules and its application to pattern classification, Fuzzy Sets and Systems 52 (1992), 21-32 Ishibuchi, H., Nozaki, K., Yamamoto, N. and Tanaka, H. (1995): Selecting fuzzy if-then rules for classification problems using genetic algorithms, IEEE Transactions on Fuzzy Systems 3 (1995), 260-270 Ishibuchi, H. and Murata, T. (1997): Minimizing the fuzzy rule base and maximizing its performance by a multi-objective genetic algorithm, in: Sixth FUZZ-IEEE Conference, Barcelona 1997, 259-264 Ishimaru, A. (1978): Wave Propagation and Scattering in Random Media, Vol.2. Academic Press, New York, 1978. Ivanov, A.V., S. Zwanzig, (1981): An asymptotic expansion for the distribution of the least squares estimator of a vector parameter in nonlinear regression. Soviet Math. Dokl. Vol. 23 (1981), No.1, 118-121. Ivanov, A.V., S. Zwanzig, (1996): Saddlepoint approximation in nonlinear regression. Theory of Stochastic Processes, 2, (18),1996,156-162. Ivanov, A.V., S. Zwanzig, (1983): An asymptotic expansion of the distribution of the least squares estimator in the nonlinear regression model. Statistics, VoL 14 (1983), No. 1, 7-27. Izenman, A.J. (1975): Reduced-rank regression for the multivariate linear model, J. Multivar. Anal. 5 (1975), 248-264 Jacob, N. (1996): Pseudo-differential operators and Markov processes, Akademie Verlag, Berlin 1996 Jacobi, C.G.J. (1841): Deformatione et proprietatibus determinatum, Crelle’s J. reine angewandte Mathematik, Bd.22 Jacod, J., Protter, P. (2000): Probability essentials, Springer-Verlag, Heidelberg Berlin New York 2000 Jaeckel, L.A. (1972): Estimating regression coefficients by minimizing the dispersion of the residuals, Annals Mathematical Statistics 43 (1972), 1449-1458 Jajuga, K. (1995): On the principal components of time series, Statistics in Transition 2 (1995), 201-205 James, A.T. (1954): Normal multivariate analysis and the orthogonal group, Ann. Math. Statist. 25 (1954), 40-75 Jammalamadaka S. R., Sengupta D. (1999): Changes in the general linear model: A unified approach. Linear Algebra Appl. 289, 1-3 (1999), 225-242. References 943

Jammalamadaka, S.R., SenGupta, A. (2001): Topics in circular statistics, World Scientific, Singapore 2001 Janacek, G. (2001): Practical time series, Arnold, London 2001 Jara, A., Quintana, E. and E. Sammertin (2008): Linear effects mixed models with skew-elliptical distributions: A Bayesian approach. In Computational Statist. Data Analysis 52 (2008) 5033-5045 Jeffery, H. (1961): Cartesian tensors, Cambridge University Press Jekeli, C. (2001): Inertial Navigation Systems with Geodetic Applications. Walter deGruyter, Berlin-New York, 352p Jennison, C. and B.W. Turnbull (1997): Distribution theory of group sequential t, x2 and F-Tests for general linear models, Sequential Analysis 16 (1997), 295-317 Jennrich, R.I. (1969): Asymptotic properties of nonlinear least squares estimation, Ann. Math. Statist. 40 (1969), 633-643 Jensen, J.L. (1981): On the hyperboloid distribution, Scand. J. Statist. 8 (1981), 193-206 Jiang, J. (1997): A derivation of BLUP - Best linear unbiased predictor, Statistics & Probability Letters 32 (1997), 321-324 Jiang, J. (1999): On unbiasedness of the empirical BLUE and BLUP, Statistics & Probability 41 (1999), 19-24 Jiang, J., Jia, H. and H. Chen (2001): Maximum posterior estimation of random effects in generalized linear mixed models, Statistica Sinica 11 (2001), 97-120 Joe, H. (1997): Multivariate models and dependence concepts, Chapman and Hall, Boca Raton 1997 Jorgensen,¨ B. (1984): The delta algorithm and GLIM, Int. Statist. Review 52 (1984), 283-300 Jorgensen,¨ B. (1997): The theory of dispersion models, Chapman and Hall, Boca Raton 1997 Jorgensen,¨ B., Lundbye-Christensen, S., Song, P.X.-K. and L. Sun (1996b): State space models for multivariate longitudinal data of mixed types, Canad. J. Statist. 24 (1996b), 385-402 Jorgensen, P.C., Kubik, K., Frederiksen, P. and W. Weng (1985): Ah, robust estimation! Australian Journal of Geodesy, Photogrammetry and Surveying 42 (1985), 19-32 John, S. (1962): A tolerance region for multivariate normal distributions, Sankya A24 (1962), 363-368 Johnson, N.L. and S. Kotz (1972): Distributions in statistics: continuous multivariate distributions, J. Wiley, New York 1972 Johnson, N.L., Kotz, S. and X. Wu (1991): Inspection errors for attributes in quality control, Chapman and Hall, Boca Raton 1991 Johnson, N.L. and S. Kotz and Balakrishnan, N. (1994): Continuous Univariate Distributions, vol 1. 2nd ed, John Wiley & Sons, New York, 784p Johnson, N.L. and S. Kotz and Balakrishnan, N. (1995): Continuous Univariate Distributions, vol 2. 2nd ed, John Wiley & Sons, New York, 752p Jonge de, P.J., Tiberius, C.C.J.M. (1996a): The LAMBDA method for integer ambiguity estima- tion: implementation aspects. Publications of the Delft Computing Centre, LGR-Series No. 12 Jonge de, P.J., Tiberius, C.C.J.M. (1996b): Integer estimation with the LAMBDA method. In: Beutler, G et al. (eds) Proceedings IAG symposium No. 115, GPS trends in terrestrial, airborne and spaceborne applications. Springer, Heidelberg, pp 280-284 Jonge de, P.J., Tiberius, C.C.J.M., Teunissen, P.J.G. (1996): Computational aspects of the LAMBDA method for GPS ambiguity resolution. In: Proceedings ION GPS-96, pp 935-944 Jordan, W., Eggert, O. and Kneissl, M. (1956): Handbuch der Vermessungskunde, Vol. III, Hohenmessung. Metzlersche Verlagsbuchhandlung, 10th edition, Stuttgart. Jorgenson, B. (1999): Multivariate dispersion models, J. multivariate Analysis, 74, (1999), pp. 267-281 Joshi, V.M. (1966): Admissibility of confidence intervals, Ann. Math. Statist. 37 (1966), 629-638 Judge, G.G. and M.E. Bock (1978): The statistical implications of pre-test and Stein-rule estimators in econometrics, Amsterdam 1978 944 References

Judge, G.G., W.E. Griffiths, R.C. Hill, and T.C. Lee (1980): The Theory and Practice of Econometrics, New York: John Wiley & Sons, 793 pages Judge, G.G. and T.A. Yancey (1981): Sampling properties of an inequality restricted estimator, Economics Lett. 7 (1981), 327-333 Judge, G.G. and T.A. Yancey (1986): Improved methods of inference in econometrics, Amsterdam 1986 Jukiec,` D. and R. Scitovski (1997): Existence of optimal solution for exponential model by least squares, J. Comput. Appl. Math. 78 (1997), 317-328 Jupp, P.E. and K.V. Mardia (1980): A general correlation coefficient for directional data and related regression problems, Biometrika 67 (1980), 163-173 Jupp, P.E. and K.V. Mardia (1989): A unified view of the theory of directional statistics, 1975-1988, International Statist. Rev. 57 (1989), 261-294 Jureckova, J. (1995): Affine- and scale-equivariant M-estimators in linear model, Probability and Mathematical Statistics 15 (1995), 397-407 Jureckova, J.; Sen, P.K. (1996): In Robust Statistical Procedures Asymptotics and Interrelation, John Wiley & Sons: New York, USA, 1996. Jurisch, R. and G. Kampmann (1997): Eine Verallgemeinerung des arithmetischen Mittels f¨ur einen Freiheitsgrad bei der Ausgleichung nach vermittelnden Beobachtungen, Zeitschrift f¨ur Vermessungswesen 122 (1997), 509-521 Jurisch, R. and G. Kampmann (1998): Vermittelnde Ausgleichungsrechnung mit balancierten Beobachtungen - erste Schritte zu einem neuen Ansatz, Zeitschrift f¨ur Vermessungswesen 123 (1998), 87-92 Jurisch, R. and G. Kampmann (2001): Pl¨ucker-Koordinaten - ein neues Hilfsmittel zur Geometrie- Analyse und Ausreissersuche, Vermessung, Photogrammetrie und Kulturtechnik 3 (2001), 146-150 Jurisch, R. and G. Kampmann (2002): Teilredundanzen und ihre nat¨urlichen Verallgemeinerungen, Zeitschrift f¨ur Vermessungswesen 127 (2002), 117-123 Jurisch, R., Kampmann, G. and B. Krause (1997):uber ¨ eine Eigenschaft der Methode der kleinsten Quadrate unter Verwendung von balancierten Beobachtungen, Zeitschrift f¨ur Vermessungswesen 122 (1997), 159-166 Jurisch, R., Kampmann, G. and J. Linke (1999a):uber ¨ die Analyse von Beobachtungen in der Ausgleichungsrechnung - Außere¨ und innere Restriktionen, In “Qua Vadis Geodesia”, Festschrift f¨ur Erik W. Grafarend, Schriftenreihe der Institute des Studienganges Geodasie¨ und Geoinformatik 1999, 207-230 Jurisch, R., Kampmann, G. and J. Linke (1999b):uber ¨ die Analyse von Beobachtungen in der Ausgleichungsrechnung - Teil I, Zeitschrift f¨ur Vermessungswesen 124 (1999), 350-357 Jurisch, R., Kampmann, G. and J. Linke:uber ¨ die Analyse von Beobachtungen in der Ausgleichungsrechnung - Teil II, Zeitschrift f¨ur Vermessungswesen 124 (1999), 350-357 Kagan, A.M., Linnik, J.V. and C.R. Rao (1965): Characterization problems of the normal law based on a property of the sample average, Sankya A27 (1965), 405-406 Kagan, A. and L.A. Shepp (1998): Why the variance?, Statist. Prob. Letters 38 (1998), 329-333 Kagan, A. and Z. Landsman (1999): Relation between the covariance and matrices, Statistics & Probability Letters 42 (1999), 7-13 Kagan, Y.Y. (1992): Correlations of earthquake focal mechanisms, Geophys. J. Int., 110, 305-320 Kagan, Y.Y. (1990): Random stress and earthquake statistics: spatial dependence, Geophys. J. Int., 102, 573-583 Kagan, Y.Y. (1991): Likelihood analysis of earthquake catalogues, Geophys. J. Int., 106, 135-148 Kagan, Y.Y. and L. Knopoff (1985):Lorder statistical moment of the seismic moment tensor, Geophys. J. R. astr. Soc., 81,429-444 Kahmen, H. and Faig, W. (1988): Surveying, Walter de Gruyter, Berlin 1988. Kahn, M., Mackisack, M.S., Osborne, M.R. and G.K. Smyth (1992): On the consistency of Prony’s method and related algorithms, Jour. Comp. and Graph. Statist. 1 (1992), 329-349 References 945

Kahng, M.W. (1995): Testing outliers in nonlinear regression, Journal of the Korean Stat. Soc. 24 (1995), 419-437 Kakkuri, J. and Chen, R. (1992): On horizontal crustal strain in Finland, Bull. Geod., 66, 12-20 Kakwani, N.C. (1968): Note on the unbiasedness of mixed regression estimation, Econometrica 36 (1968), pp. 610-611 Kalkbrener, M. (1990a): Primitive Polynomial Remainder Sequences. Technical Report RISCLinz Series no. 90-01.0, Research Institute for Symbolic Computation, Univ. of Linz. Kalkbrener, M. (1990b): Solving Systems of Bivariate Algebraic Equations by using Primitive Polynomial Remainder Sequences. Technical Report RISC-Linz Series no. 90-21.0, Research Institute for Symbolic Computation, Univ. of Linz. Kalkbrener, M. (1990c): Schreiben von M. Kalkbrener, Research Institute for Symbolic Computation, Johannes Kepler Universitat Linz an P. Lohse, Geodatisches¨ Institut der Universitat Stuttgart vom 30. Mai 1990. nicht veroffentlicht. Kalkbrener, M. (1991): Three Contributions to Elimination Theory. Dissertation, Institut fiir Mathematik, Technisch-Naturwissenschaftliche Fakultat, Johannes Kepler Universit.at Linz. Kallianpur, G. (1963): von Mises functionals and maximum likelihood estimation, Sankya A25 (1963), 149-158 Kallianpur, G. and Y.-T. Kim (1996): A curious example from statistical differential geometry, Theory Probab. Appl. 43 (1996), 42-62 Kallenberg, O. (1986): Random measures, Academic Press, London 1984 Kallenberg, O. (1997): Foundations of modern probability, Springer-Verlag, Heidelberg Berlin New York 1997 Kaleva, O. (1994): Interpolation of fuzzy data, Fuzzy Sets Sys, 61, 63-70. Kalman, R.: A New Approach to Linear Filtering and Prediction Problems, Trans. ASME Ser. D, J. Basic Eng. 82, 35 (1960J. Kaminsky, K.S. and P.I. Nelson (1975): Best linear unbiased prediction of order statistics in location and scale families, J. Am. Statist. Ass. 70 (1975), 145-150 Kaminsky, K.S. and L.S. Rhodin (1985): Maximum likelihood prediction, Ann. Inst. Statist. Math. A37 (1985), 507-517 Kampmann, G. (1988): Zur kombinativen Norm-Schatzung¨ mit Hilfe der L1-, der L2- und der Boskovic-Laplace-Methode mit den Mittlen der linearen Programmierung, Ph.D. Thesis, Bonn University, Bonn 1988 Kampmann, G. (1992): Zur numerischenuberf¨ ¨ uhrung verschiedener linearer Modelle der Ausgleichungsrechnung, Zeitschrift f¨ur Vermessungswesen 117 (1992), 278-287 Kampmann, G. (1994): Robuste Deformationsanalyse mittels balancierter Ausgleichung, Allgemeine Vermessungs-Nachrichten 1 (1994), 8-17 Kampmann, G. (1997): Eine Beschreibung der Geometrie von Beobachtungen in der Ausgleichungsrechnung, Zeitschrift f¨ur Vermessungswesen 122 (1997), 369-377 Kampmann, G. and B. Krause (1996): Balanced observations with a straight line fit, Bolletino di Geodesia e Scienze Affini 2 (1996), 134-141 Kampmann, G. and B. Krause (1997): A breakdown point analysis for the straight line fit based on balanced observations, Bolletino di Geodesia e Scienze Affini 3 (1997), 294-303 Kampmann, G. and B. Renner (1999):uber ¨ Modell¨uberf¨uhrungen bei der linearen Ausgleichungsrechnung, Allgemeine Vermessungs-Nachrichten 2 (1999), 42-52 Kampmann, G. and B. Renner (2000): Numerische Beispiele zur Bearbeitung latenter Bedingungen und zur Interpretation von Mehrfachbeobachtungen in der Ausgleichungsrechnung, Zeitschrift f¨ur Vermessungswesen 125 (2000), 190-197 Kampmann, G. and B. Krause (2004): Zur statistischen Begr¨undung des Regressionsmodells der balanzierten Ausgleichungsrechnung, Z. Vermessungswesen 129 (2004), 176-183 Kannan, N. and D. Kundu (1994): On modified EVLP and ML methods for estimating superimposed exponential signals, Signal Processing 39 (1994), 223-233 Kantz, H. and Scheiber, T. (1997): Nonlinear rime series analysis, Cambridge University Press, Cambridge 1997 946 References

Kanwal, R.P. (1971): Linear integral equations, theory and techniques. Academic Press, New York, London 1971 Kaplan, E.D. and Hegarty, C.J. (eds) (2006): Understanding GPS: Principles and Applications. 2nd ed, Artech Karatzas, I. and S.E. Shreve (1991): Brownian motion and stochastic calculus, Springer-Verlag, Heidelberg Berlin New York 1991 Karcz, I., Forrai, J. and Steinberg, G. (1992): Geodetic Network for Study of Crustal Moven1ents Across the Jordan-Deas Sea Rift. Journal of Geodynamics. 16:123-133. Kariya, T. (1989): Equivariant estimation in a model with an ancillary statistic, Ann. Statist 17 (1989), 920-928 Karlin, S. and W.J. Studden (1966): Tchebychev systems, Interscience, New York (1966) Karlin, S. and W.J. Studden (1966): Optimal experimental designs, Ann. Math. Statist. 57 (1966), 783-815 Karman, T. (1937): Proc. Nat. Acad. Sci. Volume 23, Washington 1937 Karman, T. and L. Howarth: Proc. Roy. Soc. A 164 (1938). Karman, T. (1937): On the statistical theory of turbulence, Proc. Nat. Acad. Sci. 23 (1937) DS-1U5. Karman, T. and L. Howrath (1938): On the statistical theory of isotropic turbulence, Proc. Royal Soc. London A 164 (1938) 192-215 Karr, A.F. (1986): Pointe process and their statistical interference, Marcel Dekker, New York, 1986 Kaula, W.M.: a) J. Geoph. Res. 64, 2401 (1959); b, Rev. Geoph. 507 (1963). Kasala, S. and T. Mathew (1997): Exact confidence regions and tests in some linear functional relationships, Statistics & Probability Letters 32 (1997), 325-328 Kasietczuk, B. (2000): Geodetic network adjustment by the maximum likelihood method with application of local variance, asymmetry and excess coefficients, Anno LIX - Bollettino di Geodesia e Scienze Affini 3 (2000), 221-235 Kass, R.E. and P.W. Vos (1997): Geometrical foundations of asymptotic inference, J. Wiley, New York 1997 Kastrup, H.A. (1962): Zur physikalischen Deutung und darstellungstheoretischen Analyse der konformen Transformationen von Raum und Zeit, Annalen der Physik 9 (1962), 388-428 Kastrup, H.A. (1966): Gauge properties of the Minkowski space, Physical Review 150 (1966), 1183-1193 Kay, S.M. (1988): Sinusoidal parameter estimation, Prentice Hall, Englewood Cliffs, N.J. 1988 Keller, J.B. (1975): Closest unitary, orthogonal and Hermitian operators to a given operator, Math. Mag. 46 (1975), 192-197 Kelly, R.J. and T. Mathew (1993): Improved estimators of variance components having smaller probability of negativity, J. Roy. Stat. Soc. B55 (1993), 897-911 Kelm R, (1978): Ist die Variantzshatzung nach Helmert MINQUE? Allgemeine VermessungsNachrichten, 85, 49-54. Kemperman, J.H.B. (1956): Generalized tolerance limits, Ann. Math. Statist. 27 (1956), 180-186 Kendall, D.G. (1974): Pole seeking Brownian motion and bird navigation, J. Roy. Statist. Soc. B36 (1974), 365-417 Kendall, D.G. (1984): Shape manifolds, Procrustean metrics, and complex projective space, Bulletin of the London Mathematical Society 16 (1984), 81-121 Kendall, M.G. (1960): The evergreen correlation coefficient, 274-277, in: Essays on Honor of Harold Hotelling, ed. I. Olkin, Stanford University Press, Stanford 1960 Kendall, M.G. and Stuart, A. (1958): The advanced theory of statistics, Vol. 1, distribution theory, Charles Griffin and Company Ltd, London Kendall, M.G. and Stuart, A. (1977): The advanced theory of statistics. Vol. 1: Distribution theory. Charles Griffin & Company Lt., London-High Wycombe, 1977 (4th ed.) Kendall, M.G. and Stuart, A. (1979): The advanced theory of statistics. Vol. 2: Inference and relationship. Charles Griffin & Company Lt., London-High Wycombe, 1979 (4th ed.). Kenney, C.S., Laub, A.J. and M.S. Reese (1998): Statistical condition estimation for linear systems, SIAM J. Scientific Computing 19 (1998), 566-584 References 947

Kent, J. (1976): Distributions, processes and statistics on spheres, Ph. D. Thesis, University of Cambridge Kent, J.T. (1983): Information gain and a general measure of correlation, Biometrika 70 (1983), 163-173 Kent, J.T. (1997): Consistency of Procrustes estimators, J. R. Statist. Soc. B59 (1997), 281-290 Kerr, R.M. (1985): Higher order derivative correlations and alignment of small scale structures in isotropic numerical turbulence, J. Fluid Mech. 153 (1985) 31-58 Kertz, W. (1969): Einfuehrung in die Geophysik, BI - Taschenbuch, Mannheim 1969/71 Keshin, M. (2004): Directional statistics of satellite-satellite single-difference widelane phase biases, Artificial satellites, 39 (2004), pp. 305-324 Khan, R.A. (1998): Fixed-width confidence sequences for the normal mean and the binomial probability, Sequential Analysis 17 (1998), 205-217 Khan, R.A. (2000): A note on Hammersley’s estimator of an integer mean, J. Statist. Planning and Inference 88 (2000), 37-45 Khatri, C.G. and C.R. Rao (1968): Solutions to some fundamental equations and their applications to characterization of probability distributions, Sankya A30 (1968), 167-180 Khatri, C.G. and S.K. Mitra (1976): Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math. 31 (1976), 597-585 Khuri, A.I., Mathew, T. and B.K. Sinha (1998): Statistical tests for mixed linear models, J. Wiley, New York 1998 Khuri, A.I. (1999): A necessary condition for a quadratic form to have a chi-squared distribution: an accessible proof, Int. J. Math. Educ. Sci. Technol. 30 (1999), 335-339 Kiamehr R., (2006): Precise Gravimetric Geoid Model for Iran Based o’n GRACE and SRTM Data and the Least-Squares Modification of Stokes’ Formula with Some Geodynamic Interpretations. Ph.D. Thesjs, Division of Geodesy, Royal Institute of Technology, Stockholm, Sweden Kiamehr, R. and Eshagh, M. (2008): Estimating variance components of ellipsoidal, orthometric and geoidal heights through the GPS/levelling network in Iran, J. Earth and Space Physics 34 (2008) 1-13 Kianifard F., Swallow W. H. (1996): A review of the development and application of recursive residuals in linear models. J. Am. Stat. Assoc. 91, 433 (1996), 391-400. Kida, S. (1989): Statistics of velocity gradients in turbulence at moderate Reynolts number, Fluid dynamics research 4 (1989) 347-370 Kidd, M. and N.F. Laubscher (1995): Robust confidence intervals for scale and its application to the Rayleigh distribution, South African Statist. J. 29 (1995), 199-217 Kiefer, J. (1974): General equivalence theory for optimal designs (approximate theory), Ann. Stat. 2 (1974), 849-879 Kiefer, J. (1959): Optimum experimental design. J Royal Stat Soc Ser B 21:272-319 Kiefer, J.C. and J. Wolfowitz (1959): Optimum design in regression problem, Ann. Math. Statist. 30 (1959), 271-294 Killian, K. (1990): Der gefahrliche¨ Ort desuberbestimmten ¨ raumlichen¨ R¨uckwartseinschneidens,¨ Ost.Zeitschrift¨ f¨ur Vermessungs wesen und Photogrammetry 78 (1990) 1-12. King, J.T. and D. Chillingworth (1979): Approximation of generalized inverses by iterated regularization, Numer. Funct. Anal. Optim. 1 (1979), 499-513 King, M.L. (1980): Robust tests for spherical symmetry and their application to least squares regression, Ann. Statist. 8 (1980), 1265-1271 Kirkwood, B.H., Royer, J.Y., Chang, T.C. and R.G. Gordon (1999): Statistical tools for estimating and combining finite rotations and their uncertainties, Geophys. J. Int. 137 (1999), 408-428 Kirsch, A. (1996): An introduction to the mathematical theory of inverse problems, Springer- Verlag, Heidelberg Berlin New York 1996 Kitagawa, G. and W. Gersch (1996): priors analysis of time series, Springer-Verlag, Heidelberg Berlin New York 1996 Klebanov, L.B. (1976): A general definition of unbiasedness, Theory of Probability and Appl. 21 (1976), 571-585 948 References

Klees, R., Ditmar, P. and P. Broersen (2003): How to handle colored observation noise in large least-squares problems, Journal of Geodesy 76 (2003), 629-640 Kleffe, J. (1976): A note on MINQUE for normal models, Math. Operationsforschg. Statist. 7 (1976), 707-714 Kleffe, J. (1977): Invariant methods for estimating variance components in mixed linear models, Math. Operations forsch. Statistic. Series Ststist., 8 (1977), pp. 233-250 Kleffe, J. and R. Pincus (1974): Bayes and the best quadratic unbiased estimators for parameters of the covariance matrix in a normal linear model, Math. Operationsforschg. Statistik 5 (1974), 43-76 Kleffe, J. and R. Pincus (1974): Bayes and the best quadratic unbiased estimators for variance components and heteroscedastic variances in linear models, Math. Operationsforschg. Statistik 5 (1974), 147-159 Kleffe, J. and J.N.K. Rao (1986): The existence of asymptotically unbiased nonnegative quadratic estimates of variance components in ANOVA models, J. Am. Statist. Ass. 81 (1986), 692-698 Kleijnen, J.P.C. and Beers, van W.C.M. (2004): Application driven sequential design for simulation experiments: Kriging metamodeling. J Oper Res Soc 55:876-893 Kleijnen, J.P.C. (2004): An overview of the design and analysis of simulation experiments for sensitivity analysis. Eur J Oper Res 164:287-300 Klein, U. (1997): Analyse und Vergleich unterschiedlicher Modelle der dreidimensionale, DGK, Reihe C, Heft Nr. 479. Kleusberg, A. and E.W. Grafarend (1981): Expectation and variance component estimation of multivariate gyrotheodolite observation II , Allgemeine Vermessungsnachrichten 88 (1981), 104-108 Kleusberg, A. (1994): Die direkte Losung¨ des raumlichen¨ Hyperbelschnitts, Zeitschrift f¨ur Vermessungswesen 119 (1994) 188-192. Kleusberg, A. (1999): Analytical GPS navigation solution, Quo vadis geodesia...? Festschrift for E.W. Grafarend on the occasion of his 60th birthday, Eds. F. Krumm and V.S. Schwarze, Report Nr. 1999.6-1. Klingbeil, E. (1977): Variationsrechnung. Bibliographisches Institut. B.I. Wissenschaftsverlag, Mannheim. Klingenberg, W. (1973): Eine Vorlesung iiber Differentialgeometrie. Springer-Verlag, Berlin Heidelberg. Klingenberg, W. (1982): Riemannian Geometry. Walter de Gruyter, Berlin. Klonecki, W. and S. Zontek (1996): Improved estimators for simultaneous estimation of variance components, Statistics & Probability Letters 29 (1996), 33-43 Kmenta, J. (1971): Elements of econometrics, Macmillan, New York, 1971 Knautz, H. (1996): Linear plus quadratic (LPQ) quasiminimax estimation in the linear regression model, Acta Applicandae Mathematicae 43 (1996), 97-111 Knautz, H. (1999): Nonlinear unbiased estimation in the linear regression model with nonnormal disturbances, J. Statist. Planning and Inference 81 (1999), 293-309 Knickmeyer, E.H. (1984): Eine approximative Losung¨ der allgemeinen linearen Geodatischen¨ Randwertaufgabe durch Reihenentwicklungen nach Kugelfunktionen, Deutsche Geodatische¨ Kommission bei der Bayerischen Akademie der Wissenschaften, M¨unchen 1984 Knuth D. E. (1973): The Art of Computer Programming. Vol. I, Fundamental Algorithms, 2nd Edn., Addison-Wesley Koch, G.G. (1968): Some futher remarks on A general approach to the estimation of variance components, Technometrics 10 (1968), 551-558 Koch, K.R. (1991): Moment tensor inversion of local earthquake data - I. investigation of the method and its with model calculations, Geophys. J. Int., 106, 305-319 Koch, K.R. (1969): Solution of the Geodetic Boundary Value Problem for a Reference Ellipsoid. Journal of Geophysical Research, 74, 3796-3803; 1969 Koch, K.R. (1970a): Lunar Shape and Gravity Field. Photogrammetric Engineering, 36, 375-380, 1970 References 949

Koch, K.R. (1970b): Darstellung’des Erdschwerefeldes in der Satellitengeodasie durchdas Potential einer einfachen Schicht Zeitschrift f¨ur Vermessungswesen, 95, 173-179, 1970 Koch, K.R. (1970c): Reformulation of the Geodetic Boundary Value Problem in View of the Results of Geometric Satellite Geodesy. Advances in Dynamic Gravimetry, edited by W.T. Kattner, 111-114, Instrument Society of America, Pittsburgh 1970 Koch, K.R. (1970d): Uber¨ die Bestimmung des Gravitationsfeldes eines Himmelskorpers mit Hilfe der Saterliten photogrammetrie. Bildmessung und Luftbildwesen, 38, 331-338, Karlsruhe 1970 Koch, K.R. (1970e): Surface Density Values for the Earthfrom Satellite and Gravity Observations. Geophysical Journal of the Royal Astronomical. Society, 21, 1-12 1970 Koch, K.R. (1971a): Die geodatische¨ Randwertaufgabe bei bekannter ErdoberfHiche. Zeitschrift fiiI Vermessungswesen, 96, 218-224, 1971 Koch, K.R. (1971b): Simple Layer Potential of a Level. Ellipsoid. Bollettino di Geofisica teorica ed applicata, 13, 264-270, 1971 Koch, K.R. (1971c): Geophysikalische Interpretation von mittleren D’ichtewerten der Erdober- flache aus Satelitenbeobachtungen und Schwerem,essungen. Das Unternehmen Erdmantel, herausgegeben von W; Kertz u.a., 244-246, Deutsche Forschungsgemeinschaft, Bonn 1971 Koch, K.R. (1972a): Geophysical Interpretation of Density Anomalies of the Earth Computed from Satellite Observations and Gravity Measurements. Zeitschrift f¨ur Geophysik, 38, 75-84, 1972 Koch, K.R. (1972b): Method of Integral Equations for the Geodetic Boundary Value Problem. Mitteilungen aus dem Institut f¨ur Theoretische Geodasie der Universitat Bonn, Nr, 4, 38-49, Bonn 1972 . Koch, K.R. (1973): Kontinentalverschiebung und Erdschwerefeld. Zeitschrift f¨ur Vermessungswe- sen, 98, 8-12, 1973 Koch, K.R. (1974): Earth’s Gravity Field and Station Coordinates From Doppler Data, Satellite Triangulation, and Gravity Anomalies. NOAA Technical Report NOS 62, U.S. Department of Commerce, Rockville, Md 1974 Koch, K.R. (1975): Rekursive numerische Filter. Zeitschrift fiir Vermessungswesen,. 100, 281-292, 1975 Koch, K.R. (1976): Schatzung. einer Kovarianzmatrix und Test ihrer Identitat mit einer gegebenen Matrix. Allgemeine Vermessungs-’-Nachrichten, 83, 328-333, 1976 Koch, K.R. (1978a): Hypothesentests bei singulren Ausgleichungsproblemen, ZfV, Vol. 103, pp. 1-10 Koch, K.R. (1978b): Schatzung von Varianzkomponenten. Allgemeine Vermessungs-Nachrichten, 85, 264-269, 1978 Koch, K.R. (1979a): Parameter Estimation in Mixed Models. Correlation Analysis and Systematical Errors with Special Reference, to Geodetic Problems, Report No.6, 1-10, Geodetic Institute, Uppsala University, Uppsala 1979 Koch, K.R. (1979b): Parameter Estimation in the Gauss-Helmert Model. Bollettino di Geodesia e Scienze Affini, 38, 553-563, 1979 Koch, K.R. (1980): Parameterschatzung und Hypothesentests in linearep. Modellen. Dummler, Bonn, 1980, pp. 308 Koch, K.R. (1981): Varianz- und Kovarianzkomponentenschatzung f¨ur Streckenmessungen auf Eichlinien Allgemeine Vermessungs-Nachrichten, 88, 135-132; 1981 Koch, K.R. (1982): S-transformations and projections for obtaining estimable parameters, in: Blotwijk, M.J. et al. (eds.): 40 Years of Thought, Anniversary volume for Prof. Baarda’s 65th Birthday Vol. 1, Technische Hogeschool Delft, Delft (1982), 136-144 Koch, K.R. (1983): Estimation of Variances and Covariances in the Multivariate and in the Incomplete Multivariate Model. Deutsche Geodatische¨ Kommission, Reihe A, Nr. 98, 53-59, M¨unchen 1983 Koch, K.R. (1985): Ein Statistisches Auswerteverfahren f¨ur Deformationsmessungen, AVN, Vol. 92, pp. 97-108 Koch, K.R. (1986): Maximum Likelihood Estimate of Variance Components; Ideas by A.J. Pope. Bulletin Geodesique 60 329-338 1986 950 References

Koch, K.R. (1987a): Zur Auswertung von Streckenmessungen auf Eichlinien mi’ttels Varianzkomponentenschatzung. Allgemeine Vennessungs-Nachrichten, 94, 63-71, 1987 Koch, K.R. (1987b): Bayesian Inference for Variance Components. Manuscripta Geodaetica, 12, 309-313 1987 Koch, K.R. (1987c): Parameterschaetzung und Hypothesentests in linearen Modellen, 2nd ed., Duemmler, Bonn 1987 Koch, K.R. (1988a): Parameter estimation and hypothesis testing in linear models, Springer- Verlag, Heidelberg Berlin New York 1988 Koch, K.R. (1988b): Konfidenzinte:r:valle der Bayes-Statistik f¨ur die Varianzen von Streckenmes- sungen ’auf Eichlinien. Vermessung Photogrammetrie, Kultur’technik, 86, 337-340, 1988 Koch, K.R. (1988c): Bayesian Statistics for Variance Components with Informative and Noninformative Priors. Manuscripta GeodaetIca, 13, 370-373; 1988 Koch, K.R. (1990): Bayesian Inference with Geodetic Applications. Springer-Verlag, Berlin Heidelberg NewYork 1990, pp. 208 Koch, K.R. (1999): Parameter estimation and hypothesis testing in linear models, 2nd ed., Springer-Verlag, Heidelberg Berlin New York 1999 Koch, K.R. (2008): Determining uncertainties of correlated measurements by Monte Carlo simulations applied to laserscanning, Journal of Applied Geodesy, 2, 139-147 (2008). Koch, K.R. and J. Kusche (2002): Regularization of geopotential determination from satellite data by variance components, Journal of Geodesy 76 (2002), 259-268 Koch, K.R. and A.J. Pope, (1969): Least Squares Adjustment with Zero Variances. Zeitschrift f¨ur Vermessungswesen, 94, 390-393, 1969 (zusammen mit A.J. Pope) Koch, K.R. and B.U. Witte, (1971): Earth’s’ Gravity Field Represented by a Simple-Layer Potential from Doppler Tracking of Satellites, Journal of Geophysical Research, 76, 8471-8479, 1971 Koch, K.R. and A.J. Pope, (1972): Punktbestimmung durch die Vereinigung von geometrischer und dynamischer Satelllitengeodasie. Zeitschrift f¨ur Vermessungswesen, 97, 1-6, 1972 Koch, K.R. and A.J. Pope, (1972): Uniqueness and Existence for the Geodetic Boundary Value Problem Using the Known Surface of the Earth. Bulletin Geodesique, 106, 467-476, 1972 Koch, K.R. and H. Frohlich (1974): Integrationsfehler in den Variationsgleichungen f¨ur das’ Modell der einfachen Schicht in der Satellitengeodasie. Mitteilungen aU8 dem Institut f¨ur Theoretische Geodasie der Universitat Bonn, Nr. 25; Bonn 1974 Koch, K.R. and W. Bosch, (1980): The geopotential from Gravity Measurements, Levelling Data and Satellite Results. Bulletin Geodesique, 54, 73-79, 1980 Koch, K.R. and M. Schmidt, (1994): Deterministiche and Stochastische signals, Dummler, Bonn 1994, pp. 358 Koch, K.R. and Z. Ou, (1994): Analytical expressions for Bayes estimates of variance components. Manuscripta Geodetica 19 284-293, 1994 Konig,¨ D. and V. Schmidt (1992): Zufallige¨ Punktprozesse, Teubner Skripten zur Mathematischen Stochastik, Stuttgart 1992 Koenker, R. and G. Basset (1978): Regression quantiles, Econometrica 46 (1978), 33-50 Kollo, T. and H. Neudecker (1993): Asymptotics of eigenvalues and unit-length eigenvectors of sample variance and correlation matrices, J. Multivar. Anal. 47 (91993), 283-300 Kollo, T. and D. von Rosen (1996): Formal density expansions via multivariate mixtures, in: Multidimensional statistical analysis and theory of random matrices, Proceedings of the Sixth Lukacs Symposium, eds. Gupta, A.K. and V.L.Girko, 129-138, VSP, Utrecht 1996 Kolmogorov, A.N. (1941): Interpolation’ und Extrapolation von stationaeren zufaelligen Folgen, Bull. Acad. Sci. (USSR), Ser. Math. 5. (1941), 3-14 Kolmogorov, A.N. (1950): Foundations of the Theory of Probability, New York, Chelsea Pub. co. Kolmogorov, A.N. (1962): A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, Fluid mechanics 13 (1962) 82-85 Konoshi, S. and Rao, C.R. (1992): Principal component analysis for multivariate familial data, Biometrica, 79, 631-641 References 951

Koopman, R. (1982): Parameterschatzung¨ ber a priori information, Vandenhoeck and Ruprecht, Gottingen¨ 1982 Koopmans, T.C. and O. Reiersol (1950): The identification of structural characteristics, Ann. Math. Statistics 21 (1950), 165-181 Korc, F. and Forstner, W. (2008): Interpreting Terrestrial/mages of Urban Scenes Using Discriminative Random Fields. 21 st Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS). Beijing, China 2008, S. 291-296 Part B3a. Kosko, B. (1992): Networks and fuzzy systems, Prentice-Hall, Englewood Cliffs, N.J. 1992 Kosmol, P. (1989): Methoden zur numerischen Behandlung nichtlinearer Gleichungen und Optimierungsaufgaben, B. G. Teubner, Stuttgart. Kotecky, R. and J. Niederle (1975): Conformally covariant field equations: First order equations with non-vanishing mass, Czech. J. Phys. B25 (1975), 123-149 Kotsakis, C. (2005): A type of biased estimators for linear models with uniformly biased data, Journal of Geodesy, vol. 79, no. 6/7, pp. 341-350 Kott, P.S. (1998): A model-based evaluation of several well-known variance estimators for the combined ratio estimator, Statistica Sinica 8 (1998), 1165-1173 Koukouvinos, C. and J. Seberry (1996): New weighing matrices, Sankhya: The Indian Journal of Statistics B, 58 (1996), 221-230 Kourouklis S., Paige C. C. (1996): A constrained least squares approach to the general GaussMarkov linear model. J. Am. Stat. Assoc. 76, 375 (1981), 620-625. Kowalewski, G. (1995): Robust estimators in regression, Statistics in Transition 2 (1995), 123-135 Kraichnan R.H. (1974): On Kolmogorov’s inertial-range theories, J . Fluid Mech. (1974), vol. 62, part 2, pp. 305-330 Kraemer, J. and B. Eisfeller (2009): A-GNSS, a different approach, Inside GNSS, Sep/Oct issue, (2009), 52-61 Kramer,¨ W., Bartels, R. and D.G. Fiebig (1996): Another twist on the equality of OLS and GLS, Statistical Papers 37 (1996), 277-281 Krantz, S.G. and H.R. Parks (2002): The implicit function theorem - history, theory and applications, Birkhauser-Verlag,¨ Basel Boston Berlin 2002 Krarup, T. (1969): A Contribution to the mathematical foundation of physical geodesy, Publ. Danish Geod. Inst. 44, Copenhagen Krarup, T. (1979): S-transformations or how to live without the generalized inverse-almost, Danish Geodetic Institute, Copenhagen 1979 Krarup, T. (1980): Integrated geodesy. In: Proceedings of the international school of advanced geodesy. Bollettino di Geodesia e Scienze Affini 38:480-496 Krarup, T. (1982): Nonlinear adjustment and curvature, In. Forty years of thought, Delft, pp. 145-159, 1982. Krarup, T., Juhl, J. and K. Kubik (1980): Gotterd¨ ammerung¨ over least squares adjustment, in: Proc. 14th Congress of the International Society of Photogrammetry, Vol. B3, Hamburg 1980, 369-378 Krause, L.O. (1987): A direct solution of GPS-Type Navigation equations, IEEE Transactions on Aerospace and Electronic Systems 23 (1987) 225-232. Krauss, K.: a) ZfV 95,387 (1970); b) ZfV 96, 233 (1971). Krengel, U. (1985): Ergodic theorems, de Gruyter, Berlin New York 1985 Kres, H. (1983): Statistical tables for multivariate analysis, Springer-Verlag, Heidelberg Berlin New York 1985 Krige, D. (1951): A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metall Mining Soc South Afr 52:119-139 Krishna, S. and Manocha, D. (1995): Numerical algorithms for evaluating one-dimensional algebraic sets, Proceedings of the International Symposium on Symbolic and Algebraic Computation ISSAC, July 10-12, pp. 59-67, Montreal, Canada, 1995. Kronecker, L. (1903): Vorlesungenuber ¨ die Theorie der Determinanten, Erster Band, Bearbeitet und fortgef¨uhrt von K.Hensch, B.G.Teubner, Leipzig 1903 952 References

Krumbein, W.C. (1939): Preferred orientation of pebbles in sedimentary deposits, J. Geol. 47 (1939), 673-706 Krumm, F. (1982): Criterion matrices for estimable quantities. Proceedings Survey Control Networks, ed. Borre, K., Welsch, W.M., Vol. 7, pp. 245-257, Schriftenreih Wiss. Studiengang Vermessungswesen, Hochschule der Bundeswehr M¨unchen. Krumm, F., Grafarend, E. and B. Schaffrin (1986): Continuous networks, Fourier analysis and criterion matrices, manuscripta geodaetica 11 (1986), 57-78 Krumm, F. (1987): Geodatische¨ Netze im Kontinuum: Inversionsfreie Ausgleichung und Konstruktion von Kriterionmatrizen, Deutsche Geodatische¨ Kommission, Bayerische Akademie der Wissenschaften, Ph. D. Thesis, Report C334, M¨unchen 1987 Krumm, F. and F. Okeke (1998): Graph, graph spectra, and partitioning algorithms in a geodetic network structural analysis and adjustment, Bolletino di Geodesia e Science Affini 57 (1998), 1-24 Kruskal, W. (1946): Helmert’s distribution, American Math. Monthly 53 (1946), 435-438 Kruskal, W. (1968): When are Gauß-Markov and least squares estimators identical? A coordinate- free approach, Ann. Statistics 39 (1968), 70-75 Kryanev, A.V. (1974): An iterative method for solving incorrectly posed problem, USSR. Comp. Math. Math. Phys. 14 (1974), 24-33 Krzanowski, W.J. and F.H.C. Marriott (1994): Multivariate analysis: part I - distribution, ordination and inference, Arnold Publ., London 1994 Krzanowski, W.J. and F.H.C. Marriott (1995): Multivariate analysis: part II - classification, covariance structures and repeated measurements, Arnold Publ., London 1995 Kuang, S.L. (1991): Optimization and design of deformations monitoring schemes, PhD dissertation, Department of Surveying Engineering, University of New Brunswick, Tech. Rep. 91, Fredericton 1991 Kuang, S. (1996): Geodetic network analysis and optimal design, Ann Arbor Press, Chelsea, Michigan 1996 Kubacek, L. (1988): Foundations of the Estimation Theory. Elsevier, Amsterdam-Oxford, New York-Tokyo, 1988. Kubacek, L. (1995): Linear statistical models with constraints revisited. Math. Slovaca 45, 3 (1995), 287-307. Kubacek, L. (1995): On a linearization of regression models. Appl. Math., Praha, 40, 1 (1995), 61-78. Kubacek, L. (1996a): Linear model with inaccurate variance components, Applications of Mathematics 41 (1996), 433-445 Kubacek, L. (1996b): Nonlinear error propagation law, Applications of Mathematics 41 (1996), 329-345 Kubacek, L. (1996c): Models with a low nonlinearity. Tatra Mt. Math. Publ. 7 (1996), 149-155. Kubacek, L. (1997): Notice on the Chipman generalization of the matrix inverse. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 36 (1997), 95-98. Kubacek, L. (2002): On an accuracy of change points. Math. Slovaca 52,4 (2002), 469-484. Kubacek, L. (2005): Underparametrization in a regression model with constraints II. Math. Slovaca 66 (2005), 579-596. Kubacek, L. and Kubackova, L. (1978): The present approach to the study of the least-squares method. Studia geoph. et geod. 22 (1978), 140-147. Kubacek, L., Kubackova, L. and J. Kukaca (1987): Probability and statistics in geodesy and geophysics, Elsevier, Amsterdam 1987 Kubacek, L., Kubackova, L. and Volaufova, J. (1995): Statistical Models with Linear Structures. Veda, Bratislava, 1995. Kubacek, L. and Kubackova, L. and J. Kukaca (1995): Statistical models with linear structures, slovak Academy of Sciences, Bratislava 1995 Kubacek, L. and Kubackova, L. (1997): One of the calibration problems. Acta Univ. Palacki. 010- muc., Fac. Rerum Nat., Math. 36 (1997), 117-130. References 953

Kubacek, L. and Kubackova, L. (1998): Testing statistical hypotheses in deformation measurement; one generalization of the Scheffe theorem. Acta Univ. Palacki. Olomu., Fac. Rerum Nat., Math. 37 (1998), 81-88. Kubacek, L. and Kubackova, L. (2000): Nonsensitiveness r:egions in universal models. Math. 810- vaca 50, 2 (2000), 219-240. Kubacek, L., Kubackova L., SevCik J. (2002): Linear conform transformation: errors in both coordinate systems. Appl. Math., Praha 47, 4 (2002), 361-380. Kubacek, L., Fiserova, E. (2003): Problems of sensitiveness and linearization in a determination of isobestic points. Math. Slovaca 53, 4 (2003), 407-426. Kubackova, L. (1996): Joint confidence and threshold ellipsoids in regression models. Tatra Mt. Math. Publ. 7 (1996), 157-160. Kubik, K.K. (1967): Iterative Methoden zur Losunge¨ des nichtlinearen Ausgleichungsproblemes, Zeitschrift f¨ur Vermessungswesen 91 (1967) 145-159. Kubik, K. (1970): The estimation of the weights of measured quantities within the method of least squares. Bulletin Geodesique, 44, 21-40. Kubik, K. (1982): Kleinste Quadrate und andere Ausgleichsverfahren, Vermessung Photogrammetrie Kulturtechnik 80 (1982), 369-371 Kubik, K., and Y. Wang (1991): Comparison of different principles for outlier detection, Australian Journal of Geodesy, Photogrammetry and Surveying 54 (1991), 67-80 Kuechler, U. and M. Soerensen (1997): Exponential families of stochastic processes, Springer- Verlag, Heidelberg Berlin New York 1997 Kukush, A. and S. Zwanzig (2002): On consistent estimatiors in nonlinear functional errors- in-variables models. p. 145-154. In Total Least squares and Erros-in-Variables Modeling ed. Sabine Huffel, Philippe Lemmerling, Kluwer Kullback, S. (1934): An application of characteristic functions to the distribution problem of statistics, Annals Math. Statistics 4 (1934), 263-305 Kullback, S. (1935): On samples from a multivariate normal population, Ann. Math. Stat. 6, 202-213 Kullback, S.(1952): An application of information theory to multivariate analysis, Ann. Math. Stat., 23, 88-102 Kullback, S. (1956): An application of information theory to multivariate analysis II, Ann. Math. Stat., 27, 122-146 Kumaresan, R. (1982): Estimating the parameters of exponentially damped or undamped sinusoidal signals in noise, PhD thesis, The University of Rhode Island, Rhode Island 1982 Kunderova, P. (2000): Linear models with nuisance parameters and deformation measurement. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 39 (2000), 95-105. Kunderova, P. (2001): Locally best and uniformly best estimators in linear models with nuisance parameters. Tatra Mt. Math. Publ. 22 (2001), 27-36. Kunderova, P. (2001): Regular linear model with the nuisance parameters with constraints of the type I. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 40 (2001), 151-159. Kunderova, P. (2002): Regular linear model with nuisance parameters with constraints of the type II. Folia Fac. Sci. Nat. Univ. Masarykianae Brunensis, Math. 11 (2002), 151-162. Kunderova, P. (2003): Eliminating transformations for nuisance parameters in linear model. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 42 (2003), 59-68. Kunderova, P. (2005): One singular multivariate linear model with nuisance parameters. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 44 (2005), 57-69. Kundu, D. (1993a): Estimating the parameters of undamped exponential signals, Technometrics 35 (1993), 215-218 Kundu, D. (1993b): Asymptotic theory of least squares estimator of a particular nonlinear regression model, Statistics and Probability Letters 18 (1993), 13-17 Kundu, D. (1994a): Estimating the parameters of complex valued exponential signals, Computational Statistics and Data Analysis 18 (1994), 525-534 Kundu, D. (1994b): A modified Prony algorithm for sum of damped or undamped exponential signals, Sankhya A56 (1994), 525-544 954 References

Kundu, D. (1997): Asymptotic theory of the least squares estimators of sinusoidal signal, Statistics 30 (1997), 221-238 Kundu, D. and A. Mitra (1998): Fitting a sum of exponentials to equispaced data, Sankhya: The Indian Journal of Statistics 60 (1998), 448-463 Kundu, D. and R.D. Gupta (1998): Asymptotic properties of the least squares estimators of a two dimensional model, Metrika 48 (1998), 83-97 Kunst, R.M. (1997): Fourth order moments of augmented ARCH processes, Commun. Statist. Theor. Meth. 26 (1997), 1425-1441 Kurz, S. (1996): Positionierung mittels R¨uckwartsschnitt in drei Dimensionen. Studienarbeit, Geodatisches¨ Institut, University of Stuttgart, Stuttgart 1996. Kuo, W., Prasad, V.R., Tillman, F.A. and C.-L. Hwang (2001): Optimal reliability design, Cambridge University Press, Cambridge 2001 Kuo, Y. (1976): An extended Kronecker product of matrices, J. Math. Anal. Appl. 56 (1976), 346-350 Kupper, L.L. (1972): Fourier series and spherical harmonic regression, J. Roy. Statist. Soc. C21 (1972), 121-130 Kupper, L.L. (1973): Minimax designs of Fourier series and spherical harmonic regressions: a characterization of rotatable arrangements, J. Roy. Statist. Soc. B35 (1973), 493-500 Kurata, H. (1998): A generalization of Rao’s covariance structure with applications to several linear models, J. Multivar. Anal. 67 (1998), 297-305 Kurz, L. and M.H. Benteftifa (1997): Analysis of variance in statistical image processing, Cambridge University Press, Cambridge 1997 Kusche, J. (2001): Implementation of multigrid solvers for satellite gravity anomaly recovery, Journal of Geodesy 74 (2001), 773-782 Kusche, J. (2002): Inverse Probleme bei der Gravitationsfeldbestimmung mittels SST- und SGG-Satellitenmissionen , Deutsche Geodatische¨ Kommission, Report C548, M¨unchen 2002 Kusche, J. (2003): A Monte-Carlo technique for weight estimation in satellite geodesy, Journal of Geodesy 76 (2003), 641-652 Kushner, H. (1967): Dynamical equations for optimal nonlinear filtering, J. Diff. Eq. 3 (1967), 179-190 Kushner, H. (1967): Approximations to optimal nonlinear filters, IEEE Trans. Auto. Contr. AC-12 (1967), 546-556 Kutoyants, Y.A. (1984): Parameter estimation for stochastic processes, Heldermann, Berlin 1984 Kutterer, H. (1994): Intervallmathematische Behandlung endlicher Unscharfen¨ linearer Ausgle- ichsmodelle, PhD Thesis, Deutsche Geodatische¨ Kommission DGK C423, M¨unchen 1994 Kutterer, H. (1999): On the sensitivity of the results of least-squares adjustments concerning the stochastic model, Journal of Geodesy 73 (1999), 350-361 Kutterer, H. (2002): Zum Umgang mit Ungewissheit in der Geodasie¨ - Bausteine f¨ur eine neue Fehlertheorie - , Deutsche Geodatische¨ Kommission, Report C553, M¨unchen 2002 Kutterer, H. and S.Schon¨ (1999): Statistische Analyse quadratischer Formen - der Determinantenansatz, Allg. Vermessungsnachrichten 10 (1999), 322-330 Lagrange, J. L. (1877): Lecons eIementaires sur les mathematiques donnees a l’Ecole Normale en 1795. In: Oeuvres de Lagrange, Ed.: M. J. A. Serret, Tome 7, Section IV, Paris. Laha, R.G. (1956): On the stochastic independence of two second-degree polynomial statistics in normally distributed variates, The Annals of Mathematical Statistics 27 (1956), 790-796 Laha R.G. and E. Lukacs (1960): On a problem connected with quadratic regression, Biometrika 47 (1960), 335-343 Lai, T.L. and C.Z. Wie (1982): Least squares estimates in stochastic regression model with applica- tions to stochastic regression in linear dynamic systems, Anals of Statistics 10 (1982), 154-166 Lai, T.L. and C.P. Lee (1997): Information and prediction criteria for model selection in stochastic regression and ARMA models, Statistical Sinica 7 (1997) 285-309 Laird, N.M. and J.H. Ware (1982): Random-effects models for longitudinal data, Biometrics 38 (1982), 963-974 References 955

Lame, M. G. (1818): Examen des differentes methodes employees pour resoudre les problemes de geometrie. Paris LaMotte, L.R. (1973a): Quadratic estimation of variance components, Biometrics 29 (1973), 311-330 LaMotte, L.R. (1973b): On non-negative quadratic unbiased estimation of variance components, J. Am. Statist. Ass. 68(343): 728-730. LaMotte, L.R. (1976): Invariant quadratic estimators in the random, one-way ANOVA model, Biometrics 32 (1976), 793-804 LaMotte, L.R. (1996): Some procedures for testing linear hypotheses and computing RLS estimates in multiple regression. Tatra Mt. Math. Publ. 7 (1996), 113-126. LaMotte, L.R., McWhorter, A. and R.A. Prasad (1988): Confidence intervals and tests on the variance ratio in random models with two variance components, Com. Stat. - Theory Meth. 17 (1988), 1135-1164 Lamperti, J. (1966): Probility: a survey of the mathematical theory, WA Benjamin Inc., New York 1966 Lancaster, H.O. (1965): The helmert matrices, American Math. Monthly 72 (1965), 4-11 Lancaster, H.O. (1966): Forerunners of the Pearson Chi2 , Australian Journal of Statistics 8 (1966), 117-126 Langevin, P. (1905): Magnetisme et theorie des electrons, Ann. De Chim. et de Phys. 5 (1905), 70-127 Lanzinger, H. and U. Stadtm¨uller (2000): Weighted sums for i.i.d. random variables with relatively thin tails, Bernoulli 6 (2000), 45-61 Lapaine, M. (1990): “A new direct solution of the transformation problem of Cartesian into ellipsoidal coordinates”. Determination of the geoid: Present and future. Eds. R.H. Rapp and F. Sanso, pp. 395-404. Springer-Verlag, New York 1990. Laplace, P.S. (1793): Sur quelques points du Systeme du monde, Memoire de I’Academie royale des Sciences de Paris, in Oeuvres Completes, 11 (1793), pp. 477-558 Laplace, P.S. (1811): Memoiresur´ les integrales´ definies´ et leur application aux probabilites et specialement a la recherche du milieu qu’il faut choisir entre les resultats des observations, Euvres completes XII, Paris, 1811, 357-412. Lardy, L.J. (1975): A series representation for the generalized inverse of a closed linear operator, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 152-157 Lauer, S.: Dissertation, Bonn 1971 Lauritzen, S. (1973): The probabilistic background of some statistical methods in Physical Geodesy, Danish Geodetic Institute, Maddelelse 48, Copenhagen 1973 Lauritzen, S. (1974): Sufficiency, prediction and extreme models, Scand. J. Statist. 1 (1974), 128-134 Lauter,¨ H. (1970): Optimale Vorhersage und Schatzung¨ in regularen¨ und singularen¨ Regressionsmodellen, Math. Operationsforschg. Statistik 1 (1970), 229-243 Lauter,¨ H. (1971): Vorhersage bei stochastischen Prozessen mit linearem Regressionsanteil, Math. Operationsforschg. Statistik 2 (1971), 69-85, 147-166 Lawless, J.F. (1982): Statistical models and lifetime data, Wiley, New York 1982 Lawley, D.N. (1938): A generalization of Fisher’s z-test. Biometrika, 30, 180-187 Lawson, C.L. and R.J. Hanson (1995): Solving least squares problems, SIAM, Philadelphia 1995 (reprinting with corrections and a new appendix of a 1974 Prentice Hall text) Lawson, C.L. and R.J. Hanson (1974): Solving least squares problems, Prentice-Hal, Englewod Cliffs, NJ 1974 Laycock, P.J. (1975): Optimal design: regression models for directions, Biometrika 62 (1975), 305-311 LeCam, L. (1960): Locally asymptotically normal families of distributions, University of California Publication 3, Los Angeles 1960, 37-98 LeCam, L. (1970): On the assumptions used to prove asymptotic normality of maximum likelihood estimators, Ann. Math. Statistics 41 (1970), 802-828 956 References

LeCam, L. (1986): Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, Chapman and Hall, Boca Raton 1986 Leichtweiss, K. (1962): -ober eine Art von Kriimmungsinvarianten beliebiger Untermannig- faltigkeiten des n-dimensionalen euklidischen Raums. Hbg. Math. Abh., Bd. XXVI, 156-190. Leis, R. (1967): Vorlesung”en Uber¨ partielle Differentialgleichungen zweiter Ordnung. Mannheim Lee, Y. W. (1960): Statistical theory of communication, New York 1960 Lee, Y. W., in: Selected Papers of N. Wiener, MIT-Press 1964 Lee, J.C. and S. Geisser (1996): On the Prediction of Growth Curves, in: Lee, C., Johnson, W.O. and A. Zellner (eds.): Modelling and Prediction Honoring Seymour Geisser, Springer-Verlag, Heidelberg Berlin New York 1996, 77-103 Lee, J.C., Johnson, W.O. and A. Zellner (1996): Modeling and prediction, Springer-Verlag, Heidelberg Berlin New York 1996 Lee, M. (1996): Methods of moments and semiparametric econometrics for limited dependent variable models, Springer-Verlag, Heidelberg Berlin New York 1996 Lee, P. (1992): Bayesian statistics, J. Wiley, New York 1992 Lee, S.L. (1995): A practical upper bound for departure from normality, Siam J. Matrix Anal. Appl. 16 (1995), 462-468 Lee, S.L. (1996): Best available bounds for departure from normality, Siam J. Matrix Anal. Appl. 17 (1996), 984-991 Lee, S.L. and J.-Q. Shi (1998): structures with independent and non-identically distributed observations, Statistica Sinica 8 (1998), 543-557 Lee, Y. and J.A. Nelder (1996): Hierarchical generalized linear models, J. Roy. Statist. Soc. B58 (1996), 619-678 Lee, Y., Neider, J. and Pawitan, Y. (2006): Generalized linear models with random effects, Chapman & Hall/CRC, New York Lehmann, E.L. (1959): Testing statistical hypotheses, J. Wiley, New York 1959 Lehmann, E.L. and H. Scheffee` (1950): Completeness, similar regions and unbiased estimation, Part I, Sankya 10 (1950), 305-340 Lehmann, E.L. and G.Casella (1998): Theory of point estimation, Springer-Verlag, Heidelberg Berlin New York 1998 Leick, A. (1995): GPS satellite surveying, 2nd Edition, John Wiley & Sons, New York 1995. Leick, A. (2004): GPS Satellite Surveying, 3rd ed, John Wiley & Sons, New Jersey, 435p Lemmerling H., Van Huffel S. (2002): Structured total least squares. Analysis, algorithms and applications. In: Total least squares and errors-in-variables modelling. Analysis, algorithms and applications (S. Van Huffel et al., ed), Kluwer Academic Publishers, Dordrecht, 2002, pp. 79-91. Lenstra, H.W. (1983): Integer programming with a fixed number of variables, Math. Operations Res. 8 (1983), 538-548 Lenth, R.V. (1981): Robust measures of location for directional data, Technometrics 23 (1981), 77-81 Lenstra, A.K., Lenstra, H.W. and L. Lovacz (1982): Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515-534 Lentner, M.N. (1969): Generalized least-squares estimation of a subvector of parameters in randomized fractional factorial experiments, Ann. Math. Statist. 40 (1969), 1344-1352 Lenzmann, L. (2003): Strenge Auswertung des nichtlnearen Gauß-Helmert-Modells, AVN 2 (2004), 68-73 Lesaffre, E. and G. Verbeke (1998): Local influence in linear mixed models, Biometrics 54 (1998), 570-582 Lesanska E. (2001): Insensitivity regions for testing hypotheses in mixed models with constraint. Tatra Mt. Math. Publ. 22 (2001), 209-222. Lesanska E. (2002): Effect of inaccurate variance components in mixed models with constraints. Folia Fac. Sci. Nat. Univ. Masarykianae Brunensis, Math. 11 (2002), 163-172. Lesanska E. (2002): Insensitivity regions and their properties. J. Electr. Eng. 53 (2002), 68-71. Lesanska E. (2002): Nonsensitiveness regions for threshold ellipsoids. Appl. Math., Praha 47, 5 (2002), 411-426. References 957

Lesanska E. (2002): Optimization of the size of nonsensitive regions. Appl. Math., Praha 47, 1 (2002), 9-23. Leslie, M. (1990): Turbulence in fluids, 2nd ed., Kluwer publ., Dordicht 1990 Letac, G. and M. Mora (1990): Natural real exponential families with cubic variance functions, Ann. Statist. 18 (1990), 1-37 Lether, F.G. and P.R. Wentson (1995): Minimax approximations to the zeros of Pn (x) and Gauss-Legendre quadrature, J. Comput. Appl. Math. 59 (1995), 245-252 Levenberg, K. (1944): A method for the solution of certain non-linear problems in least-squares, Quaterly Appl. Math. 2 (1944) 164-168 Levin, J. (1976): A parametric algorithm for drawing pictures of solid objects composed of quadratic surfaces, Communications of the ACM 19 (1976), 555-563 Lewis, R.M. and V. Torczon (2000): Pattern search methods for linearly constrained minimization, SIAM J. Optim. 10 (2000), 917-941 Lewis, T.O. and T.G. Newman (1968): Pseudoinverses of positive semidefinite matrices, SIAM J. Appl. Math. 16 (1968), 701-703 Li, B.L. and C. Loehle (1995): Wavelet analysis of multiscale permeabilities in the subsurface, Geophys. Res. Lett. 22 (1995), 3123-3126 Li, C.K. and R. Mathias (2000): Extremal characterizations of the Schur complement and resulting inequalities, SIAM Review 42 (2000), 233-246 Liang, K. and K. Ryu (1996): Selecting the form of combining regressions based on recursive prediction criteria, in: Lee, C., Johnson, W.O. and A. Zellner (eds.): Modelling and prediction honoring Seymour Geisser, Springer-Verlag, Heidelberg Berlin New York 1996, 122-135 Liang, K.Y. and S.L. Zeger (1986): Longitudinal data analysis using generalized linear models, Biometrika 73 (1986), 13-22 Liang, K.Y. and S.L. Zeger (1995): Inference based on estimating functions in the presence of nuisance parameters, Statist. Sci. 10 (1995), 158-199 Lichtenegger, H. (1995): Eine direkte Losung¨ des raumlichen¨ Bogenschnitts, Osterreichische¨ Zeitschrift f¨ur Vermessung und Geoinformation 83 (1995) 224-226. Lilliefors, H.W. (1967): On the Kolmogorov-Smirnov test for normality with mean and variance unknown, J. Am. Statist. Ass.. 62 (1967), 399-402 Lim, Y.B., Sacks, J. and Studden, W.J. (2002): Design and analysis of computer experiments when the output is highly correlated over the input space. Canad J Stat 30:109-126 Lin, K.C. and Wang, J. (1995): Transformation from geocentric to geodetic coordinates using Newton’s iteration, Bulletin Geodesique 69 (1995) 300-303. Lin, X. and N.E. Breslow (1996): Bias correction in generalized linear mixed models with multiple components of dispersion, J. Am. Statist. Ass. 91 (1996), 1007-1016 Lin, X.H. (1997): Variance component testing in generalised linear models with random effects, Biometrika 84 (1997), 309-326 Lin, T. and Lee, J. (2007):.Estimation and prediction in linear mixed models with skew-normal random effects for longitudinal data. In Statistics in Medicine, published online Lindley, D.V. and A.F.M. Smith (1972): Bayes estimates for the linear model, J. Roy. Stat. Soc. 34 (1972), 1-41 Lindsey, J.K. (1997): Applying generalized linear models, Springer-Verlag, Heidelberg Berlin New York 1997 Lindsey, J.K. (1999): Models for repeated measurements, 2nd edition, Oxford University Press, Oxford 1999 Linke, J., Jurisch, R., Kampmann, G. and H. Runne (2000): Numerisches Beispiel zur Strukturanalyse von geodatischen¨ und mechanischen Netzen mit latenten Restriktionen, Allgemeine Vermessungsnachrichten 107 (2000), 364-368 Linkwitz, K. (1961): Fehlertheorie und Ausgleichung von Streckennetzen nach der Theorie elastischer Systeme. Deutsche Geodatische¨ Kommission, Reihe C, Nr. 46. Linkwitz, K. (1989): Bemerkungen zu Linearisierungen in der Ausgleichungsrechnung. In: Prof. Dr.Ing. Dr. h.c. Friedrich Ackermann zum 60. Geburtstag, Schriftenreihe des Institutes fiir Photogrammetrie, Heft 14. 958 References

Linkwitz, K. and Schek, H.J. (1971): Einige Bemerkungen zur Berechnung von vorgespannten Seilnetz-Konstruktionen. Ingenieur-Archiv, 40. Linnainmaa, S., Harwood, D. and Davis, L.S. (1988): Pose Determination of a Three-Dimensional Object Using Triangle Pairs, IEEE transaction on pattern analysis and Machine intelligence 105 (1988) 634-647. Linnik, J.V. and I.V. Ostrovskii (1977): Decomposition of random variables and vectors, Transl. Math. Monographs Vol. 48, American Mathematical Society, Providence 1977 Lippitsch, A. (2007): A deformation analysis method for the metrological ATLAS cavern network at CERN, Ph.D. thesis, Graz University of Technology, Graz/Austria/2007 Liptser, R.S. and A.N. Shiryayev (1977): Statistics of random processes, Vol. 1, Springer-Verlag, Heidelberg Berlin New York 1977 Liski, E.P. and S. Puntanen (1989): A further note on a theorem on the difference of the generalized inverses of two nonnegative definite matrices, Commun. Statist.-Theory Meth. 18 (1989), 1747-1751 Liski, E.P. and T. Nummi (1996): Prediction in repeated-measures models with engineering applications, Technometrics 38 (1996), 25-36 Liski, E.P., Luoma, A., Mandal, N.K. and B.K. Sinha (1998): Pitman nearness, distance criterion and optimal regression designs, Calcutta Statistical Ass. Bull. 48 (1998), 191-192 Liski, E.P., Mandal, N.K., Shah, K.R. and B.K. Sinha (2002): Topics in optimal design, Springer-Verlag, Heidelberg Berlin New York 2002 Lisle, R. (1992): New method of estimating regional stress orientations: application to focal mechanism of data of recent British earthquakes, Geophys. J. Int., 110,276.,282 Liu, J. (2000): MSEM dominance of estimators in two seemingly unrelated regressions, J. Statist. Planning and Inference 88 (2000), 255-266 Liu, S. (2000): Efficiency comparisons between the OLSE and the BLUE in a singular linear model, J. Statist. Planning and Inference 84 (2000), 191-200 Liu, X.-W. and Y.-X. Yuan (2000): A robust algorithm for optimization with general equality and inequality constraints, SIAM J. Sci. Comput. 22 (2000), 517-534 Ljung, L. (1979): Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems, IEEE Trans. Auto. Contr. AC-24 (1979), 36-50 Lloyd, E.H. (1952): Least squares estimation of location and scale parameters using order statistics, Biometrika 39 (1952), 88-95 Lohse, P. (1990): Dreidimensionaler R¨uckwartsschnit.¨ Ein Algorithmus zur Streckenberechnung ohne Hauptachsentransformation, Zeitschrift f¨ur Vermessungswesen 115 (1990) 162-167. Lohse, P. (1994): Ausgleichungsrechnung in nichtlinearen Modellen, Deutsche Geod. Kommission C 429, M¨unchen 1994 Lohse, P., Grafarend, E.W. and Schaffriin, B. (1989a): Dreidimensionaler Riickwartsschnitt. Teil IV, V, Zeitschrift fiir Vermessungswesen, 5, 225-234; 6, 278-287. Lohse, P., Grafarend, E.W. and Schaffriin, B. (1989b): Three-Dimensional Point Determination by Means of Combined Resection and Intersection. Paper presented at the Conference on 3-D Measurement Techniques, Vienna, Austria, September 18-20, 1989. Longford, N.T. (1993): Random coefficient models, Clarendon Press, Oxford 1993 Longford, N. (1995): Random coefficient models, Oxford University Press, 1995 Longley, J.W. and R.D. Longley (1997): Accuracy of Gram-Schmidt orthogonalization and Householder transformation for the solution of linear least squares problems, with Applications 4 (1997), 295-303 Lord, R.D. (1948): A problem with random vectors, Phil. Mag. 39 (1948), 66-71 Lord, R.D. (1995): The use of the Hankel transform in statistics, I. General theory and examples, Biometrika 41 (1954), 44-55 Lorentz, G.G. (1966): Metric entropy and approximation, Bull. Amer. Math. Soc. 72 (1966), 903-937 Loskowski, P. (1991): Is Newton’s iteration faster than simple iteration for transformation between geocentric and geodetic coordinates? Bulletin Geodesique 65 (1991) 14-17. References 959

Lu, S., Molz, F.J. and H.H. Liu (2003): An efficient three dimensional anisotropic, fractional Brownian motion and truncated fractional LEVY motion simulation algorithm based on successive random additions, Computers and Geoscience 29 (2003) 15-25 Ludlow, J. and W. Enders (2000): Estimating non-linear ARMA models using Fourier coefficients, International Journal of Forecasting 16 (2000), 333-347 Lumley, J.L. (1970): Stochastic tools in turbulence, Academic Press, New York 1970 Lumley, J.L. (1978): Computational modelling of turbulence, Advances in applied mechanics 18 (1978) 123-176 Lumley, J.L. (1983): Turbulence modelling, J. App. Mech. Trans. ASME 50 (1983) 1097-1103 Lund, U. (1999): Least circular distance regression for directional data, Journal of Applied Statistics 26 (1999), 723-733 L¨utkepol, H. (1996): Handbook of matrices, J. Wiley, New York 1996 Lyubeznik, G. (1995): Minimal resultant system, Journal of Algebra 177 (1995) 612-616. Ma, X.Q. and Kusznir, N.J. (1992): 3-D subsurface displacement and strain fields for faults and fault arrays in a layered elastic half-space, Geophys. J. Int., 111, 542-558 Mac Duffee, C.C. (1946): The theory of matrices (1933), reprint Chelsea Publ., New York 1946 Macaulay, F. (1902): On some formulae in elimination, Proceeding in London Mathematical Society pp. 3-27, 1902. Macaulay, F. (1916): The algebraic theory of modular systems, Cambridge Tracts in Mathematics 19, Cambridge University Press, Cambridge 1916. Macaulay, F. (1921): Note on the resultant of a number of polynomials of the same degree, Proceeding in London Mathematical Society 21 (1921) 14-21. Macinnes, C.S. (1999): The solution to a structured matrix approximation problem using Grassmann coordinates, SIAM J. Matrix Analysis Appl. 21 (1999), 446-453 Madansky, A. (1959): The fitting of straight lines when both variables are subject to error, J. Am. Statist. Ass. 54 (1959), 173-205 Madansky, A. (1962): More on length of confidence intervals, J. Am. Statist. Ass. 57 (1962), 586-589 Mader, G.L. (2003): GPS Antenna Calibration at the National Geodetic Survey. http://www. ngs.noaa.gov/ANTCAL/images/summary.pdf Maejima, M. (1978): Some Lp versions for the central limit theorem, Ann. Probability 6 (1978), 341-344 Maekkinen, J. (2002): A bound for the Euclidean norm of the difference between the best linear unbiased estimator and a linear unbiased estimator, Journal of Geodesy 76 (2002), 317-322 Maess, G. (1988): Vorlesungenuber ¨ numerische Mathematik II. Analysis, Birkhauser-Verlag,¨ Basel Boston Berlin 1988 Magder, L.S. and S.L. Zeger (1996): A smooth nonparametric estimate of a mixing distribution using mixtures of Gaussians, J. Am. Statist. Ass. 91 (1996), 1141-1151 Magee, L. (1998): Improving survey-weighted least squares regression, J. Roy. Statist. Soc. B60 (1998), 115-126 Magness, T.A. and J.B. McGuire (1962): Comparison of least-squares and minimum variance estimates of regression parameters, Ann. Math. Statist. 33 (1962), 462-470 Magnus, J.R. and H. Neudecker (1988): Matrix differential calculus with applications in statistics and econometrics, J. Wiley, New York 1988 Mahalanobis, P. C. (1930): On tests and measures of group , J. and Proc. Asiat. Soc. Beng., 26, 341-5S8. Mahalanobis, P. C. (1936): On the generalized distance in statistics, Proc. Nat. Inst. Sci. India, 2, 49-55. Mahalanobis, A. and M. Farooq (1971): A second-order method for state estimation of nonlinear dynamical systems, Int. J. Contr. 14 (1971), 631-639 Mahalanobis, P.C., Bose, R.C. and S.N. Roy (1937): Normalisation of statistical variates and the use of rectangular coordinates in the theory of sampling distributions, Sankhya 3 (1937), 1-40 Mallet, A. (1986): A maximum likelihood estimation method for random coefficient regression models, Biometrika 73 (1986), 645-656 960 References

Malliavin, P. (1997): Stochastic analysis, Springer-Verlag, Heidelberg Berlin New York 1997 Mallick, B., Denison, D. and Smith, A. (2000): Semiparamefric generalized linear models. Dey, D., Ghosh, S:ai1d MaJITck B.K. eds., Generalized linear models: A Bayesian perspective, Marcel Dekker, New York. Mallows, C.L. (1959): Latent roots and vectors of random matrices, Tech. Report 35, Statistical Tech. Research Group, Section of Math. Stat., Dept. of Math., Princeton University, Princeton, 1959 Mallows, C.L. (1961): Latent vectors of random symmetric matrices, Biometrika 48 (1961), 133-149 Malyutov, M.B. and R.S. Protassov (1999): Functional approach to the asymptotic normality of the non-linear least squares estimator, Statistics & Probability Letters 44 (1999), 409-416 Mamontov, Y. and M.Willander (2001): High-dimensional nonlinear diffusion stochastic processes, World Scientific, Singapore 2001 Mandel, J. (1994): The analysis of two-way layouts, Chapman and Hall, Boca Raton 1994 Mangoubi, R.S. (1998): Robust estimation and failure detection, Springer-Verlag, Heidelberg Berlin New York 1998 Manly, B.F. (1976): Exponential data transformation, The Statistican 25 (1976) 37-42 Manocha, D. (1992): Algebraic and Numeric techniques for modeling and Robotics, Ph.D. thesis, Computer Science Division, Department of Electrical Engineering and Computer Science, University of California, Berkeley 1992. Manocha, D. (1993): Efficient algorithms for multipolynomial resultant, the Computer Journal 36 (1993) 485-496. Manocha, D. (1994a): Algorithms for computing selected solutions of polynomial equations, Extended abstract appearing in the proceedings of the ACM ISSAC 94. Manocha, D. (1994b): Computing selected solutions of polynomial equations, Proceedings of the International Sypmosium on Symbolic and Algebraic Computations ISSAC, July 20-22, pp. 1-8, Oxford 1994. Manocha, D. (1994c): Solving systems of polynomial equations, IEEE Computer Graphics and application, pp. 46-55, March 1994. Manocha, D. (1998): Numerical methods for solving polynomial equations, Proceedings of Symposia in Applied Mathematics 53 (1998) 41-66. Manocha, D. and Canny, J. (1991): Efficient techniques for multipolynomial resultant algorithms, Proceedings of the International Symposium on Symbolic Computations, July 15-17, 1991, pp. 86-95, Bonn 1991. Manocha, D. and Canny, J. (1992): Multipolynomial resultant and linear algebra, Proceedings of the International Symposium on Symbolic and Algebraic Computations ISSAC, July 27-29, 1992, pp. 158-167, Berkeley 1992. Manocha, D. and Canny, J. (1993): Multipolynomial resultant algorithms, Journal of Symbolic Computations 15 (1993) 99-122. Mardia, K.V. (1962): Multivariate Pareto distributions, Ann. Math. Statistics 33 (1962), 1008-1015 Mardia, K.V. (1970a): Families of bivariate distributions, Griffin, London 1970 Mardia, K.V. (1970b): Measures of multivariate skewness and kurtosis with applications, Biometrika 57 (1970), 519-530 Mardia, K.V. (1972): Statistics of directional data, Academic Press, New York London 1972 Mardia, K.V. (1975): Characterization of directional distributions, Statistical Distributions, Scientific Work 3 (1975), G.P. Patil et al. (eds.), 365-385 Mardia, K.V. (1975): Statistics of directional data, J. Roy. Statist. Soc. B37 (1975), 349-393 Mardia, K.V. (1976): Linear-circular correlation coefficients and rhythmometry, Biometrika 63 (1976), 403-405 Mardia, K.V. (1988): Directional data analysis: an overview, J. Applied Statistics 2 (1988), 115-122 Mardia, K.V. and M.L. Puri (1978): A robust spherical correlation coefficient against scale, Biometrika 65 (1978), 391-396 References 961

Mardia, K.V., Kent, J. and J.M. Bibby (1979): Multivariate analysis, Academic Press, New York London 1979 Mardia, K.V., Southworth, H.R. and C.C. Taylor (1999): On bias in maximum likelihood estimators, J. Statist. Planning and Inference 76 (1999), 31-39 Mardia, K.V. and P.E. Jupp (1999): Directional statistics, J. Wiley, New York 1999 Marinkovic, P, Grafarend, E. and T. Reubelt (2003): Space gravity spectroscopy: the benefits of Taylor-Karman structured criterion matrices, Advances in Geosciences 1 (2003), 113-120 Maritz, J. S. (1953): Estimation of the correlation coefficient in the case of a bivariate normal population when one of the variables is dichotomized, Psychometrika, 18, 97-110. Mariwalla, K.H. (1971): Coordinate transformations that form groups in the large, in: De Sitter and Conformal Groups and their Applications, A.O. Barut and W.E. Brittin (Hrsg.), Vol. 13, 177-191, Colorado Associated University Press, Boulder 1971 Markatou, M. and X. He (1994): Bounded influence and high breakdown point testing procedures in linear models, J. Am. Statist. Ass. 89, 543-49, 1994 Markiewicz, A. (1996): Characterization of general ridge estimators, Statistics & Probability Letters 27 (1996), 145-148 Markov, A.A. (1912): Wahrscheinlichkeitsrechnung, 2nd edition, Teubner, Leipzig 1912 Marosseviˇ ec,` T. and D. Jukiec` (1997): Least orthogonal absolute deviations problem for exponential function, Student 2 (1997), 131-138 Marquardt, D.W. (1963): An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl. Math. 11 (1963), 431-441 Marquardt, D.W. (1970): Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation, Technometrics 12 (1970), 591-612 Marriott, J. and P. Newbold (1998): Bayesian comparison of ARIMA and stationary ARMA models, Journal of Statistical Review 66 (1998), 323-336 Marsaglia, G. and G.P.H. Styan (1972): When does rank (ACB) D rank A C rank B?, Canad. Math. Bull. 15 (1972), 451-452 Marsaglia G. and G.P.H. Styan (1974a): Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2 (1974), 269-292. Marsaglia G. and G.P.H. Styan (1974b): Rank conditions for generalized inverses of partitioned matrices. Sankhya, Ser. A 36 (1974), 437-442. Marshall, J. (2002): L1-norm pre-analysis measures for geodetic networks, Journal of Geodesy 76 (2002), 334-344 Martinec, Z. (2002): Lecture Notes 2002. Scalar surface spherical harmonics, GeoForschungsZentrum Potsdam 2002 Maruyama, Y. (1998): Minimax estimators of a normal variance, Metrika 48 (1998), 209-214 Masry, E. (1997): Additive nonlinear ARX time series and projection estimates, Econometric Theory 13 (1997), 214-252 Mastronardi, N., Lemmerling, P. and S. van Huffel (2000): Fast structured total least squares algorithm for solving the basic deconvolution problem, Siam J. Matrix Anal. Appl. 22 (2000), 533-553 Masuyama, M. (1939): Correlation between tensor quantities, Proc. Phys.-Math. Soc. Japan, (3): 21, 638-647 Masuyama, M. (1939b): Tensor characteristic of vector set,-Proc. Phys.-Math. Soc. Japan (3): 21-648 Mathai, A.M. (1997): Jacobians of matrix transformations and functions of matrix arguments, World Scientific, Singapore 1997 Mathai, A.M. and Provost, S.B. (1992): Quadratic Forms in Random Variables. Marcel Dekker, New York, 367p Mathar, R. (1997): Multidimensionale Skalierung, B. G. Teubner Verlag, Stuttgart 1997. Matheron, G. (1970): The theory of regionalized variables and its applications. Fascicule 5, Les Cahiers du Centre de Morphologie Mathematique. Ecole des Mines de Paris, Fontainebleau, 211 p 962 References

Matheron, G. (1993): The intrinsic random functions and their applications, Adv. App. Prob. 5 (1973) 439-468 Mathes, A. (1998): GPS und GLONASS als Teil eines hybrid Meßsystems in der geodasie¨ am Beispiel des Systems HIGGINS, Dissertationen, DGK, Reihe C, Nr. 500. Mathew, T. (1989): Optimum invariant tests in mixed linear models with two variance components, Statistical Data Analysis and Inference, Y. Dodge (ed.), North-Holland 1989, 381-388 Mathew, T. (1997): Wishart and Chi-Square Distributions Associated with Matrix Quadratic Forms, J. Multivar. Anal. 61 (1997), 129-143 Mathew, T. and B.K. Sinha (1988): Optimum tests in unbalanced two-way models without interaction, Ann. Statist. 16 (1988), 1727-1740 Mathew, T. and S. Kasala (1994): An exact confidence region in multivariate calibration, The Annals of Statistics 22 (1994), 94-105 Mathew, T. and W. Zha (1996): Conservative confidence regions in multivariate calibration, The Annals of Statistics 24 (1996), 707-725 Mathew, T. and K. Nordstrom¨ (1997): An inequality for a measure of deviation in linear models, The American Statistician 51 (1997), 344-349 Mathew, T. and W. Zha (1997): Multiple use confidence regions in multivariate calibration, J. Am. Statist. Ass. 92 (1997), 1141-1150 Mathew, T. and W. Zha (1998): Some single use confidence regions in a multivariate calibration problem, Applied Statist. Science III (1998), 351-363 Mathew, T., Sharma, M.K. and K. Nordstrom¨ (1998): Tolerance regions and multiple-use confidence regions in multivariate calibration, The Annals of Statistics 26 (1998), 1989-2013 Mathias, R. and G.W. Stewart (1993): A block QR algorithm and the singular value decomposition, Linear Algebra Appl. 182 (1993), 91-100 Matz, G., Hlawatsch, F. and Kozek, W. (1997): Generalized evolutionary spectral analysis and the Weyl-spectrum of non stationary random processes. In IEEE Trans. Signal. Proc., vol. 45, no. 6, pp. 1520-1534. Mauly, B.F.J. (1976): Exponential data transformations, Statistician 27 (1976), 37-42 Mautz, R. (2001): Zur Losung¨ nichtlinearer Ausgleichungsprobleme bei der Bestimmung von Frequenzen in Zeitreihen, DGK, Reihe C, Nr. 532. Mautz, R. (2002): Solving nonlinear adjustment problems by global optimization, Boll. di Geodesia e Scienze Affini 61 (2002), 123-134 Maxwell, S.E. (2003): Designig experiments and analyzing data. A model comparison perspective, Lawrence Erlbaum Associates, Publishers, London New Jersey 2003 Maybeck, P. (1979): Stochastic models, estimation, and control, Vol. 1, Academic Press, New York London 1979 Maybeck, P. (1982): Stochastic models, estimation and control, Vol. 1 and 2, Academic Press, Washington 1982 Mayer, D.H. (1975): Vector and tensor fields on conformal space, J. Math. Physics 16 (1975), 884-893 McComb, W.D. (1990): the physics of fluid turbulence, Clarendon Press, 572 pages, Oxford 1990 McCullagh, P. (1983): Quasi-likelihood functions, The Annals of Statistics 11 (1983), 59-67 McCullagh, P. (1987): Tensor methods in statistics, Chapman and Hall, London 1987 McCullagh, P. and Nelder, J.A. (1989): Generalized linear models, Chapman and Hall, London 1989 McCullagh, P. and Nelder, L. (2006): Generalized linear models. Chapman and Hall, CRC, New York McCulloch, C.E. (1997): Maximum likelihood algorithms for generalized linear mixed models, J. Am. Statist. Ass. 92 (1997), 162-170 McCulloch, C.E. and S.R. Searle (2001): Generalized, linear, and mixed models, J. Wiley, New York 2001 McElroy, F.W. (1967): A necessary and sufficient condition that ordinary least-squares estimators be best linear unbiased, J. Am. Statist. Ass. 62 (1967), 1302-1304 References 963

McGaughey, D.R. and G.J.M Aitken (2000): Statistical analysis of successive random additions for generating fractional Brownian motion, Physics A 277 (2000) 25-34 McGilchrist, C.A. (1994): Estimation in generalized mixed models, J. Roy. Statist. Soc. B56 (1994), 61-69 McGilchrist, C.A. and C.W. Aisbett (1991): Restricted BLUP for mixed linear models, Biometrical Journal 33 (1991), 131-141 McGilchrist, C.A. and K.K.W. Yau (1995): The derivation of BLUP, ML, REML estimation meth- ods for generalised linear mixed models, Commun. Statist.-Theor. Meth. 24 (1995), 2963-2980 McMorris, F.R. (1997): The median function on structured metric spaces, Student 2 (1997), 195-201 Meditch, J.S. (1969): Stochastic optimal linear estimation and control, McGraw Hill, New York 1969 Meetz, K. and W.L. Engl (1980): Electromagnetic field, Springer Mehta, M.L. (1967): Random/matrices and the statistical theory of energy levels, Academic Press, New York Mehta, M.L. (1991): Random matrices, Academic Press, New York London 1991 Meidow, J., Beder, C. and Forstner, W. (2009): Reasoning with uncertain points, straight lines, and straight line segments in 20. ISPRS Journal of Photogrammetry and Remote Sensing, 64. Jg. 2009, Heft: 2, S. 125-139. Meidow, J., Forstner,¨ W. and C. Beder (2009): Optimal parameter estimation with homogeneous entities and arbitrary constraints, pappers recognition, proc. 31st DAGM Sym. , Jena, Germany, pages 292-301, Springer Verlag, Berlin-Heidelberg 2010 Meier, S. (1967): Die Terrestriche Refraktion in Kongsfjord (West Spitzbergen), Geod. Geophys. Vertiff., Reihe 3, pp. 32-51, Berlin 1967 Meier, S. (1970): Beitrdge zur Refraktion in Kohen Breiten, Geod. Geophys. Veroff., Reihe, Berlin 1970 Meier, S. (1975): Zur Geninigkert der Trigonometrischen Hohen messunguber ¨ Eis bei stabiler Temperatur and Refrektions schichtung, Vermessungstechnik 23 (1975) 382-385 Meier, S. (1976): Uber¨ die Abhungigkeit der Refraktions schwankung von der Zeileite, vermessungstechnik 24 (1976) 378-382 Meier, S. (1977): Zur Refraktions schwankung in der turbulenten unterschicht der Atmosphere Vermassungstechnik 25 (1977) 332-335 Meier, S. (1978): Stochastische Refreaktions modelle, Geod. Geophys. Reihe3, 40 (1978) 63-73 Meier, S. (1978): Refraktions schwankung and Turbilenz, Geod. Geophy. Reihe3, 41, (1978) 26-27 Meier, S. (1981): Planar geodetic covariance functions , Rev. of Geophysics and Space Physics 19 (1981) 673-686 Meier, S. (1982): Stochastiche Refraktions modell f¨ur Zielstrahlen in dreidimensionalen Euklischen Raum Vermessungstechnik 30 (1982) 55-57 Meier, S. (1982): Stochastiche Refraktions modell f¨ur Zielstrahlen in eiven Vertikalchene der Freien Atmosphere Vermessungstechnik 30 (1982) 55-57 Meier, S. (1982): Varianz and Erhaltungs neiyung der lokalen Lichtstrahlkrummung in Bodennahe, Vermessungstechnik 30 (1982) 420-423 Meier, S. and W. Keller (1990): Geostatistik, Einfuhrung in der Theorie der Zufulls prozesse, Springer Verley, Wein New York 1990 Meinhold, P. und E. Wagner (1979): Partielle Differentialgleichungen. Frankfurt/Main. Meissl, P. (1965):uber ¨ die Innere Genauigkeit dreidimensionaler Punkthaufen, Z. Vermessungswesen 90 (1965), 198-118 Meissl, P. (1969): Zusammenfassung und Ausbau der inneren Fehlertheorie eines Punkthaufens, Deutsche Geod. Kommission A61, M¨unchen 1994, 8-21 Meissl, P. (1970): Ober die Fehlerfortpflanzung in gewissen regelmaBigen flachig ausgebreiteten Nivellementnetzen. Zeitschrift f¨ur Vermessungswesen 2i, 103-109. Meissl, P. (1976): Hilbert spaces and their application to geodetic least-squares problems, Bolletino di Geodesia e Scienze Affini 35 (1976), 49-80 964 References

Meissl, P. (1982): Least squares adjustment. A modern approach, Mitteilungen der geodatischen¨ Institut der Technischen Universitat¨ Craz, Folge 43. Melas, V.B. (2006): Functional approach to optimal experimental design. Springer, Berlin Melbourne, W. (1985): The case of ranging in GPS-based geodetic systems, Proc.1st Int.Symp. on Precise Positioning with GPS, Rockville, Maryland (1985), 373-386 Menz, J. (2000): Forschungsergebnisse zur Geomodellierung und deren Bedeutung, Manuskript 2000 Menz, J. and N. Kolesnikov (2000): Bestimmung der Parameter der Kovarianzfunktionen aus den Differenzen zweier Vorhersageverfahren, Manuskript, 2000 Merriman, M. (1877): On the history of the method of least squares, The Analyst 4 (1877) Merriman, M. (1884): A textbook on the method of least squares, J. Wiley, New York 1884 Merrit, E. L. (1949): Explicit Three-point resection in space, Phot. Eng. 15 (1949) 649-665. Meyer, C.D. (1973): Generalized inverses and ranks of block matrices, SIAM J. Appl. Math. 25 (1973), 597-602 Mhaskar, H.N., Narcowich, F.J and J.D. Ward (2001): Representing and analyzing scattered data on spheres, In: Multivariate Approximations and Applications, Cambridge University Press, Cambridge 2001, 44-72 Mierlo van, J. (1980): Free network adjustment and S-transformations, Deutsche Geod. Kommission B252, M¨unchen 1980, 41-54 Mierlo van, J. (1982): Difficulties in defining the quality of geodetic networks. Proceedings Survey Control Networks, ed. Borre, K., Welsch, W.M., Vol. 7, pp. 259-274. Schriftenreihe Wiss. Studiengang Vermessungswesen, Hochschule der Bundeswehr, M¨unchen. Migon, H.S. and D. Gammermann (1999): Statistical inference, Arnold London 1999 Milbert, D. (1979): Optimization of Horizontal Control Networks by nonlinear Programming. NOAA, Technical Report NOS 79 NGS 12, Rockville Millar, A.M. and Hamilton, D.C. (1999): Modern outlier detection methods and their effect on subsequent inference. J. Stat. Comput. Simulation 64, 2 (1999), 125-150. Miller, R.G. (1966): Simultaneous statistical inference, Mc Graw-Hill Book Comp., New York 1966 Mills, T.C. (1991): Time series techniques for economists, Cambridge University Press, Cambridge 1991 Minzhong, J. and C. Xiru (1999): Strong consistency of least squares estimate in multiple regression when the error variance is infinite, Statistica Sinica 9 (1999), 289-296 Minkler, G. and J. Minkler (1993): Theory and application of Kalman filtering, Magellan Book Company 1993 Minoux, M. (1986): Mathematical Programming. John Wiley & Sons, Chicester. Mirsky, C. (1960): Symmetric gauge functions and unitarily invariant norms, Quarterly Journal of Mathematics, 11 (1960), pp. 50-59 Mises, von R. (1918): Ueber die Ganzzahligkeit der Atomgewichte und verwandte Fragen, Phys.Z. 19 (1918) 490-500 Mises von, R. (1945): On the classification of observation data into distinct groups, Annals of Mathematical Statistics, 16, 68-73. Misra, P. and Enge, P. (2001): Global Positioning System-Signals, Measurement, and Performance. Ganga-Jamuna Press, Lincoln, Massachusetts, 2001 Misra, R.K. (1996): A multivariate procedure for comparing mean vectors for populations with unequal regression coefficient and residual covariance matrices, Biometrical Journal 38 (1996), 415-424 Mitchell, T.J. and Morris, M.D. (1992): Bayesian design and analysis of computer experiments: two examples. Stat Sinica 2:359-379 Mitra, S.K. (1971): Another look at Rao’s MINQUE of variance components, Bull. Inst. Inernat. Stat. Assoc., 44 (1971), pp. 279-283 Mitra, S.K. (1982): Simultaneous diagonalization of rectangular matrices, Linear Algebra Appl. 47 (1982), 139-150 References 965

Mitra, S.K. and Rao, C.R. (1968): Some results in estimation and tests of linear h-ypotheses under the Gauss-Markov model. Sankhya, Ser. A, 30 (1968), 281-290. Mittermayer, E. (1972): A generalization of least squares adjustment of free networks, Bull. Geod. No. 104 (1972) 139-155. Moenikes, R., Wendel, J. and Trommer, G.F. (2005): A modified LAMBDA method for ambiguity resolution in the presence of position domain constraints. In: Proceedings ION GNSS2005. Long Beach Mohan, S.R. and S.K. Neogy (1996): Algorithms for the generalized linear complementarity problem with a vertical block Z-matrix, Siam J. Optimization 6 (1996), 994-1006 Moire, C. and J.A. Dawson (1992): Distribution, Chapman and Hall, Boca Raton 1996 Molenaar, M. (1981): A further inquiry into the theory of S - transformations and criterion matrices. Neth. Geod. Comm., Publ. on Geodesy. New Series, Vol. 6, Nr. 1, Delft Moller,¨ H. M. (1998): Grobner¨ bases and numerical analysis, In Groebner bases and applications. Eds. B. Buchberger and F. Winkler, London mathematical society lecture note series 251. Cambridge university press, pp. 159-177, 1998. Molz, F.J., Liu, H.H. and Szulga, J. (1987): Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review, presentation of fundamental properties and extensions, Water Resour. Res., 33(10), 2273-2286z Money, A.H. et al. (1982): The linear regression model: Lp-norm estimation and the choice of p, Commun. Statist. Simul. Comput. 11 (1982), 89-109 Monin, A.S. and A.M. Yaglom (1981): Statistical fluid mechanics: mechanics of turbulence, Vol. 2, The Mit Press, Cambridge 1981 Monin, A.S. and A.M. Yaglom (1971): Statistical fluid mechanics, Vol I, 769 pages, MIT Press, Cambridge/Mass 1971 Monin, A.S. and A.M. Yaglom (1975): Statistical fluid mechanics, Vol II, 874 pages, pages, MIT Press, Cambridge/Mass 1975 Montfort van, K. (1989): Estimating in structural models with non-normal distributed variables: some alternative approaches, ’Reprodienst, Subfaculteit Psychologie’, Leiden 1989 Montgomery, D.C. (1996): Introduction to statistical quality control, 3rd edition, J. Wiley, New York 1996 Montgomery, D.C., Peck, E.A. and Vining, G.G. (2001): Introduction to linear regression analysis. John Wiley & Sons, Chichester, 2001 (3rd ed). Mood, A.M., Graybill, F.A. and D.C. Boes (1974): Introduction to the theory of statistics, 3rd ed., McGraw-Hill, New York 1974 Moon, M.S. and R.F. Gunst (1994): Estimation of the polynomial errors-in-variables model with decreasing error variances, J. Korean Statist. Soc. 23 (1994), 115-134 Moon, M.S. and R.F. Gunst (1995): Polynomial measurement error modeling, Comput. Statist. Data Anal. 19 (1995), 1-21 Moore, E.H. (1900): A fundamental remark concerning determinantal notations with the evaluation of an important determinant of special form, Ann. Math. 2 (1900), 177-188 Moore, E.H. (1920): On the reciprocal of the general algebraic matrix, Bull. Amer. Math. Soc. 26 (1920), 394-395 Moore, E.H. (1935): General Analysis, Memoirs American Philosophical Society, pp. 147-209, New York Moore, E.H. and M.Z. Nashed (1974): A general approximation theory of generalized inverses of linear operators in Banoch spaces, SIAM J. App. Math. 27 (1974) Moors, J.J.A., and van Houwelingen, V.C. (1987): Estimation of linear models with inequality restrictions, Tilburg University Research report FEW 291, The Netherlands Morgan, B.J.T. (1992): Analysis of quantal response data, Chapman and Hall, Boca Raton 1992 Morgan, A.P. (1992): Polynomial continuation and its relationship to the symbolic reduction of polynomial systems, In Symbolic and Numerical Computations for Artificial Intelligence, pp. 23-45, 1992. 966 References

Morgenthaler, S. (1992): Least-absolute-deviations fits for generalized linear models, Biometrika 79 (1992), 747-754 Morgera, S. (1992): The role of in structured estimation theory, IEEE Trans. Inform. Theory 38 (1992), 1053-1065 Moritz, H. (1972): Advanced least - squares estimation. The Ohio State University, Department of Geodetic Science, Report No. 175, Columbus.. Moritz, H. (1973): Least-squares collocation. DGK, A 59, Muenchen Moritz, H. (1976): Covariance functions in least-squares collocation, Rep. Ohio State Uni. 240 Moritz, H. (1978): The operational approach to physical geodesy. The Ohio State University, Department of Geodetic Science, Report 277, Columbus Moritz, H. (1980): Advanced physical geodesy. Herbert Wichmann Verlag Karlsruhe Moritz, H. and Suenkel, H. (eds) (1978): Approximation methods in geodesy. Sammlung Wichmann Neue Folge, Band 10, Herbert Wichmann Verlag Morris, C.N. (1982): Natural exponential families with quadratic variance functions, Ann. Statist. 10 (1982), 65-80 Morris, M.D. and Mitchell, T.J. and Ylvisaker, D. (1993): Bayesian design and analysis of computer experiments: use of derivatives in surface prediction. Technometrics 35:243-255 Morrison, D.F. (1967): Multivariate statistical methods, Mc Graw-Hill Book Comp., New York 1967 Morrison, T.P. (1997): The art of computerized measurement, Oxford University Press, Oxford 1997 Morsing, T. and C. Ekman (1998): Comments on construction of confidence intervals in connection with partial least-squares, J. Chemometrics 12 (1998), 295-299 Moser, B.K. and J.K. Sawyer (1998): Algorithms for sums of squares and covariance matrices using Kronecker Products, The American Statistician 52 (1998), 54-57 Mount, V.S. and Suppe J. (1992): Present-day stress orientations adjacent to active strike-slip faults: California and Sumatra, J. geophys. Res., B97, 11995-12013 Moutard, T. (1894): Notes sur la propagation des ondes et les eequations` de l’hydroudynamique, Paris 1893, reprint Chelsea Publ., New York 1949 Mudholkar, G.S. (1997): On the efficiencies of some common quick estimators, Commun. Statist.-Theory Meth. 26 (1997), 1623-1647 Mukhopadhyay, P. and R. Schwabe (1998): On the performance of the ordinary least squares method under an error component model, Metrika 47 (1998), 215-226 Mueller, C.H. (1997): Robust planning and analysis of experiments, Springer-Verlag, Heidelberg Berlin New York 1997 Mueller, C.H. (1998): Breakdown points of estimators for aspects of linear models, in: MODA 5 - Advances in model-oriented data analysis and experimental design, Proceedings of the 5th International Workshop in Marseilles, eds. Atkinson, A.C., Pronzato, L. and H.P. Wynn, Physica-Verlag, Heidelberg 1998 Mueller, H. (1985): Second-order design of combined linear-angular geodetic networks, Bull. Geodeesique` 59 (1985), 316-331 Muller, B., Zoback, M.L., Fuchs, K., Mastin, L., Geregersen, S., Pavoni, N., Stephansson, O. and Ljunggren, C. (1992): Regional patterns of tectonic stress in Europe, J. geophys. Res., B97, 11783-11803 Muller, D.E. (1956): A method for solving algebraic equations using an automatic computer. Mathematical Tables and other Aids to Computation, Vol. X, No. 56, 208-215. M¨uller, F.J. (1925): Direkte (Exakte) Losungen¨ des einfachen R¨uckwarscnittseinschneidens im Raum. 1 Teil, Zeitschrift f¨ur Vermessungswesen 37 (1925) 249-255, 265-272, 349-353, 365-370, 569-580. M¨uller, H. and M. Illner (1984): Gewichtsoptimierung geodatischer¨ Netze. Zur Anpassung von Kriteriummatrizen bei der Gewichtsoptimierung, Allgemeine Vermessungsnachrichten (1984), 253-269 References 967

M¨uller, H. and G. Schmitt (1985): SODES2 - Ein Programm-System zur Gewichtsoptimierung zweidimensionaler geodatischer¨ Netze. Deutsche Geodatische¨ Kommission, M¨unchen, Reihe B, 276 (1985) M¨uller, W.G. (2005): A comparison of spatial design methods for correlated observations. Environmetrics 16:495-505 M¨uller, W.G. and Pazman, A. (1998): Design measures and approximate information matrices for experiments without replications. J Stat Plan Inf 71:349-362 M¨uller, W.G. and Pazman, A. (1999): An algorithm for the computation of optimum designs under a given covariance structure. J Comput Stat 14:197-211 M¨uller, W.G. and Pazman, A. (2003): Measures for designs in experiments with correlated errors. Biometrika 90:423-434 M¨uller, P., Sanso, B. and De Iorio, M. (2004): Optimal Bayesian design by inhomogeneous Markov Chain simulation. J Am Stat Assoc 99: 788-798 Mueller, J. (1987): Sufficiency and completeness in the linear model, J. Multivar. Anal. 21 (1987), 312-323 Mueller, J., Rao, C.R. and B.K. Sinha (1984): Inference on parameters in a linear model: a review of recent results, in: Experimental design, statistical models and genetic statistics, K. Hinkelmann (ed.), Chap. 16, Marcel Dekker, New York 1984 Mueller, W. (1995): An example of optimal design for correlated observations, Osterreichische¨ Zeitschrift f¨ur Statistik 24 (1995), 9-15 Mueller, W. (1998): Spatial data collection, contributions to statistics, Physica Verlag, Heidelberg 1998 Mueller, W. (1998): Collecting spatial data - optimum design of experiments for random fields, Physica-Verlag, Heidelberg 1998 Mueller, W. (2001): Collecting spatial data - optimum design of experiments for random fields, 2nd ed., Physica-Verlag, Heidelberg 2001 Mueller, W. and A. Peazman` (1998): Design measures and extended information matrices for experiments without replications, J. Statist. Planning and Inference 71 (1998), 349-362 Mueller, W. and A.Peazman` (1999): An algorithm for the computation of optimum designs under a given covariance structure, Computational Statistics 14 (1999), 197-211 Mueller-Gronbach, T. (1996): Optimal designs for approximating the path of a stochastic process, J. Statist. Planning and Inference 49 (1996), 371-385 Muir, T. (1911): The theory of determinants in the historical order of development, volumes 1-4, Dover, New York 1911, reprinted 1960 Muirhead, R.J. (1982): Aspects of multivariate statistical theory, J. Wiley, New York 1982 Mukherjee, K. (1996): Robust estimation in nonlinear regression via minimum distance method, Mathematical Methods of Statistics 5 (1996), 99-112 Mukhopadhyay, N. (2000): Probability and statistical inference, Dekker, New York 2000 Muller, C. (1966): Spherical harmonics - Lecture notes in mathematics 17 (1966), Springer-Verlag, Heidelberg Berlin New York, 45 pp. Muller, D. and Wei, W.W.S. (1997): Iterative least squares estimation and identification of the tranfer function model, J. Time Series Analysis 18 (1997), 579-592 Mundt, W. (1969): Statistische Analyse geophysikalischer Potentialfelder hinsichtlich Aufbau und Struktur der tieferen, Erdkruste, Deutsche Akademic der Wissen schaften, Berlin 1969 Munoz-Pichardo, J.M., Munoz-Garce``ıa, J., Ferneandez-Ponce,` J.M. and F. Leopez-Bl` eaquez` (1998): Local influence on the general linear model, Sankhya: The Indian Journal of Statistics 60 (1998), 269-292 Musyoka, S. M. (1999): Ein Modell f¨ur ein vierdimensionales integriertes regionales geodatisches¨ Netz, Ph. D. thesis, Department of Geodesy, University of Karlsruhe (Internet Publication), 1999. Murray, F.J. and J. von Neumann (1936): On rings of operator I, Ann. Math. 37 (1936), 116-229 Murray, J.K. and J.W. Rice (1993): Differential geometry and statistics, Chapman and Hall, Boca Raton 1993 Myers, J.L. (1979): Fundamentals of experimental designs, Allyn and Bacon, Boston 1979 968 References

Naes, T. and H. Martens (1985): Comparison of prediction methods for multicollinear data, Commun. Statist. Simulat. Computa. 14 (1985), 545-576 Nagaev, S.V. (1979): Large deviations of sums of independent random variables, Ann. Probability 7 (1979), 745-789 Nagar, A.L. and N.C. Kakwani (1964): The bias and of a mixed regression estimator, Econometrica, 32 (1964), pp. 174-182 Nagar, A.L. and N.C. Kakwani (1969): Note on the use of prior information in statistical estimation of econometrics relation, Sankhya series A 27, (1969), pp. 105-112 Nagar, D.K. and A.K. Gupta (1996): On a test statistic useful in Manova with structured covariance matrices, J. Appl. Stat. Science 4 (1996), 185-202 Nagaraja, H.N. (1982): Record values and extreme value distributions, J. Appl. Prob. 19 (1982), 233-239 Nagarsenker, B.N. (1977): On the exact non-null distributions of the LR criterion in a general MANOVA model, Sankya A39 (1977), 251-263 Nakamura, N. and S.Konishi (1998): Estimation of a number of components for multivariate nor- mal mixture models based on information criteria, Japanese J. Appl. Statist. 27 (1998), 165-180 Nakamura, T. (1990): Corrected score function for errors-invariables models: methodology and application to generalized linear models, Biometrika 77 (1990), 127-137 Namba, A. (2001): MSE performance of the 2SHI estimator in a regression model with multivariate t error terms, Statistical Papers 42(2001), 82-96 Nashed, M.Z. (1970): Steepest for singular linear operator equations, SIAM J. Number. Anal. 7 (1970), pp. 358-362 Nashed, M.Z. (1971): Generalized inverses, normal solvability, and iteration for singular operator equations pp. 311-359 in Nonlinear Functional Analysis and Applications (L. B. Rail, editor), Academic Press, New York, 1971 Nashed, M.Z. (1974): Generalized Inverses and Applications, Academic Press, New York 1974 Nashed, M.Z. (1976): Generalized inverses and applications, Academic Press, New York London 1976 Nather,¨ W. (1985): Exact designs for regression models with correlated errors, Statistics 16 (1985), 479-484 Nather,¨ W. and Walder,¨ K. (2003): Experimental design and statistical inference for cluster point processeswith applications to the fruit dispersion of Anemochorous forest trees, Biometrical J 45, pp. 1006-1022, 2003 Nather,¨ W. and Walder,¨ K. (2007): Applying fuzzy measures for considering interaction effects in root dispersal models in Fuzzy Sets and Systems 158; S. 572-582, 2007 Nelder, J.A. and R.W.M. Wedderburn (1972): Generalized linear models, J. Roy. Stat. Soc., Series A 35, (1972), pp. 370-384 Nelson, C.R. (1973): Applied time series analysis for managerial forecasting, Holden Day, San Francisco, 1973 Nelson, R. (1995): Probability, stochastic processes, and queueing theory, Springer-Verlag, Heidelberg Berlin New York 1995 Nesterov, Y.E. and A.S. Nemirovskii (1992): Interior point polynomial methods in convex programming, Springer-Verlag, Heidelberg Berlin New York 1992 Nesterov, Y.E. and A.S. Nemirovskii (1994): Interior point polynomial algorithms in convex programming, SIAM Vol. 13, Pennsylvania 1994 Neudecker, H. (1968): The Kronecker matrix product and some of its applications in econometrics, Statistica Neerlandica 22 (1968), 69-82 Neudecker, H. (1969): Some theorems on matrix differentiation with special reference to Kronecker matrix products, J. Am. Statist. Ass. 64 (1969), 953-963 Neudecker, H. (1978): Bounds for the bias of the least squares estimator of 2 in the case of a first- order autoregressive process (positive autocorrelation), Econometrica 45 (1977), 1257-1262 Neudecker, H. (1978): Bounds for the bias of the LS estimator of 2 in the case of a first-order (positive) autoregressive process when the regression contains a constant term, Econometrica 46 (1978), 1223-1226 References 969

Neumaier, A. (1998): Solving ill-conditioned and singular systems: a tutorial on regularization, SIAM Rev. 40 (1998), 636-666 Neumann, J. (2009): Zur modellierung cines erweitertur unischerheits hanshaltes in Parameter Schetzung and hyphothesen test, Bayer, Akad. Wissen Schaften, Deutsche Geodeitische Kommission Reiche C634, M¨unchen 2009 Neumann, J. and H. Kutterer (2007): Adaptative Kalman Filtering mit imprazisen Daten, in: F. K. Brunner (ed.) Ingenienrvermessung, pages 420-424, Wickmann Verlag, Heidelberg 2007 Neuts, M.F. (1995): Algorithmic probability, Chapman and Hall, Boca Raton 195 Neutsch, W. (1995): Koordinaten: Theorie und Anwendungen, Spektrum Akademischer Verlag, Heidelberg 1995 Neway, W.K. and J.K. Powell (1987): Asymmetric least squares estimation and testing, Econometrica 55 (1987), 819-847 Newman, D. (1939): The distribution of range in samples from a normal population, expressed in terms of an independent estimate of standard deviation, Biometrika 31 (1939), 20-30 Neykov, N.M. and C.H. Mueller (2003): Breakdown point and computation of trimmed likelihood estimators in generalized linear models, in: R. Dutter, P. Filzmoser, U. Gather, P.J. Rousseeuw (eds.), Developments in Robust Statistics, 277-286, Physica Verlag, Heidelberg 2003 Neyman, J. (1934): On the two different aspects of the representative method, J. Roy. Statist. Soc. 97 (1934), 558-606 Neyman, J. (1937): Outline of the theory of statistical estimation based on the classical theory of probability, Phil. Trans. Roy. Soc. London 236 (1937), 333-380 Neytchev P. N. (1995): SWEEP operator for least-squares subject to linear constraints. Comput. Stat. Data Anal. 20, 6 (1995), 599-609. Nicholson, W.K. (1999): Introduction to abstract algebra, 2nd ed., J. Wiley, New York 1999 Niemeier, W. (1985): Deformationsanalyse, in: Geodatische¨ Netze in Landes- und Ingenieurvermessung II, Kontaktstudium, ed. H. Pelzer, Wittwer, Stuttgart 1985 Nobre, S. and M. Teixeiras (2000): Der Geodat¨ Wilhelm Jordan und C.F. Gauss, Gauss- Gesellschaft e.V. Goettingen, Mitt. 38, 49-54 Goettingen 2000 Nyquist, H. (1988): Least orthogonal absolute deviations, Comput. Statist. Data Anal. 6 (1988), 361-367 Nyquist, H., Rice, S.O. and J. Riordan ( l959): The distribution of random determinants, Quart. Appl. Math., 12, 97-104. O’Neill, M., Sinclair, L.G. and F.J. Smith (1969): Polynomial curve fitting when abscissa and ordinate are both subject of error, Comput. J. 12 (1969), 52-56 O’Neill, M.E. and K. Mathews (2000): A weighted least squares approach to Levene’s test of homogeneity of variance, Australia & New Zealand J. Statist. 42 (2000), 81-100 Nicholson, W. K. (1999): Introduction to abstract algebra, Second Edition, John Wiley & Sons, New York-Chichester-weinheim-Brisbane-Singapore 1999. Nkuite G. (1998): Adjustment with singular variance-covariance matrix for models of geometric deformation analysis. Ph.D. thesis, Deutsche Geodatische¨ Kommission bei der Bayerischen Akademie der Wissenschaften Reihe C: Dissertationen, 501 Mlinchen: Verlag der Bayerischen Akademie der Wissenschaften, 1998 (in German). Nordstrom K. (1985): On a decomposition of the singular Gauss-Markov model. In: Linear Statistical Inference, Proc. Int. Conf., Poznan, Poland, 1984, Lect. Notes Stat. (Calh1ski T., Klonecki W., eds.) Springer-Verlag, Berlin, 1985, pp. 231-245. Nordstrom, K. and Fellman, J. (1990): Characterizations and dispersion matrix robustness of efficiently estimable parametric functionals in linear models with nuisance parameters. Linear Algebra Appl. 127 (1990), 341-36l. Nurhonen, M. and Puntanen, S. (1992): A property of partitioned generalized regression. Commun. Stat., Theory Methods 21, 6 (1992), 1579-1583. Nussbaum, M. and S. Zwanzig(1988): A minimax result in a model with infmitely many nuisance parameters, Transaction of the Tenth Prague Conference on Information Theory, Statistical Decisions, Random Processes, Prague 1988, 215-222. 970 References

Oberlack, M. (1997): Non-Isotropic Dissipation in Non-Homogeneous Turbulence, J. Fluid Mech., vol. 350, pp. 351-374, (1997) Obuchow, A.M. (1958): Statistische Beschribung stetiger Felder, in: H. Goering (ed.) Sammelband zur ststischen Theorie der Turbolenz, pp. 1-42, Akademic Verlag 1958. Obuchow, A.M. (1962): Some specific features of atmospheric turbulence, Fluid mechanics 13 (1962) 77-81 Obuchow, A.M. (1962): Some specific features of atmospheric turbulence, J. Geophys. Res. 67 (1962) 3011-3014 Odijk, D. (2002): Fast precise GPS positioning in the presence of ionospheric delays. Publications on Geodesy, vol. 52, Netherlands Geodetic Commission, Delft Offlinger, R. (1998): Least-squares and minimum distance estimation in the three-parameter Weibull and Freechet` models with applications to river drain data, in: Kahle, et al. (eds.), Advances in stochastic models for reliability, quality and safety, 81-97, Birkhauser-Verlag,¨ Basel Boston Berlin 1998 Ogawa, J. (1950): On the independence of quadratic forms in a non-central normal system, Osaka Mathematical Journal 2 (1950), 151-159 Ohtani, K. (1988): Optimal levels of significance of a pre-test in estimating the disturbance variance after the pre-test for a linear hypothesis on coefficients in a linear regression, Econom. Lett. 28 (1988), 151-156 Ohtani, K. (1996): Further improving the Stein-rule estimator using the Stein variance estimator in a misspecified linear regression model, Statist. Probab. Lett. 29 (1996), 191-199 Ohtani, K. (1998): On the sampling performance of an improved Stein inequality restricted estimator, Austral. & New Zealand J. Statist. 40 (1998), 181-187 Ohtani, K. (1998): The exact risk of a weighted average estimator of the OLS and Stein-rule estimators in regression under balanced loss, Statistics & Decisions 16 (1998), 35-45 Okamoto, M. (1973): Distinctness of the Eigenvalues of a quadratic form in a multivariate sample, Ann. Stat. 1 (1973), 763-765 Okeke, F.I. (1998): The curvilinear datum transformation model, DGK, Reihe C, Heft Nr. 481. Okeke, F. and F. Krumm (1998): Graph, graph spectra and partitioning algorithms in a geodetic net- work structural analysis and adjustment, Bolletino di Geodesia e Scienze Affini 57 (1998), 1-24 Oktaba, W. (1984): Tests of hypotheses for the general Gauss-Markov model. Biom. J. 26 (1984), 415-424. Olkin, I. (1998): The density of the inverse and pseudo-inverse of a , Statistics and Probability Letters 38 (1998), 131-135 Olkin, J. (2000): The 70th anniversary of the distribution of random matrices: a survey, Technical Report No. 2000-06, Department of Statistics, Stanford University, Stanford 2000 Olkin, I. and S.N. Roy (1954): On multivariate distribution theory, Ann. Math. Statist. 25 (1954), 329-339 Olkin, I. and A.R. Sampson (1972): Jacobians of matrix transformations and induced functional equations, Linear Algebra Appl. 5 (1972), 257-276 Olkin, J. and J.W. Pratt (1958): Unbiased estimation of certain correlation coefficient, Annals Mathematical Statistics 29 (1958), 201-211 Olsen, A., Seely, J. and D. Birkes (1976): Invariant quadratic unbiased estimators for two variance components, Annals of Statistics 4 (1976), 878-890 Omre, H. (1987): Bayesian krigingmerging observations and qualified guess in kriging. Math Geol 19:25-39 Omre, H. and Halvorsen, K. (1989): The Bayesian bridge between simple and universal kriging. Math Geol 21:767-786 Ord, J.K. and S. Arnold (1997): Kendall’s advanced theory of statistics, volume IIA, classical inference, Arnold Publ., 6th edition, London 1997 Ortega, J. and Rheinboldt, W. (1970): Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York. Osborne, M.R. (1972): Some aspects of nonlinear least squares calculations, Numerical Methods for Nonlinear Optimization, ed. F.A. Lootsma, Academic Press, New York London 1972 References 971

Osborne, M.R. (1976): Nonlinear least squares the Levenberg algorithm revisited, J. Aust. Math. Soc. B19 (1976), 343-357 Osborne, M.R. and G.K. Smyth (1986): An algorithm for exponential fitting revisited, J. App. Prob. (1986), 418-430 Osborne, M.R. and G.K. Smyth (1995): A modified Prony algorithm for fitting sums of exponential functions, SIAM J. Sc. And Stat. Comp. 16 (1995), 119-138 Osiewalski, J. and M.F.J. Steel (1993): Robust Bayesian inference in elliptical regression models, J. Economatrics 57 (1993), 345-363 Ouellette, D.V. (1981): Schur complements and statistics, Linear Algebra Appl. 36 (1981), 187-295 Owens, W.H. (1973): Strain modification of angular density distributions, Techtonophysics 16 (1973), 249-261 Ozone, M.I. (1985): Non-iterative solution of the equations, Surveying and Mapping 45 (1985) 169-171. Paciorek, C. (2007): Bayesian smoothing with Gaussian processes using Fourier basis functions in the spectialGP package, J. Statist. Software 19 (2007) 1-38 Padmawar, V.R. (1998): On estimating nonnegative definite quadratic forms, Metrika 48 (1998), 231-244 Pagano, M. (1978): On periodic and multiple autoregressions, Annals of Statistics 6 (1978), 1310-1317 Paige, C.C. and M.A. Saunders (1975): Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12 (1975), 617-629 Paige, C. and C. van Loan (1981): A Schur decomposition for Hamiltonian matrices, Linear Algebra and its Applications 41 (1981), 11-32 Pakes, A.G. (1999): On the convergence of moments of geometric and harmonic means, Statistica Neerlandica 53 (1999), 96-110 Pal, N. and W.K. Lim (2000): Estimation of a correlation coefficient: some second order decision - theoretic results, Statistics and Decisions 18 (2000), 185-203 Pal, S.K. and P.P. Wang (1996): Genetic algorithms for pattern recognition, CRC Press, Boca Raton 1996 Palancz, B. and J.L. Awange (2012): Application of Pareto optimality to linear models with errors-in-all-variables. J. Geo. (2011), doi: 10.1007/s00190-011-0536-1 Panazachos C. and Kiratzi A. (1992): A formulation for reliable estimation of active crustal deformation and its application to central Greece, Geophys. J. Int., 111, 424-432 Panda, R. et. al. (1989): Turbulenz in a randomly stirred fluid, Phys. Fluid, A1 (1989) 1045-1053 Papo, H. (1985): Extended Free Net Adjustment Constraints. Bulletin Geodesique 59, pp. 378-390. Papo, H. (1986): Extended Free Net Adjustment Constraints. NOAA Technical Report NOS 119 NGS 37, September 1986, 16 p. Papoulis, A. (1991): Probability, random variables and stochastic processes, McGraw Hill, New York 1991 Park, H. (1991): A parallel algorithm for the unbalanced orthogonal Procrustes problem, Parallel Computing 17 (1991), 913-923 Park, S.H., Kim Y.H. and H. Toutenberg (1992): Regression diagnostic for removing an observation with animating graphics, Statistical papers, 33 (1992), pp. 227-240 Parker, W.V. (1945): The characteristic roots of matrices, Duke Math. J. 12 (1945), 519-526 Parkinson, B.W. and Spilker, J.J. (eds) (1996): Global Positioning System: Theory and Applications. vol 1, American institute of Aeronautics and Astronautics, Washington, DC, 793p Parthasaratky, K.R. (1967): Probability measures on metric spaces, Academic Press, New York London 1967 Parzen, E. (1962): On estimation of a probability density function and mode, Ann. Math. Statistics 33 (1962), 1065-1073 Passer, W. (1933): Uber¨ die Anwendung statischer Methoden auf den Ausgleich von Liniennetzen. OZfV 31, 66-71. 972 References

Patel, J.K. and C.B. Read (1982): Handbook of the normal distribution, Marcel Dekker, New York and Basel 1982 Patil, V.H. (1965): Approximation to the Behrens-Fisher distribution, Biometrika 52 (1965), 267-271 Patterson, H.D. and Thompson, R. (1971): Recovery of the inter-block information when block sizes are unequal. Biometrika, 58, 545-554 . Paul, M.K. (1973): A note on computation of geodetic coordinates from geocentric (Cartesian) coordinates, Bull. Geod. No. 108 (1973)135-139. Pazman, A. (1982): Geometry of Gaussian Nonlinear Regression - Parallel Curves and Confidence Intervals. Kybernetica, 18, 376-396. Pazman, A. (1984): Nonlinear Least Squares - Uniqueness Versus Ambiguity. Math. Operationsforsch. u. Statist., ser. statist., 15, 323-336. Pazman, A. and M¨uller, W.G. (2001): Optimal design of experiments subject to correlated errors. Stat Probab Lett 52:29-34 Peazman,` A. (1986): Foundations of optimum experimental design, Mathematics and its applications, D. Reidel, Dordrecht 1986 Peazman,` A. and J.-B. Denis (1999): Bias of LS estimators in nonlinear regression models with constraints. Part I: General case, Applications of Mathematics 44 (1999), 359-374 Peazman,` A. and W. M¨uller (1998): A new interpretation of design measures, in: MODA 5 - Advances in model-oriented data analysis and experimental design, Proceedings of the 5th International Workshop in Marseilles, eds. Atkinson, A.C., Pronzato, L. and H.P. Wynn, Physica-Verlag, Heidelberg 1998 Pearson, E.S. (1970): William Sealy Gosset, 1876-1937: Student as a statistician, Studies in the History of Statistics and Probalbility (E.S. Pearson and M.G. Kendall, eds.), Hafner Publ., 360-403, New York 1970 Pearson, E. S. and S. S. Wilks (1933): Methods of statistical analysis appropriate for k samples of two variables, Biometrika, 25, 353-378 Pearson, E.S. and H.O. Hartley (1958): Biometrika Tables for Statisticians Vol. 1, Cambridge University Press, Cambridge 1958 Pearson, K. (1905): The problem of the random walk, Nature 72 (1905), 294 Pearson, K. (1906): A mathematical theory of random migration, Mathematical Contributions to the Theory of Evolution, XV Draper’s Company Research Memoirs, Biometrik Series III, London 1906 Pearson, K. (1931): Historical note on the distribution of the Standard Deviations of Samples of any size from any indefinitely large Normal Parent Population, Biometrika 23 (1931), 416-418 Peddada, S.D. and T. Smith (1997): Consistency of a class of variance estimators in linear models under heteroscedasticity, Sankhya 59 (1997), 1-10 Pleitgen, H and Saupe, D (1988): The science of fractal image, Springer Verlag, New York 1988 Peitgen, H-O. and Jurgens, H. and Saupe, D. (1992): Chaos and fractals, springer Verlag, 1992 Pelzer, H. (1971): Zur Analyse geodatischer¨ Deformationsmessungen, Deutsche Geodatische¨ Kommission, Akademie der Wissenschaften, Reihe C (164), M¨unchen 1971 Pelzer, H. (1974): Zur Behandlung singularer¨ Ausgleichungsaufgaben, Z. Vermessungswesen 99 (1974), 181-194, 479-488 Pelzer, H. (1985): Geodiitische Netze , in Landes- und Ingenieurvermessung II. Wittwer, Stuttgart, 847p (in German) Pena, D., Tiao, G.C., and R.S. Tsay (2001): A course in time series analysis, J. Wiley, New York 2001 Penev, P. (1978): The transformation of rectangular coordinates into geographical by closed formulas Geo. Map. Photo,20(1978) 175-177. Peng, H.M., Chang, F.R. and Wang, L.S. (1999): Attitude determination using GPS carrier phase and compass data. In: Proceedings of ION NTM 99, pp 727-732 Penrose, R. (1955): A generalised inverse for matrices, Proc. Cambridge Phil. Soc. 51 (1955), 406-413 References 973

Penrose, R. (1956): On best approximate solution of linear matrix equations, Proc. Cambridge Philos. Soc. 52 (1956) pp. 17-19 Penny, K.I. (1996): Appropriate critical values when testing for a single multivariate outlier by using the Mahalanobis distance, in: Applied Statistics, ed. S.M. Lewis and D.A. Preece, J. Roy. Statist. Soc. 45 (1996), 73-81 Percival, D.B. and A.T. Walden (1993): Spectral analysis for physical applications, Cambridge, Cambridge University Press 1997 Percival, D.B. and A.T. Walden (1999): Wavelet methods for time series analysis, Cambridge University Press, Cambridge 1999 Perelmuter, A. (1979): Adjustment of free networks, Bull. Geod. 53 (1979) 291-295. Perlman, M.D. (1972): Reduced mean square error estimation for several parameters, Sankhya series, B 34 (1972), pp. 89-92 Perrin, J. (1916): Atoms, Van Nostrand, New York 1916 Perron, F. and N. Giri (1992): Best equivariant estimation in curved covariance models, J. Multivar. Anal. 40 (1992), 46-55 Perron, F. and N. Giri (1990): On the best equivariant estimator of mean of a multivariate normal population, J. Multivar. Anal. 32 (1990), 1-16 Persson, C.G., (1980): MINQUE and related estimators for variance components in linear models. PhD thesis, Royal Institute of Technology, Stockholm, Sweden. Petrov, V.V. (1975): Sums of independent random variables, Springer Verlag, Berlin-Heidelberg- New York 1975 Pfeufer, A. (1990): Beitrag zur Identifikation und Modellierung dynamischer Deformation- sprozesse, Vermessungstechnik 38 (1990), 19-22 Pfeufer, A. (1993): Analyse und Interpretation vonuberwachungsmessungen ¨ - Terminologie und Klassifikation, Zeitschrift f¨ur Vermessungswesen 118 (1993), 19-22 Pick, M.(1985): Closed formulae for transformation of Cartesian coordinates into a system of geodetic coordinates, Studia geoph. et geod. 29 (1985) 653-666. Pilz, J. (1983): Bayesian estimation and experimental design in linear regression models, Teubner-Texte zur Mathematik 55, Teubner, Leipzig 1983 Pilz, J. and Spock, G. (2008): Bayesian spatial sampling design. In: Proc. 18th Intl. Geostatics World Congeress (J. M. Oritz and X. Emery, Eds.), Gecamin Ltd., Santiago de Chile 2008, 21-30 Pilz, J.(1991): Bayesian estimation and experimental design in linear regression models. Wiley, New York Pilz, J. Schimek, M.G. and Spock, G. (1997): Taking account of uncertainty in spatial covariance estimation. In: Baafi E, Schofield N (ed) Proceedings of the fifth international geostatistics congress. Kluwer, Dordrecht, pp. 302-313 Pilz, J. and Spock, G. (2006): Spatial sampling design for prediction taking account of uncertain covariance structure. In: Caetano M, PainhoM (ed) Proceedings of accuracy 2006. Instituto Geografico Portugues, pp. 109-118 Pilz, J. and Spock, G. (2008): Why do we need and how should we implement Bayesian kriging methods. Stoch Environ Res Risk Assess 22/5:621-632 Pincus, R. (1974): Estimability of parameters of the covariance matrix and variance components, Math. Operationsforschg. Statistik 5 (1974), 245-248 Pinheiro, J.C. and D.M. Bates (2000): Mixed-effects models in S and S-Plus, Statistics and Computing, Springer-Verlag, Heidelberg Berlin New York 2000 Piquet, J. (1999): Turbulent flows, models and physics, Springer Verlag, 761 pages, Berlin 1999 Pistone, G. and Wynn, H. P. (1996): Generalized confounding with Grobner¨ bases, Biometrika 83 (1996) 112-119. Pitman, E.J.G. (1979): Some basic theory for statistical inference, Chapman and Hall, Boca Raton 1979 Pitmen, E.J.G. (1939): A note on normal correlation, Biometrika, 31, 9-12. Pitman, J. and M. Yor (1981): Bessel processes and infinitely divisible laws, unpublished report, University of California, Berkeley 974 References

Plachky, D. (1993): An estimation-theoretical characterization of the Poisson distribution, Statistics and Decisions, Supplement Issue 3 (1993), 175-178 Plackett, R.L. (1949): A historical note on the method of least-squares, Biometrika 36 (1949), 458-460 Plackett, R.L. (1972): The discovery of the method of least squares, Biometrika 59 (1972), 239-251 Plato, R. (1990): Optimal algorithms for linear ill-posed problems yield regularization methods, Numer. Funct. Anal. Optim. 11 (1990), 111-118 Pohst, M. (1987): A modification of the LLL reduction algorithm, J. Symbolic Computation 4 (1987), 123-127 Poirier, D.J. (1995): Intermediate statistics and econometrics, The MIT Press, Cambridge 1995 Poisson, S.D. (1827): Connaissance des temps de l’annee 1827 Polasek, W. and S. Liu (1997): On generalized inverses and Bayesian analysis in simple ANOVA models, Student 2 (1997), 159-168 Pollock, D.S.G. (1979): The algebra of econometrics, Wiley, Chichester 1979 Pollock, D.S.G. (1999): A handbook of time series analysis, signal processing and dynamics, Academic Press, San Diego 1999 Polya, G. (1919): Zur Statistik der sphaerischen Verteilung der Fixsterne, Astr. Nachr. 208 (1919), 175-180 Polya, G. (1930): Sur quelques points de la theeorie` des probabilitees,` Ann. Inst. H. Poincare 1 (1930), 117-161 Polzehl, J. and S. Zwanzig (2004): On a symmetrized simulation extrapolation estimator in linear errors-in-variables mddels, Journal of Computational Statistics and Data Analysis.47 (2004) 675-688 Pope, A.J. (1972): Some pitfalls to be avoided in the iterative adjustment of nonlinear problems. Proceedings of the 38th Annual Meeting. American Society of Photogrammetry, Washington D. C., March 1972. Pope, A.J. (1974): Two Approaches to Nonlinear Least Squares Adjustments. The Canadian Surveyor, Vol. 28, No.5, 663-669. Pope, A.J. (1976): The statistics of residuals and the detection of outliers, NOAA Technical Report, NOW 65 NGS 1, U.S. Dept. of Commerce, Rockville, Md., 1976 Pope, A. (1982): Two approaches to non-linear least squares adjustments, The Canadian Surveyor 28 (1982) 663-669. Popinski, W. (1999): Least-squares trigonometric regression estimation, Applicationes Mathematicae 26 (1999), 121-131 Pordzik, P.R. and Trenkler, G. (1996): MSE comparisons of restricted least squares estimators in linear regression model-revisited. Sankhya, Ser. B 58, 3 (1996), 352-359. Portnoy, S.L. (1977): Robust estimation in dependent situations, Annals of Statistics, 5 (1977), pp. 22-43 Portnoy, S. and Koenker, R. (1997): The Gaussian hare and the Laplacian tortoise: computability of squared error versus absolute-error estimators, Statistical Science 12 (1997), 279-300 Powell, J.L. (1984): Least absolute deviations estimating for the censored regression model, J. of Econometrics, 25 (1984), pp. 303-325 Pratt, J.W. (1961): Length of confidence intervals, J. Am. Statist. Ass. 56 (1961), 549-567 Pratt, J.W. (1963): Shorter confidence intervals for the mean of a normal distribution with known variance, Ann. Math. Statist. 34 (1963), 574-586 Prentice, R.L. and L.P. Zhao (1991): Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses, Biometrics, 47 (1991), pp. 825-839 Prenter, P.M. (1975): Splines and Variational Methods. John Wiley & Sons. New York. Presnell, B. Morrison, S.P. and R.C. Littell (1998): Projected multivariate linear models for directional data, J. Am. Statist. Ass. 93 (1998), 1068-1077 Press, S.J. (1989): Bayesian statistics: Principles, models and applications, J. Wiley, New York 1989 Press, W.H., Teukolsky, S.A., Vetterling, W.T. and B.P. Flannery (1992): Numerical Recipes in FORTRAN (2nd edition), Cambridge University Press, Cambridge 1992 References 975

Priestley, M.B. (1981): Spectral analysis and time series, Vols. 1 and 2, Academic Press, New York London 1981 Priestley, M.B. (1988): Nonlinear and nonstationary time series analysis, Academic Press, New York London 1988 Prony, R. (1795): Essai experimentale et analytique, Journal of Ecole Polytechnique (Paris) 1 (1795), 24-76 Pruscha, H. (1996): Angewandte Methoden der Mathematischen Statistik, Teubner Skripten zur Mathematischen Stochastik, Stuttgart 1996 Pugachev, V.S. (1965): Theory of random functions, Oxford 1965 Pugachev, V.S. and I.N. Sinitsyn (2002): Stochastic systems, Theory and applications, Russian Academy of Sciences 2002 Puntanen, S. (1986): Comments on “ on necessary and sufficient condition for ordinary least estimators to be best linear unbiased estimators”, J. of American Statistical Association, 40 (1986), p. 178 Puntanen, S. (1996): Some matrix results related to a partitioned singular linear model. Commun. Stat., Theory Methods 25, 2 (1996), 269-279. Puntanen, S. (1997): Some further results related to reduced singular linear models. Commun. Stat., Theory Methods 26, 2 (1997), 375-385. Puntanen, S. and Styan, G.P.H. (1989): The equality of the ordinary least squares estimator and the best linear unbiased estimator. Amer. Statist. 43 (1989), 153-16l. Puntanen, S. and Scott, A.J. (1996): Some further remarks on the singular linear model. Linear Algebra Appl. 237/8 (1996), 313-327. Puntanen, S., Styan, G.P.H. and H.J. Werner (2000): Two matrix-based proofs that the linear estimator Gy is the best linear unbiased estimator, J. Statist. Planning and Inference 88 (2000) 173-179 Pukelsheim, F. (1976): Estimating variance components in linear models, J. Multivariate Anal. 6 (1976), pp. 626-629 Pukelsheim, F. (1977): On Hsu’s model in regression analysis, Math. Operations forsch. Statist. Ser. Statistics, 8 (1977), pp. 323-331 Pukelsheim, F. (1979): Classes of linear models, in: van Vleck, L.D. and S.R. Searle (eds.), pp. 69-83, cornell University/Ithaca 1979 Pukelsheim, F. (1980): Multilinear estimation of skewness and curtosis in linear models, Metrika, 27 (1980), pp. 103-113 Pukelsheim, F. (1981a): Linear models and convex geometry: Aspects of non-negative variance estimation, Math. Operationsforsch. u. Stat. 12 (1981), 271-286 Pukelsheim, F. (1981b): On the existence of unbiased nonnegative estimates of variance covariance components, Ann. Statist. 9 (1981), 293-299 Pukelsheim, F. (1990) : Optimal design of experiments , J. Wiley, New York 1990 Pukelsheim, F. (1993): Optimal design of experiments, J. Wiley, New York 1993 Pukelsheim, F. (1994): The three sigma rule, American Statistician 48 (1994), 88-91 Pukelsheim, F. and G.P. Styan (1979): Nonnegative definiteness of the estimated dispersion matrix in a multivariate linear model. Bull. Acad. Polonaise des Sci., Ser. Sci. Math., 27 (1979), pp. 327-330 Pukelsheim, F. and B. Torsney (1991): Optimal weights for experimental designs on linearly independent support points, The Annals of Statistics 19 (1991), 1614-1625 Pukelsheim, F. and W.J. Studden (1993): E-optimal designs for polynomial regression, Ann. Stat. 21 (1993), 402-415 Pynn, R. and Skjeltorp, A. (eds) Scaling Phenomena in Disordered Systems, Plenum Press New york (1985). Qingming, G. and L. Jinshan (2000): Biased estimation in Gauss-Markov model, Allgemeine Vermessungsnachrichten 107 (2000), 104-108 Qingming, G., Yuanxi, Y. and G. Jianfeng (2001): Biased estimation in the Gauss-Markov model with constraints, Allgemeine Vermessungsnachrichten 108 (2001), 28-30 976 References

Qingming, G., Lifen, S., Yuanxi, Y. and G. Jianfeng (2001): Biased estimation in the Gauss- Markov model not full of rank, Allgemeine Vermessungsnachrichten 108 (2001), 390-393 Quintana-Orti, G., Sun, X. and C.H. Bischof (1998): A BLAS-3 version of the QR factorization with column pivoting, SIAM J. Sci. Comput. 19 (1998), 1486-1494 Raj, D. (1968): Sampling theory, Mc Graw-Hill Book Comp., Bombay 1968 Ralston, A. and Wilf, H. W. (1979): Mathematische Methoden fiir Digitalrechner 2. R. Oldenbourg Verlag, Miinchen. Ramsey, J.O. and B.W. Silverman (1997): Functional data analysis, Springer-Verlag, Heidelberg Berlin New York 1997 Rao, B.L.S.P. (1997a): Weighted least squares and nonlinear regression, J. Ind. Soc. Ag. Statistics 50 (1997), 182-191 Rao, B.L.S.P. (1997b): Variance components, Chapman and Hall, Boca Raton 1997 Rao, B.L.S.P. and B.R. Bhat (1996): Stochastic processes and statistical inference, New Age International, New Delhi 1996 Rao, C.R. (1945): Generalisation of Markoff’s Theorem and tests of linear hypotheses, Sankya 7 (1945), 9-16 Rao, C.R. (1948a): Test of significance in multivariate analysis, Biometrika 35 (1948a) 58-79 Rao, C.R. (1949): On the transformation useful in multivariate computations, Sankhya 9(1949) 251-253 Rao, C.R. of (1951): An asymptotic expansion of the distribution of Wilks criterion Bull.Inst. Internat. Stat., 33, Part II, 177-180. Rao, C.R. (1952a): Some theorems on Minimum Variance Estimation, Sankhya 12, 27-42 Rao, C.R. (1952b): Advanced statistical methods in biometric research, J. Wiley, New York 1952 Rao. C.R. (1965a): Linear Statistical Interference and ist Applications, J. Wiley, New York 1965 Rao, C.R. (1965b): The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves, Biometrika 52 (1965), 447-458 Rao, C.R. (1965c): Linear Statistical Inference and Its Applications. John Wiley & Sons, New York. Rao, C.R. (1967): Least squares theory using an estimated dispersion matrix and its application to measurement of signals, Procedure of the Fifth Barkeley Symposium, Barkeley 1967. Rao, C.R. (1970): Estimation of heteroscedastic variances in linear models, J. Am. Stat. Ass. 65 (1970), 161-172 Rao, C.R. (1971a): Estimation of variance and covariance components - MINQUE theory, J. Multivar. Anal. 1 (1971), 257-275 Rao, C.R., (1971b): Estimation of variance components and application, North-Holland Series in statistics and probability, vol 3. Rao, C.R. (1971c): Unified theory of linear estimation, Sankhya A33 (1971), 371-394 Rao, C.R. (1971d): Minimum variance quadratic unbiased estimation of variance components, J. Multivar. Anal. 1 (1971), 445-456 Rao, C.R. (1972): Estimation of variance and covariance components in linear models. J. Am. Stat. Ass. 67 (1972), 112-115 Rao, C.R. (1973a): Linear statistical inference and its applications, 2nd ed., J. Wiley, New York 1973 Rao, C.R. (1973b): Representation of best linear unbiased estimators in the Gauss-Markoff model with a singular dispersion matrix, J. Multivar. Anal. 3 (1973), 276-292 Rao, C.R. (1973c): Unified theory of least squares, Comm. Statist., 1 (1977), pp. 1-8 Rao, C.R. (1976): Estimation of parameters in a linear model, Ann. Statist. 4 (1976), 1023-1037 Rao, C.R. (1977): Prediction of future observations with special reference to linear models. In. Multivariate Analysis, Vol 4 (1977), pp. 193-208 Rao, C.R. (1978): Choice of the best linear estimators in the Gauss-Markov model with singular dispersion matrix, Comm. Stat. Theory Meth. A7 (13) (1978) 1199-1208. Rao, C.R. (1979): Separation theorems for singular values of matrices and their applications in multivariate analysis, Journal of Multivariate Analysis 9, pp. 362-377. References 977

Rao, C.R. (1984): Prediction of future observations in polynomial growth curve models, In Proceedings of the Indian Statistical Institute Golden Jubilee Intl. Conf. on Stat.: application and future directions, Indian Stat. Ins., pp. 512-520, Calcutta 1984 Rao, C.R. (1985): The inefficiency of least squares: extensions of the Kantorovich inequality, Linear algebra and its applications 70 (1985), 249-255 Rao, C.R. (1988a): Methodology based on the L1-norm in statistical inference, Sankhya 50, 289-313 Rao, C.R. (1988b): Prediction of future observations in growth curve models, J. of Statistical Science, 2, 434-471 Rao, C.R. (1989): A lemma on optimization of a matrix function and a review of the unified theory of linear estimation, ln: Y. Dodge (Ed.), Statistical Data Analysis and interference, pp. 337-418, Elsevier, Amsterdam 1989 Rao, C.R. and S.K. Mitra (1971): Generalized inverse of matrices and itsapplications, J. Wiley, New York 1971 Rao, C.R. and S.K. Mitra (1972): Generalized inverse of a matrix and its applications, in: Proceedings of the sixth Berkeley symposium on mathematical statistics and probability, Vol. 1, 601-620, University of California Press, Berkeley 1972 Rao, C.R. and J. Kleffe (1979): Variance and covariance components estimation and applications, Technical Report No. 181, Ohio State University, Dept. of Statistics, Columbus, Ohio. Rao, C.R. and J. Kleffe (1988): Estimation of variance components and applications, North Holland, Amsterdam 1988 Rao, C.R. and L.C. Zhao (1993): Asymptotic normality of LAD estimator in censored regression models, Math. methods in Statistics, 2 (1993), pp. 228-239 Rao, C.R. and H. Toutenburg (1995): Linear models, least-squares and alternatives, Springer- Verlag, Heidelberg Berlin New York 1995 Rao, C.R. and R. Mukerjee (1997): Comparison of LR, score and Wald tests in a non-iiD setting, J. Multivar. Anal. 60 (1997), 99-110 Rao, C.R. and M.B. Rao (1998): Matrix algebra and its application to statistics and econometrics, World Scientific, Singapore 1998 Rao, C.R. and H. Toutenburg (1999): Linear models, Least squares and alternatives, 2nd ed., Springer-Verlag, Heidelberg Berlin New York 1999 Rao, C.R. and G.J. Szekely (2000): Statistics for the 21st century - Methodologies for applications of the future, Marcel Dekker, Basel 2000 Rao, P.S.R.S. and Y.P. Chaubey (1978): Three modifications of the principle of the MINQUE, Commun. Statist. Theor. Methods A7 (1978), 767-778 Ratkowsky, D.A. (1983): Nonlinear regression modelling, Marcel Dekker, New York Ravi, V. and H.-J. Zimmermann (2000): Fuzzy rule based classification with Feature Selector and modified threshold accepting, European Journal of Operational Research 123 (2000), 16-28 Ravi, V., Reddy, P.J. and H.-J. Zimmermann (2000): Pattern classification with principal component analysis and fuzzy rule bases, European Journal of Operational Research 126 (2000), 526-533 Ravishanker, N. and D.K. Dey (2002): A first course in linear , CRC Press, Boca Raton 2002 Rayleigh, L. (1880): On the resultant of a large number of vibrations of the same pitch and of arbitrary phase, Phil. Mag. 5 (1880), 73-78 Rayleigh, L. (1905): The problem of random walk, Nature 72 (1905), 318 Rayleigh, L. (1919): On the problem of random vibrations, and of random flights in one, two or three dimensions, Phil Mag. 37 (1919), 321-347 Rebai, S. Philip, H. and Taboada, A. (1992): Modern tectonic stress field in the Mediterranean region: evidence for variation instress directions at different scales, Geophys. J. Int., 110, 106-140 Reeves, J. (1998): A bivariate regression model with serial correlation, The Statistician 47 (1998), 607-615 978 References

Reich, K. (2000): Gauss’ Sch¨uler. Studierten bei Gauss und machten Karriere. Gauss’ Erfolg als Hochschullehrer (Gauss’s students: studied with him and were successful. Gauss’s success as a university professor), Gauss Gesellschaft E.V.Gottingen,¨ Mitteilungen Nr. 37, 33-62, Gottingen¨ 2000 Reilly, W., Fredrich, G., Hein, G., Landau, H., Almazan, J. and Caturla, J. (1992): Geodetic deter- mination of crustal defoemation across the Strait of Gibraltar, Geophys. J. Int., 111, 391-398 Relles, D.A. (1968): Robust regression by modified least squares, Ph.D. Thesis, Yale University, Yale 1968 Remmer, O. (1973): A Stability Investigation of Least Squares Adjustment by elements, Geodaetisk Institute Copenhagen, 1973 Remondi, B.W. (1984): Using the Global Positioning System (GPS) phase observable for relative geodesy: modelling, processing and results. Ph.D.Thesis, Center for Space Research, The University of Texas, Austin 1984 Ren, H. (1996): On the eroor analysis and implementation of some eigenvalue decomposition and singular value decomposition algorithms, UT-CS-96-336, LAPACK working note 115 (1996) Rencher A.C. (2000): Linear models in statistics, J. Wiley, New York 2000 Renfer, J.D. (1997): Contour lines of L1-norm regression, Student 2 (1997), 27-36 Resnikoff, G.J. and G.J. Lieberman (1957): Tables of the noncentral t-distribution, Stanford University Press, Stanford 1957 Reubelt, T., Austen, G. and Grafarend, E.W. (2003): Harmonic analysis of the Earth’s gravitational field by means of semi-continuous ephemeris of a low Earth orbiting (LEO) GPS-tracked satellitecase study CHAMP, J. Geodesy, 77, 257-278 Rham De, G. (1984): Differentiable Manifolds. Springer-Verlag, Berlin Heidelberg Riccomagno, E., Schwabe, R. and H.P. Wynn (1997): Lattice-based optimum design for Fourier regression, Ann. Statist. 25 (1997), 2313-2327 Rice, J.R. (1969): The approximation of functions, Vol. II - Nonlinear and multivariate theory, Addison-Wesley, Reading 1969 Richards, F.S.G. (1961): A method of maximum likelihood estimation, J. Roy. Stat. Soc. B23 (1961), 469-475 Richardson, R. (1992): Ridge forces, absolute plate motions, and the intraplate stress field, J. geophys. Res., B97, 11739-11748 Richter, H. and V. Mammitzsch (1973): Methode der kleinsten Quadrate, Stuttgart 1973 Richter, B. (1986): Entwurf eines nichtrelativistischen geodatisch-astronomischen¨ Bezugssystems, DGK, Reihe C, Heft Nr. 322. Riedel, K.S. (1992): A Sherman-Morrison-Woodbury identity for rank augmenting matrices with application to centering, SIAM J. Matrix Anal. Appl. 13 (1992), 659-662 Riedwyl, H. (1997): Lineare Regression, Birkhauser-Verlag,¨ Basel Boston Berlin 1997 Richter, W.D. (1985): Laplace-Gauß integrals, Gaussian measure asymptotic behaviour and probabilities of moderate deviations, Z.f. Analysis und ihre Anwendungen 4 (1985), 257-267 Rinner, K. (1962): Uber¨ die Genauigkeit des raumlichen¨ Bogenschnittes, Zeitschrift f¨ur Vermessungswesen 87 (1962) 361-374. Rivest, L.P. (1982): Some statistical methods for bivariate circular data, J. Roy. Statist. Soc. B44 (1982), 81-90 Ritt, J.F. (1950): Differential algebra, AMS colloquium publications. Rivest, L.P. (1988): A distribution for dependent unit vectors, Comm. Statistics A: Theory Methods 17 (1988), 461-483 Rivest, L. (1989): Spherical regression for concentrated Fisher-von Mises distributions, Annals of Statistics 17 (1989), 307-317 Roach, G.F. (1982): Green’s Functions. Cambridge University Press, Cambridge. Roberts, P.H. and H.D. Ursell (1960): Random walk on the sphere and on a Riemannan manifold, Phil. Trans. Roy. Soc. A252 (1960), 317-356 Robertson, H.P. (1940): The invariant theory of isotropic turbulence Proc. Cambridge Phil. Soc. 36 (1940) 209-223 References 979

Robinson, E.A. (1967): Multichannel time series analysis with digital programs, 298 pages, Holden Day, San Francisco 1967 Robinson, E.A. and Treitel, S. (1967): Principles of digital filtering, Geophysics 29 (1964), 395-404 Robinson, G.K. (1982): Behrens-Fisher problem, Encyclopedia of the Statistical Sciences, Vol. 1, J. Wiley, New York 1982 Rodgers, J.L. and W.A. Nicewander (1988): Thirteen ways to look at the correlation coefficient, the Maerican Statistician 42 (1988), 59-66 Rohde C.A. (1965): Generalized inverses of partitioned matrices. J. Soc. Ind. Appl. Math. 13 (1965), 1033-1035. Rohde, C.A. (1966): Some results on generalized inverses, SIAM Rev. 8 (1966), 201-205 Romano, J.P. and A.F. Siegel (1986): Counterexamples in probability and statistics, Chapman and Hall, Boca Raton 1986 Romanowski, M. (1979): Random errors in observations and the influence of modulation on their distribution, K. Wittwer Verlag, Stuttgart 1979 Rosen, F.: The algebra of Mohammed Ben Musa, London: Oriental Translation Fund 1831 Rosen van, D. (1988): Moments for matrix normal variables, Statistics 19 (1988), 575-583 Rosen, J.B., Park, H. and J. Glick (1996): Total least norm formulation and solution for structured problems, SIAM J. Matrix Anal. Appl. 17 (1996), 110-126 Roseen,` K.D.P. (1948): Gauss’s mean error and other formulae for the precision of direct observa- tions of equal weight, Tatigkeitsbereiche¨ Balt. Geod. Komm. 1944-1947, 38-62, Helsinki 1948 Rosenblatt, M. and Van Ness, J.W. (1965): Estimation of bispectrum, Ann. Math. Statist. 36 (1965), 1120-1136 Rosenblatt, M. (1966): Remarks on higher order spectra, in : Multivariate Analysis, P.R. Krishnaiah (ed.) Academic Press, New York 1966 Rosenblatt, M. (1971): Curve estimates, Ann. Math. Statistics 42 (1971), 1815-1842 Rosenblatt, M. (1997): Some simple remarks on an autoregressive scheme and an implied problem, J. Theor. Prob. 10 (1997), 295-305 Ross, G.J.S. (1982): Non-linear models, Math. Operationsforschung Statistik 13 (1982), 445-453 Rosenborck, H.H. (1960): An Automatic Method for finding the Greatest or Least Value of a Function. Computer Journal, 3, 175-184. Ross, S.M. (1983): Stochastic processes, J. Wiley, New York 1983 Rotta, J.C. (1972): Turbulente Stromuugen,¨ Teubner Verlag, 267 pages, Stuttgart 1972 Rousseeuw, P.J. (1984): Least Median of Squares Regression, Journal of the American Statistical Association, 79, pp. 871-880 Rousseeuw, P.J. and A.M. Leroy (1987): Robust regression and outlier detection, J. Wiley, New York 1987 Roy, T. (1995): Robust non-linear regression analysis, J. Chemometrics 9 (1995), 451-457 Rozanski, I.P. and R. Velez (1998): On the estimation of the mean and covariance parameter for Gaussian random fields, Statistics 31 (1998), 1-20 Rubin, D.B. (1976): Inference and missing data, Biometrica 63 (1976), pp. 581-590 Rueda, C., Salvador, B. and M.A. Ferneandez` (1997): Simultaneous estimation in a restricted linear model, J. Multivar. Anal. 61 (1997), 61-66 Rueschendorf, L. (1988): Asymptotische Statistik, Teubner, Stuttgart 1988 Rummel, R. (1975): Zur Behandlung von Zufallsfunktionen und -folgen in der physikalischen Geodasie,¨ Deutsche Geodatische¨ Kommission bei der Bayerischen Akademie der Wissenschaften, Report No. C 208, M¨unchen 1975 Rummel, R. (1976): A model comparison in least-squares collocation. Bull Geod 50:181-192 Rummel, R. and K. P.Schwarz (1977): On the nonhomogenity of the global covariance function, Bull. Geeod` eesique` 51 (1977), 93-103 Rummel, R. and Teunissen, P. (1982): A connection between geometric and gravimetric geodesy - some remarks on the role of the gravity field. Feestbundel ter gelegenheid van de 65ste verjaardag van Professor Baarda, Deel II, pp. 603-623, Department of GeodeticScience, Delft University 980 References

Runge, C. (1900): Graphische Ausgleichung beim R¨uckwatseinchneiden,¨ Zeitschrift f¨ur Vermessungswesen 29 (1900) 581-588. Ruppert, D. and R.J. Carroll (1980): Trimmed least squares estimation in the linear model, J. Am. Statist. Ass. 75 (1980), 828-838 Rutherford, D.E. (1933): On the condition that two Zehfuss matrices be equal, Bull. Amer. Math. Soc. 39 (1933), 801-808 Rutherford, A. (2001): Introducing Anova and Ancova - a GLM approach, Sage, London 2001 Rysavy, J. (1947): Higher geodesy. Jeska matice technicka, Praha, 1947 (in Czech). Saalfeld, A. (1999): Generating basis sets of double differences, Journal of Geodesy 73 (1999), 291-297 Saastamoinen, J. (1973a): Contributions to the theory of atmospheric refraction. J. of Geodesy 46: 279-298 Saastamoinen, J. (1973b):Contribution to the theory of atmospheric refraction. Part II refraction corrections in satellite geodesy. Bulletin Godsique 107:13-34, 1973. Sacks, J. and D. Ylvisaker (1966): Design for regression problems with correlated errors, Annals of Mathematical Statistics 37 (1966), 66-89 Sahai, H. (2000): The analysis of variance: fixed, random and mixed models, 778 pages, Birkhauser-Verlag,¨ Basel Boston Berlin 2000 Sahin, M., Cross, P.A. and P.C. Sellers. (1992): Variance components estimation applied to satellite laser ranging, Bulletin Geodesique, vol. 66, no. 3, p. 284-295. Saichev, A.I. and W.A. Woyczynski (1996): Distributions in the physical and engineering sciences, Vol . 1, Bi rkauser¨ Verlag, Basel 1996 Saito, T. (1973): The non-linear least squares of condition equations, Bull. Geod. 110 (1973) 367-395. Salmon, G. (1876): Lessons Introductory to modern higher algebra, Hodges, Foster and Co., Dublin 1876. Samorodnitsky, G. and M.S. Taqqu (1994): Stable non-Gaussian random processes, Chapman and Hall, Boca Raton 1994 Sampson, P.D. and P. Guttorp (1992): Nonparametric estimation of nonstationary spatial covariance structure, J. Am. Statist. Ass. 87 (1992), 108-119 Sander, B. (1930): Gefugekunde und Gesteine, J. Springer, Vienna 1930 Sanseo,´ F. (1990): On the aliasing problem in the spherical harmonic analysis, Bull. Geeodesique` 64 (1990), 313-330 Sanseo,´ F. and G. Sona (1995): The theory of optimal linear estimation for continuous fields of measurements, Manuscripta Geodetica 20 (1995), 204-230 Sanso, F. (1973): An Exact Solution of the Roto-Translation Problem. Photogrammetria, Vol. 29, 203-216. Sanso, F. (1986): Statistical methods in physical geodesy. In: Suenkel H (ed), Mathematical and numerical techniques in physical geodesy, Lecture Notes in Earth Sciences, vol. 7 Springer, pp 49-156 Sanso, F. and Tscherning, C.C. (2003): Fast spherical collocation: theory and examples. J Geod 77(1-2):101-112 Sastry, K. and Krishna, V. (1948) On a Bessel function of the second kind and Wilks Z-distribution. Proc Indian Acad Sci Series A 28:532-536 Sastry, S. (1999): Nonlinear systems: Analysis, stability and control, Springer-Verlag, Heidelberg Berlin New York 1999 Sathe, S.T. and H.D. Vinod (1974): Bound on the variance of regression coefficients due to heteroscedastic or autoregressive errors, Econometrica 42 (1974), 333-340 Saw, J.G. (1978): A family of distributions on the m-sphere and some hypothesis tests, Biometrika 65 (1978), 69-73 Saw, J.G. (1981): On solving the likelihood equations which derive from the Von Mises distribution, Technical Report, University of Florida, 1981 References 981

Sayed, A.H., Hassibi, B. and T. Kailath (1996), Fundamental inertia conditions for the minimization of quadratic forms in indefinite metric spaces, Oper. Theory: Adv. Appl., Birkhauser-Verlag,¨ Basel Boston Berlin 1996 Schach, S. and T. Schafer¨ (1978): Regressions- und Varianzanalyse, Springer-Verlag, Heidelberg Berlin New York 1978 Schafer, J.L. (1997): Analysis of incomplete multivariate data, Chapman and Hall, London 1997 Schaffrin, B. (1979): Einige erganzende¨ Bemerkungen zum empirischen mittleren Fehler bei kleinen Freiheitsgraden, Z. Vermessungsesen 104 (1979), 236-247 Schaffrin, B. (1981a): Some proposals concerning the diagonal second order design of geodetic networks, manuscripta geodetica 6 (1981) 303-326 Schaffrin, B. (1981b): Varianz-Kovarianz-Komponenten-Schatzung bei def Ausgleichung heterogener, Wiederhungsmessungen. Ph.D. Thesis, University of Bonn, Bonn, Germany. Schaffrin, B. (1983a): Varianz-Kovarianz Komponentenschatzung¨ bei der Ausgleichung heterogener Wiederholungsmessungen, Deutsche Geodatische¨ Kommission, Report C 282, M¨unchen, 1983 Schaffrin, B. (1983b): Model choice and adjustment techniques in the presence of prior information, Ohio State University Department of Geodetic Science and Surveying, Report 351, Columbus 1983 Schaffrin, B. (1983c): A note on linear prediction within a Gauˇ - Markov model linearized with respect to a random approximation. 1st Int. Tampere Seminar on Linear Models and their Applications. Tampere/ Finland. Schaffrin, B. (1984): Das geodatische¨ Datum mit stochastischer Vorinformation. Habilitationss- chrift Stuttgart. Schaffrin, B. (1985a): The geodetic datum with stochastic prior information, Publ. C313, German Geodetic Commission, M¨unchen 1985 Schaffrin, B. (1985b): On Design Problems in Geodesy using Models with Prior Information. Statistics & Decisions, Supplement Issue 2 443-453. Schaffrin, B. (1985c): A note on linear prediction within a Gauss-Markov model linearized with respect to a random approximation. In: Proc. First Tampere Sem. Linear Models (1983), Eds.: T. Pukkila, S. Puntanen, Dept. of Math. Science/Statistics, Univ. of Tamp ere/Finland, Report No. A-138, 285-300. Schaffrin, B. (1986): New estimation/prediction techniques for the determination of crustal deformations in the presence of geophysical prior information, Technometrics 130 (1986), pp. 361-367 Schaffrin, B. (1991): Generalized robustified Kalman filters for the integration of GPS and INS, Tech. Rep. 15, Geodetic Institute, Stuttgart Unversity 1991 Schaffrin, B. (1997): Reliability measures for correlated observations, Journal of Surveying Engineering 123 (1997), 126-137 Schaffrin, B. (1999): Softly unbiased estimation part1: The Gauss-Markov model, Linear Algebra and its Applications 289 (1999), 285-296 Schaffrin, B. (2001): Equivalent systems for various forms of kriging, including least-squares collocation, Zeitschrift f¨ur Vermessungswesen 126 (2001), 87-94 Schaffrin, B. (2005): On total least squares adjustment with constraints, in: A window on the future of Geodesy, F. Sanso (ed.), pp. 417-421., Springer Verlag, Berlin-Heidelberg-New York 2005 Schaffrin, B. (2007): Connecting the dots: The straight line case revisited, Deutscher Verein f¨ur Vermessungswesen (zfv2007), 132.Jg., 2007, pp. 385-394 Schaffrin, B. (2008): Minimum mean squared error (MSE) adjustment and the optimal Tykhonov- Phillips regularization parameter via reproducing best invariant quadratic uniformly unbiased estimates (repro-BIQUUE), J. Geodesy, 92 (2008) 113-121 Schaffrin, B., Grafarend, E. and Schmitt G. (1977): Kanonisches Design geodatischer¨ Netze I. Manuscripta geodaetica 2, pp. 263-306. Schaffrin, B., Grafarend, E. and G. Schmitt (1977): Kanonisches Design Geodatischer¨ Netze I, Manuscripta Geodaetica 2 (1977), 263-306 982 References

Schaffrin, B., Grafarend, E. and G. Schmitt (1978): Kanonisches Design Geodatischer¨ Netze II, Manuscripta Geodaetica 2 (1978), 1-22 Schaffrin, B., Krumm, F. and Fritsch, D. (1980): Positiv diagonale Genauigkeit 0p.timierun von Realnetzen Uber¨ den Komplementarltats-Algorlthmus In: Ingenieurvermessung 80, ed. Conzett R, Schmitt M,Schmitt H. Beitrage zum VIII. Internat. Kurs f¨ur Ingenieurvermessung, Zurich. Schaffrin, B. and E.W. Grafarend (1982a): Kriterion-Matrizen II: Zweidimensionale homogene und isotrope geodatische¨ Netze, Teil II a: Relative cartesische Koordinaten, Zeitschrift f¨ur Vermessungswesen 107 (1982), 183-194 Schaffrin, B. and E.W. Grafarend (1982b): Kriterion-Matrizen II: Zweidimensionale homogene und isotrope geodatische¨ Netze. Teil II b: Absolute cartesische Koordinaten, Zeitschrift f¨ur Vermessungswesen 107 (1982), 485-493 Schaffrin, B. and E. Grafarend (1986): Generating classes of equivalent linear models by nuissance parameter elimination, manuscripta geodaetica 11 (1986), 262-271 Schaffrin, B. and E.W. Grafarend (1991): A unified computational scheme for traditional and robust prediction of random effects with some applications in geodesy, The Frontiers of Statistical Scientific Theory & Industrial Applications 2 (1991), 405-427 Schaffrin, B. and J.H. Kwon (2002): A Bayes filter in Friendland form for INS/GPS vector gravimetry, Geophys. J. Int. 149 (2002), 64-75 Schaffrin, B. and A. Wieser (2008): On weighted total least squares adjustment for linear regression, J. Geodesy, 82, (2008) 415-421 Schall, R., Dunne, T.T. (1988): A unified approach to outliers in the general linear model. Sankhya, Ser. B 50, 2 (1988), 157-167. Scheffe,´ H. (1959): The analysis of variance, Wiley, New York 1959 Scheidegger, A.E. (1965): On the statistics of the orientation of bedding planes, grain axes and similar sedimentological data, U.S. Geol. Survey Prof. Paper 525-C (1965), 164-167 Schleider, D. (1982): Complex crustal strain approximation, Ph.D. dissertation, Reports of Department of Surveying Engineering of UNB No.91, Canada Scheffe, H. (1943): On solutions of the Behrens-Fisher problem based on the t-distribution, Ann. Math. Stat., 14, 35-44 Scheffe, H. (1999): The analysis of variance. John Wiley & Sons, New York, 1999 (repr. of the 1959 orig.). Schek, H.J. (1974): The Force Densities Method for Form Finding and Computation of General Networks. Computer Methods in Applied Mechanics and Engineering, 3, 115-134. Schek, H.J. (1975): Least-Squares-Losungen und optimale Dampfung bei nichtlinearen Gleichungssystemen im Zusammenhang mit der bedingten Ausgleichung. Zeitschrift fiir Vermessungswesen, 2, 67-77. Schek, H.J. and Maier, P. (1976): Nichtlineare Normalgleichungen zur Bestimmung der Unbekan- nten und deren Kovarianzmatrix, Zeitschrift f¨ur Vermessungswesen 101 (1976) 140-159. Schetzen, M. (1980): The Volterra and Wiener theories of nonlinear systems, J. Wiley, New York 1980 Schick, A. (1999): Improving weighted least-squares estimates in heteroscedastic linear regression when the variance is a function of the mean response, J. Statist. Planning and Inference 76 (1999), 127-144 Schiebler, R. (1988): Giorgio de Chirico and the , Lecture given at Stanford University, Wuppertal 1988 Schmetterer, L. (1956): Einf¨uhrung in die mathematische Statistik, Wien 1956 Schmidt, E. (1907): Entwicklung willk¨urlicher Funktionen, Math. Annalen 63 (1907), 433-476 Schmidt, K. (1996): A comparison of minimax and least squares estimators in linear regression with polyhedral prior information, Acta Applicandae Mathematicae 43 (1996), 127-138 Schmidt, K.D. (1996): Lectures on risk theory, Teubner Skripten zur Mathematischen Stochastik, Stuttgart 1996 Schmidt, P. (1976): Econometrics, Marcel Dekker, New York 1976 References 983

Schmidt-Koenig, K. (1972): New experiments on the effect of clock shifts on homing pigeons in animal orientation and navigation, Eds.: S.R. Galler, K. Schmidt-Koenig, G.J. Jacobs and R.E. Belleville, NASA SP-262, Washington D:C. 1972 Schmidt, V. (1999): Begrundung einer Meˇanweisung f¨ur die Uberwachungsmessungen¨ am Maschinenhaus des Pumpspeicherwerkes Hohenwarthe, Diplomarbeit, TU Bergakademie Frieberg Inst. f¨ur Markscheidewesen und Geodasie, 1999 Schmidt, W.H. and S. Zwanzig (1984): Testing hypothesis in nonlinear regression for nonnormal distributions, Proceedings of the Conference on Robustness of Statistical Methods and Nonparametric Statistics, VEBDeutscher Verlag der Wissenschaften Berlin, 1984, 134 138. Schmidt, W.H. and S. Zwanzig (1986):, Second order asymptotics in nonlinear regression. J. Multiv. Anal., VoL 18, No. 2, 187-215. Schmidt, W.H. and S. Zwanzig (1986): Testing hypothesis in nonlinear regression for nonnormal distributions. Statistics, VoL 17, No.4, 483-503. Schmitt, G. (1975): Optimaler Schnittwinkel der Bestimmungsstrecken beim einfachen Bogenschnitt, Allg. Vermessungsnachrichten 6 (1975), 226-230 Schmitt, G. (1977): Experiences with the second-order design problem in theoretical and practical geodetic networks, Proceedings International Symposium on Optimization of Design and Computation of Control Networks, Sporon 1977 Schmitt, G. (1977): Experiences with the second-order design problem in theoretical and practical geodetic networks, Optimization of design and computation of control networks. F. Halmos and J. Somogyi eds, Akadeemiai` Kiadeo,` Budapest (1979), 179-206 Schmitt, G. (1978): Gewichtsoptimierung bei Mehrpunkteinschaltung mit Streckenmessung, Allg. Vermessungsnachrichten 85 (1978), 1-15 Schmitt, G., Grafarend, E. and B. Schaffrin, (1978): Kanonisches Design Geodatischer¨ Netze II. Manuscr. Geod. 1, 1-22. Schmitt, G. (1979): Zur Numerik der Gewichtsoptimierung in geodatischen¨ Netzen, Deutsche Geodatische¨ Kommission, Bayerische Akademie der Wissenschaften, Report 256, M¨unchen 1979 Schmitt, G. (1980): Second order design of a free distance network considering different types of criterion matrices, Bull. Geodetique 54 (1980), 531-543 Schmitt, G. (1985): Second Order Design, Third Order Design, Optimization and design of geodetic networks, Springer-Verlag, Heidelberg Berlin New York 1985, 74-121 Schmitt, G., Grafarend, E.W. and B. Schaffrin.(1977): Kanonisches Design geodatischer¨ Netze I, manus-cripta geodaetica 2 (1977), 263-306 Schmitt, G., Grafarend, E.W. and B. Schaffrin (1978): Kanonisches Design geodatischer¨ Netze II, manuscripta geodaetica 3 (1978), 1-22 Schmutzer, E. (1989): Grundlagen der Theoretischen Physik, Teil I, BI Wissenschaftsverlag, Mannheim Schneeweiß, H. and H.J. Mittag (1986): Lineare Modelle mit fehlerbehafteten Daten, Physica- Verlag, Heidelberg 1986 Schock, E. (1987): Implicite iterative methods for the approximate solution of ill-posed problems, Bolletino U.M.I., Series 1-B, 7 (1987), 1171-1184 Schoenberg, I.J. (1938): Metric spaces and completely monotone functions, Ann. Math. 39 (1938), 811-841 Schon,¨ S. (2003): Analyse und Optimierung geodatischer¨ Messanordnungen unter besonderer Ber¨ucksichtigung des Intervallansatzes, DGK, Reihe C, Nr. 567, M¨unchen, 2003 Schon,¨ S. and Kutterer, H. (2006): Uncertainty in GPS networks due to remaining systematic errors: the interval approach, in: Journal of Geodesy, Vol. 80 no. 3, pp. 150-162, 2006. Schonemann,¨ P.H. (1996): Generalized solution of the orthogonal Procrustes problem, Psychometrika 31 (1996) 1-10. Schonemann,¨ S.D. (1969): Methoden der Oknometrie,¨ Bd. 1, Vuhlen, Berlin 1969 Schonfeld¨ P., Werner H.J. (1994): A note on C.R. Rao’s wider definition BLUE in the general Gauss-Markov model. Sankhya, Ser. B 49, 1 (1987), 1-8. Schott, J.R. (1997): Matrix analysis for statistics, J. Wiley, New York 1997 984 References

Schott, J.R. (1998): Estimating correlation matrices that have common eigenvectors, Comput. Stat. & Data Anal. 27 (1998), 445-459 Schouten, J.A. and J. Haantjes (1936):uber ¨ die konforminvariante Gestalt der relativistischen Bewegungsgleichungen, in: Koningl. Ned. Akademie van Wetenschappen, Proc. Section of Sciences, Vol. 39, Noord-Hollandsche Uitgeversmaatschappij, Amsterdam 1936 Schouten, J.A. and Struik, D.J. (1938): Einfiihrung in die neueren Methoden der Differentialgeometrie. I/Il, Noordhoff, Groningen-Batavia. Schreiber, O. (1882): Anordnung der Winkelbeobachtungen im GHttinger Basisnetz. lfV I, 129-161 Schroeder, M. (1991): Fractals, chaos, power laws, Freeman, New York 1991 Schultz, C. and G. Malay (1998): Orthogonal projections and the geometry of estimating functions, J. Statist. Planning and Inference 67 (1998), 227-245 Schultze, J. and J. Steinebach (1996): On least squares estimates of an exponential tail coefficient, Statistics & Decisions 14 (1996), 353-372 Schupler, B.R., Allshouse, R.L. and Clark, T.A. (1994): Signal Characteristics of GPS User Antennas. Navigation 4113: 177-295 Schuster, H.-F. and Forstner, W. (2003): Segmentierung, Rekonstruktion undDatenfusion bei der Objekterfassung mit Entfernungsdaten - ein Oberb/ick. Proceedings 2. Oldenburger 3DTage. Oldenburg Schur, J. (1911): Bemerkungen zur Theorie der verschrankten¨ Bilinearformen mit unendlich vielen Veranderlichen,¨ J. Reine und Angew. Math. 140 (1911), 1-28 Schur, J. (1917):uber ¨ Potenzreihen, die im Innern des Einheitskreises beschrankt¨ sind, J. Reine Angew. Math. 147 (1917), 205-232 Schwarz, G. (1978): Estimating the dimension of a model, The Annals Of Statistics 6 (1978), 461-464 Schwarz, H. (1960): Stichprobentheorie, Oldenbourg, M¨unchen 1960 Schwarz, K. P. (1976): Least-squares collocation for large systems, Boll. Geodesia e Scienze Affini 35 (1976), 309-324 Schwarz, C.R. and Kok, J.J. (1993) Blunder detection and Data Snooping in LS and Robust Adjustments. J Surv Eng 119:127-136 Schwarze, V.S. (1995): Satellitengeodatische¨ Positionierung in der relativistischen Raum-Zeit, DGK, Reihe C, Heft Nr.449. Schwieger, W. (1996): An approach to determine correlations between GPS monitored deformation epochs, In: Proc. of the 8th International Symposium on Deformation Measurements, Hong Kong, 17-26, 1996. Scitovski, R. and D. Jukiec` (1996): Total least squares problem for exponential function, Inverse Problems 12 (1996), 341-349 Sckarosfsky, I.P. (1968): Generalized turbulence and space correlation and wave numberspectrum function pairs, Canadian J. of Physics 46 (1968) 2133-2153 Seal, H.L. (1967): The historical development of the Gauss linear model, Biometrika 54 (1967), 1-24 Searle, S.R. (1971a). Linear Models, J. Wiley, New York 1971 Searle, S.R. (1971b): Topics in variance components estimation, Biometrics 27 (1971), 1-76 Searle, S.R. (1974): Prediction, mixed models, and variance components, Reliability and Biometry (1974), 229-266 Searle, S.R. (1982): Matrix algebra useful for statistics, Wiley, New York 1982 Searle, S.R. (1994): Extending some results and proofs for the singular model. Linear Algebra Appl. 210 (1994), 139-15l. Searle, S.R. and C.R. Henderson (1961): Computing procedures for estimating components of variance in the two-way classification, mixed model, Biometrics 17 (1961), 607-616 Searle, S.R., Casella, G. and C.E. McCulloch (1992): Variance components, J. Wiley, New York 1992 Seber, G.A.F. (1977): Linear regression analysis, J. Wiley, New York 1977 Seber, G.A.F. and Wild, C.J. (1989): Nonlinear Regression. John Wiley & Sons, New York. References 985

Seeber, G. (1989): Satellitengeodiisie: - Grundlagen, Methoden und Anwendungen. Walter deGruyter, Berlin- New York, 489p Seely, J. (1970): Linear spaces and unbiased estimation, Ann. Math. Statist. 41 (1970), 1725-1734 Seely, J. (1970): Linear spaces and unbiased estimation - Application to the mixed linear model, Ann. Math. Statist. 41 (1970), 1725-1734 Seely, J. (1971): Quadratic subspaces and completeness, Ann. Math. Statist. 42 (1971), 710-721 Seely, J. (1975): An example of an inquadmissible analysis of variance estimator for a variance component, Biometrika 62 (1975), 689 Seely, J. (1977): Minimal sufficient statistics and completeness, Sankhya, Series A, Part 2, 39 (1977), 170-185 Seely, J. (1980): Some remarks on exact confidence intervals for positive linear combinations of variance components, J. Am. Statist. Ass. 75 (1980), 372-374 Seely, J. and R.V. Hogg (1982): Unbiased estimation in linear models, Communication in Statistics 11 (1982), 721-729 Seely, J. and Y. El-Bassiouni (1983): Applying Wald’s variance components test, Ann. Statist. 11 (1983), 197-201 Seely, J. and E.-H. Rady (1988): When can random effects be treated as fixed effects for computing a test statistics for a linear hypothesis?, Communications in Statistics 17 (1988), 1089-1109 Seely, J. and Y. Lee (1994): A note on the Satterthwaite confidence interval for a variance, Communications in Statistics 23 (1994), 859-869 Seely, J., Birkes, D. and Y. Lee (1997): Characterizing sums of squares by their distribution, American Statistician 51 (1997), 55-58 Seemkooei, A.A. (2001): Comparison of reliability and geometrical strength criteria in geodetic networks, Journal of Geodesy 75 (2001), 227-233 Segura, J. and A. Gil (1999): Evaluation of associated Legendre functions off the cut and parabolic cylinder functions, Electronic Transactions on Numerical Analysis 9 (1999), 137-146 Seidelmann, P.K. (ed) (1992): Explanatory Supplement to the Astronomical Almanac. University Science Books, Mill Valley, 752p Selby, B. (1964): Girdle distributions on the sphere, Biometrika 51 (1964), 381-392 Sengupta D. (1995): Optimal choice of a new observation in a linear model. Sankhya, Ser. A 57, 1 (1995), 137-153. Sengupta, A. and R. Maitra (1998): On best equivariance and admissibility of simultaneous MLE for mean direction vectors of several Langevin distributions, Ann. Inst. Statist. Math. 50 (1998), 715-727 Sengupta, D. and S.R. Jammalamadaka (2003): Linear models, an integrated approach, In series of Multivariate analysis 6 (2003) Sering, R.J. (1980): Approximation theorems of mathematical statistics, J. Wiley, New York 1980 Shaban, A.M.M. (1994): ANOVA, MINQUE, PSD-MIQMBE, CANOVA and CMINQUE in estimating variance components, Statistica 54 (1994), 481-489 Shah, B.V. (1959): On a generalisation of the Kronecker product designs, Ann. Math. Statistics 30 (1959), 48-54 Shalabh (1998): Improved estimation in measurement error models through Stein rule procedure, J. Multivar. Anal. 67 (1998), 35-48 Shamir, G. and Zoback, M.D. (1992): Stress orientation profile to 3.5 km depth near the San Andreas fault at Cajon Pass, California, J. geophys. Res., B97, 5059-5080 Shao, Q.-M. (1996): p-variation of Gaussian processes with stationary increments, Studia Scientiarum Mathematicarum Hungarica 31 (1996), 237-247 Shapiro, S.S. and M.B. Wilk (1965): An analysis of variance for normality (complete samples), Biometrika 52 (1965), 591-611 Shapiro, S.S., Wilk, M.B. and M.J. Chen (1968): A comparative study of various tests for normality, J. Am. Statist. Ass. 63 (1968), 1343-1372 Shapiro, L.S. and Brady, M. (1995): Rejecting outliers and estimating errors in an orthogonal regression framework. Philos. Trans. R. Soc. Lond., Ser. A 350, 1694 (1995), 407-439. 986 References

Sheppard, W.F. (1912): Reduction of errors by means of negligible differences, Proc. 5th Int. Congress (Cambridge) 2 (1912), 348-384 Sheynin, O.B. (1966): Origin of the theory of errors, Nature 211 (1966), 1003-1004 Sheynin, O.B. (1979): Gauß and the theory of errors, Archive for History of Exact Sciences 20 (1979) Sheynin, O. (1995): Helmert’s work in the theory of errors, Arch. Hist. Exact Sci. 49 (1995), 73-104 Shiryayev, A.N. (1973): Statistical sequential analysis, Transl. Mathematical Monographs 8, American Mathematical Society, Providence/R.I. 1973 Shkarofsky, I.P. (1968): Generalized turbulence space-correlation and wave-number spectrum- function pairs, Canadian Journal of Physics 46 (1968), 2133-2153 Shorack, G.R. (1969): Testing and estimating ratios of scale parameters, J. Am. Statist. Ass. 64, 999-1013, 1969 Shrivastava, M.P. (1941): Bivariate correlation surfaces. Sci Cult 6:615-616 Shumway, R.H. and D.S. Stoffer (2000): Time series analysis and its applications, Springer-Verlag, Heidelberg Berlin New York 2000 Shut, G.H. (1958/59): Construction of orthogonal matrices and their application in analytical Photogrammetrie, Photogrammetria XV (1958/59) 149-162 Shwartz, A. and Weiss, A. (1995): Large deviations for performance analysis. Chapman and Hall, Boca Raton Sibuya, M. (1960): Bivariate extreme statistics, Ann. Inst. Statist. Math. 11 (1960), 195-210 Sibuya, M. (1962): A method of generating uniformly distributed points on n-dimensional spheres, Ann. Inst. Statist. Math. 14 (1962), 81-85 Siegel, A.F. (1982): Robust Regression Using Repeated Medians Biometrika 69, pp. 242-244 Siegel, C.L. (1937): Uber¨ die analytische Theorie der quadratischen Formen, Ann. of Math. vol. 38, (1937), pp. 212-291 Sillard, P., Altamimi, Z. and C. Boucher (1998): The ITRF96 realization and its associated velocity field, Geophysical Research Letters 25 (1998), 3223-3226 Silvey, S.D. (1969): Multicollilinearlity and imprecise estimation, J. Roy. Stat. Soc., Series B 35 (1969), pp 67-75 Silvey, S.D. (1975): Statistical inference, Chapman and Hall, Boca Raton 1975 Silvey, S.D. (1980): Optimal design, Chapman and Hall, 1980 Sima, V. (1996): Algorithms for linear-quadratic optimization, Dekker, New York 1996 Simmonet, M. (1996): Measures and probabilities, Springer-Verlag, Heidelberg Berlin New York 1996 Simoncini, V. and F. Perotti (2002): On the numerical solution of and application to structural dynamics, SIAM J. Sci. Comput. 23 (2002), 1875-1897 Simonoff. J.S. (1996): Smoothing methods in statistics. Springer, Heidelberg Berlin New York Sinai, Y.G. (1963): On properties of spectra of ergodic dynamical systems, Dokl. Akad. Nauk. SSSR 150 (1963) Sinai, Y.G. (1963): On higher order spectral measures of ergodic stationary processes Theory Probability Appl. (USSR) (1963) 429-436 Singer, P., Strobel,¨ D,. Hordt,¨ R., Bahndorf, J. and Linkwitz, K. (1993): Direkte Losung¨ des ra¨¨umlichen Bogenschnitts, Zeitschrift f¨ur Vermessungswesen 118 (1993) 20-24 Singh, R. (1963): Existence of bounded length confidence intervals, Ann. Math. Statist. 34 (1963), 1474-1485 Sion, M. (1958): On general minimax theorems. Pac. J. Math. 8:171-176 Sirkova, L. and V. Witkovsky (2001): On testing variance components in unbalanced mixed linear model, Applications in Mathematics 46(2001), 191-213 Sjoberg,¨ L.E. (1983a): Unbiased estimation of variance-covariance components in condition adjustment. Univ. of Uppsala, Institute of Geophysics, Dept. of Geodesy, Report No. 19, 223-237. Sjoberg,¨ L.E. (1983b): Unbiased estimation of variance-components in condition adjustment with unknowns-a MINQUE approach. Zeitschriftfur Vennessungen, 108(9), 382-387. References 987

Sjoberg,¨ L.E. (1984a): Non-negative variance component estimation in the Gauss-Helmert adjustment model. Manuscripta Geodaetica, 9, 247-280. Sjoberg,¨ L.E. (1984b): Least-Squares modification of Stokes’ and Venin g-Meinez , formula by accounting for truncation and potential coefficients errors. Manuscripta Geodaetica, 9, 209-229. Sjoberg,¨ L.E. (1985): Adjustment and. variance components estimation with a singular covariance . matrix. Zeitschriftfur Vermessungen, 110(4),145-151. Sjoberg,¨ L.E. (1993): General Matrix calculus, adjustment, variance covariance components estimation. Lecture note, Royal Institute of Technology, Stockholm, Sweden. Sjoberg,¨ L.E. (1994): The Best quadratic minimum biased non-negative definite estimator for an additive two variance components model. Royal Institute of Technology, Stockholm, Sweden. Sjoberg,¨ L.E. (1995): The best quadratic minimum bias non-negative estimator for an additive two variance component model. Manuscripta Geodaetica (1995) 20:139-144. Sjoberg,¨ L.E. (1999): An efficient iterative solution to transform rectangular geocentric coordinates to geodetic coordinates, Zeitschrift f¨ur Vermessungswesen 124 (1999) 295-297. Sjoberg,¨ L.E. (2008): A computational scheme to model the geoid by the modified Stokes formula without gravity reductions, J. Geod., 74, 255-268. Sjoberg,¨ L.E. (2011): On the best quadratic minimum bias non-negative estimator of a two-variance component model, J. Geodetic Science 1(2011) 280-285 Skolnikoff, I.S. (1956): Mathematical Theory of Elasticity, McGraw-Hill, New York 1956 Slakter, M.J. (1965): A comparison of the Pearson chi-square and Kolmogorov goodness-of-fit- tests with respect to validity, J. Am. Statist. Ass. 60 (1965), 854-858 Small, C.G. (1996): The statistical theory of shape, Springer-Verlag, Heidelberg Berlin New York 1996 Smith, A.F.M. (1973): A general Bayesian linear model, J. Roy. Statist. Soc. B35 (1973), 67-75 Smith, P.J. (1995): A recursive formulation of the old problem of obtaining moments from cumulants and vice versa, J. Am. Statist. Ass. 49 (1995), 217-218 Smith, T. and S.D. Peddada (1998): Analysis of fixed effects linear models under heteroscedastic errors, Statistics & Probability Letters 37 (1998), 399-408 Smyth, G.K. (1989): Generalized linear models with varying dispersion, J. Roy. Statist. Soc. B51 (1989), 47-60 Snedecor, G.W. and W.G. Cochran (1967): Statistical methods, 6th ed., Ames lowa State University Press 1967 Sneeuw, N. and R. Bun (1996): Global spherical harmonic computation by two-dimensional Fourier methods, Journal of Geodesy 70 (1996), 224-232 Solari, H.G., Natiello, M.A. and G.B. Mindlin (1996): Nonlinear dynamics, IOP, Bristol 1996 Soler, T. and Hothem, L.D. (1989): Important parameters used in geodetic transformations, Journal of Surveying Engineering 115 (1989) 414-417. Soler, T. and van Gelder, B. (1991): On covariances of eigenvalues and eigenvectors of second rank symmetric tensors, Geophys. J. Int., 105, 537-546 Solm, B.Y. and Kim, G.B. (1997): Detection of outliers in weighted least squares regression. Korean J. Comput. Appl. Math. 4, 2 (1997), 441-452. Solomon, P.J. (1985): Transformations for components of variance and covariance, Biometrica 72 (1985), 233-239 Somogyi, J. (1998): The robust estimation of the 2D-projective transformation, Acta Geod. Geoph. Hung. 33 (1998), 279-288 Song, S.H. (1999): A note on S2 in a linear regression model based on two-stage sampling data, Statistics & Probability Letters 43 (1999), 131-135 Soper, H.E. (1916): On the distributions of the correlation coefficient in small samples, Biometrika 11 (1916), 328-413 Soper, H.E., Young, A.W., Cave, B.M., Lee, A. and Pearsom, K. (1955) Biometrika 11 (1955) 328–415 Spanos, A. (1999): Probability theory and statistical inference, Cambridge University Press, Cambridge 1999 988 References

Spath,¨ H. and G.A. Watson (1987): On orthogonal linear l1 approximation, Numerische Mathematik 51 (1987), 531-543 Spilker, J.J. (1996): Tropospheric Effects on GPS. In: Parkinson, B.W., Spilker, J.J. (eds) Global Positioning System: Theory and Applications, Volume 1, American Institute of Aeronautics and Astronautics, Washington DC, pp 517-546 Spivak, M. (1979): Differential Geometry I-V. Publish or Perish Inc., Berkeley. Spock,¨ G. (1997): Die geostatistische Berucksichtigung von a-priori Kenntnissen uber die Trendfunktion und die Kovarianzfunktion aus Bayesscher, Minimax und Spektraler Sicht, master thesis, University of Klagenfurt Spock,¨ G. (2008): Non-stationary spatial modeling using harmonic analysis. In: Ortiz, J.M., Emery, X. (ed) Proceedings of the eighth international geostatistics congress. Gecamin, Chile, pp. 389-398 Spock,¨ G. and J. Pilz (2008): Non-spatial modeling using harmonic analysis, VIII Int. Geostatistics congress, pp. 1-10, Santiago, 2008 Spock,¨ G. and J. Pilz (2009): Spatial modelling and design covariance- robust minimax prediction based on convex design ideas, Stoch. Environ. Res. Risk Assess (2009) 1-21 Sposito, V.A. (1982): On unbiased Lp regression. J. Am. Statist. Ass. 77 (1982), 652-653 Sprent, P. and N.C. Smeeton (1989): Applied nonparametric statistical methods, Chapman and Hall, Boca Raton, Florida 1989 Sprinsky, W.H. (1974): The design of special purpose horizontal geodetic control networks. Ph.D. thesis, Tha Ohio State Univ., Columbus. Sprott, D.A. (1978): Gauss’s contributions to statistics, Historia Mathematica 5 (1978), 183-203 Srivastava, A.K., Dube, M. and V. Singh (1996): Ordinary least squares and Stein-rule predictions in regression models under inclusion of some superuous variables, Statistical Papers 37 (1996), 253-265 Srivastava, A.K. and Shalabh, S. (1996): Efficiency properties of least squares and Stein-Rule predictions in linear regression models, J. Appl. Stat. Science 4 (1996), 141-145 Srivastava, A.K. and Shalabh, S. (1997): A new property of Stein procedure in measurement error model, Statistics & Probability Letters 32 (1997), 231-234 Srivastava, M.S. and D. von Rosen (1998): Outliers in multivariate regression models, J. Multivar. Anal. 65 (1998), 195-208 Srivastava, M.S., Rosen von, D. (2002): Regression models with unknown singular covariance matrix. Linear Algebra Appl. 354, 1-3 (2002), 255-273. Srivastava, V.K. and Upadhyaha, S. (1975): Small-disturbance and large sample approximations in mixed regression estimation, Eastern Economic Journal, 2 (1975), pp. 261-265 Srivastava, V.K. and B. Rah (1979): The Existence of the Mean of the Estimator in Seemingly, Communication in Statistics-Theory and Methods, A8(7)(1979), pp. 713-717 Srivastava, V.K. and Maekawa, K. (1995): Efficiency properties of feasible generalized least squares estimators in SURE models under non-normal disturbances, J. Econometrics 66, pp. 99-121 (1995) Stahlecker, P. and K. Schmidt (1996): Biased estimation and hypothesis testing in linear regression, Acta Applicandae Mathematicae 43 (1996), 145-151 Stahlecker, P., Knautz, H. and G. Trenkler (1996): Minimax adjustment technique in a parameter restricted linear model, Acta Applicandae Mathematicae 43 (1996), 139-144 Stam, A.J. (1982): Limit theorems for uniform distributions on spheres in high dimensional Euclidean spaces, J. Appl. Prob. 19 (1982), 221-229 Stark, E. and Mikhail, E. (1973): Least Squares and Non-Linear Functions. Photogrammetric Engineering, Vol. XXXIX, No.4, 405-412. Stark, H. (ed) (1987): Image recovery: theory and application. Academic, New York Staudte, R.G. and Sheather, S.J. (1990): In Robust Estimation and Testing. John Wiley & Sons: USA, 1990. Steeb, W.H. (1991): Kronecker product of matrices and applications, B.J. Wissenschaftsverlag 1991 Steele, B.M.: A modified EM algorithm for estimation in generalized mixed models References 989

Stefanski, L.A. (1989): Unbiased estimation of a nonlinear function of a normal mean with application to measurement error models, Communications Statist. Theory Method. 18 (1989), 4335-4358 Stefansky, W. (1971): Rejecting outliers by maximum normal residual, Ann. Math. Statistics 42 (1971), 35-45 Stein, C. (1945): A two-sample test for a linear hypothesis whose power is independent of the variance, Ann. Math. Statistics 16 (1945), 243-258 Stein, C. (1950): Unbiased estimates with minimum variance, Ann. Math. Statist. 21 (1950), 406-415 Stein, C. (1959): An example of wide discrepancy between fiducial and confidence intervals, Ann. Math. Statist. 30 (1959), 877-880 Stein, C. (1964): Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean, Ann. Inst. Statist. Math. 16 (1964), 155-160 Stein, C. and A. Wald (1947): Sequential confidence intervals for the mean of a normal distribution with known variance, Ann. Math. Statist. 18 (1947), 427-433 Stein, M.L. (1999): Interpolation of spatial data: some theory for kriging. Springer, New York Steinberg, G. (1994): A Kinematic Approach in the Analysis of Kfar Hnassi Network. Perelmuter Workshop on Dynamic Deformation Models, Haifa, Israel. Steiner, F. and B. Hajagos (1999): A more sophisticated definition of the sample median, Acta Geod. Geoph. Hung. 34 (1999), 59-64 Steiner, F. and B. Hajagos (1999): Insufficiency of asymptotic results demonstrated on statistical efficiencies of the L1Norm calculated for some types of the supermodel fp(x), Acta Geod. Geoph.Hung. 34 (1999), 65-69 Steiner, F. and B. Hajagos (1999): Error characteristics of MAD-S (of sample medians) in case of small samples for some parent distribution types chosen from the supermodels fp(x) and fa(x), Acta Geod. Geoph. Hung. 34 (1999), 87-100 Steinmetz, V. (1973): Regressionsmodelle mit stochastischen Koeffizienten, Proc. Oper. Res. 2, DGOR Ann. Meet., Hamburg 1973, 95-104 Stenger, H. (1971): Stichprobentheorie, Physica-Verlag, W¨urzburg 1971 Stephens, M.A. (1963): Random walk on a circle, Biometrika 50 (1963), 385-390 Stephens, M.A. (1964): The testing of unit vectors for randomness, J. Amer. Statist. Soc. 59 (1964), 160-167 Stephens, M.A. (1969): Tests for randomness of directions against two circular alternatives, J. Am. Statist. Ass. 64 (1969), 280-289 Stephens, M.A. (1969): Test for the von Mises distribution, Biometrika 56 (1969), 149-160 Stephens, M.A. (1979): Vector correlations, Biometrika 66 (1979), 41-88 Stepniak, C. (1985): Ordering of nonnegative definite matrices with application to comparison of linear models, Linear Algebra And Its Applications 70 (1985), 67-71 Stewart, G.W. (1995): Gauss, statistics, and , Journal of Computational and Graphical Statistics 4 (1995), 1-11 Stewart, G.W. (1995): Afterword, in Translation: Theoria Combinationis Observationum Erroribus Minimis Obnoxiae, pars prior-pars posterior-supplementum by Theory of the Combination of Observations Least Subject to Errors, Classics in Applied Mathematics, SIAM edition, 205-236, Philadelphia 1995 Stewart, G.W. (1977): On the perturbation of pseudo-inverses, projections and linear least squares, SIAM Review 19 (1977), 634-663 Stewart, G.W. (1992): An updating algorithm for subspace tracking, IEEE Trans. Signal Proc. 40 (1992), 1535-1541 Stewart, G.W. (1998): Matrix algorithms, Vol. 1: Basic decompositions, SIAM, Philadelphia 1998 Stewart, G.W. (1999): The QLP approximation to the singular value decomposition, SIAM J. Sci. Comput. 20 (1999), 1136-1348 Stewart, G.W. (2001): Matrix algorithms, Vol. 2: Eigen systems, SIAM, Philadelphia 2001 Stewart, G.W. and Sun Ji-Guang (1990): Matrix perturbation theory, Academic Press, New York London 1990 990 References

Stewart, K.G. (1997): Exact testing in multivariate regression, Econometric reviews 16 (1997), 321-352 Steyn, H.S. (1951): The Wishart distribution derived by solving simultaneous linear differential equations, Biometrika, 38, 470-472 Stigler, S.M. (1973): Laplace, Fisher, and the discovery of the concept of sufficiency, Biometrika 60 (1973), 439-445 Stigler, S.M. (1973): Simon Newcomb, Percy Daniell, and the history of robust estimation 1885-1920, J. Am. Statist. Ass. 68 (1973), 872-879 Stigler, S.M. (1977): An attack on Gauss, published by Legendre in 1820, Historia Mathematica 4 (1977), 31-35 Stigler, S.M. (1986): The history of statistics, the measurement of uncertainty before 1900, Belknap Press, Harvard University Press, Cambridge/Mass. 1986 Stigler, S.M. (1999): Statistics on the table, the history of statistical concepts and methods, Harvard University Press, Cambridge London 1999 Stigler, S.M. (2000): International statistics at the millennium: progressing or regressing, International Statistical Review 68 (2000), 2, 111-121 Stone, M. (1974): Cross-validatory choice and assessment of statistical predictions. J R Statist Soc B 36:111-133 Stopar, B. (1999): Design of horizontal GPS net regarding non-uniform precision of GPS baseline vector components, Bollettino di Geodesia e Scienze Affini 58 (1999), 255-272 Stopar, B. (2001): Second order design of horizontal GPS net, Survey Review 36 (2001), 44-53 Storm, R. (1967): Wahrscheinlichkeitsrechnung, mathematische Statistik und statistische Qualitatskontrolle,¨ Leipzig 1967 Stotskii, A.A. and Elgerad, K.G., Stoskaya, J.M. (1998): Structure analysis of path delay variations in the neutral atmosphere, Astr. Astrophys. Transact. 17 (1998) 59-68 Stoyan, D. and Stoyan, H. (1994): Fractals, Random Shapes and Point Fields, Chichester: John Wiley & Sons, 1994 Stoyanov, J. (1997): Regularly perturbed stochastic differential systems with an internal random noise, Nonlinear Analysis, Theory, Methods & Applications 30 (1997), 4105-4111 Stoyanov, J. (1998): Global dependency measure for sets of random elements: The Italian problem and some consequences, in: Ioannis Karatzas et al. (eds.), Stochastic process and related topics in memory of Stamatis Cambanis 1943-1995, Birkhauser-Verlag,¨ Basel Boston Berlin 1998 Strang, G. and Borre, K. (1997): Linear Algebra, Geodesy and GPS, Wellesley Cambridge Press, Wellesley 1997. Strubecker, K. (1964): Differentialgeometrie I-III. Sammlung Goschen, Berlin. Stuelpnagel, J. (1964): On the parametrization of the three-dimensional rotation group. SIAM Review, Vol. 6, No.4, 422-430. Sturmfels, B. (1994): Multigraded resultant of Sylvester type, Journal of Algebra 163 (1994) 115-127. Sturmfels, B. (1996): Grobner¨ bases and convex polytopes, American Mathematical Society, Providence 1996. Sturmfels, B. (1998): Introduction to resultants, Proceedings of Symposia in Applied Mathematics 53 (1998) 25-39. Stoyanov, J. (1999): Inverse Gaussian distribution and the moment problem, J. Appl. Statist. Science 9 (1999), 61-71 Stoyanov, J. (2000): Krein condition inprobabilistic moment problems, Bernoulli 6 (2000), 939-949 Srecok, A.J. (1968): On the calculation of the inverse of the error function, Math. Computation 22 (1968), 144-158 Strobel,¨ D. (1997): Die Anwendung der Ausgleichungsrechnung auf elastomechanische Systeme, Deutsche Geodatische¨ Kommission, Bayerische Akademie der Wissenschaften, Report C478, M¨unchen 1997 Stroud, A.H. (1966): Gaussian quadrature formulas, Prentice Hall, Englewood Cliffs, N.J. 1966 References 991

Stuart, A. and J.K. Ord (1994): Kendall’s advanced theory of statistics: volume I, distribution theory, Arnold Publ., 6th edition, London 1997 Student: The probable error of a mean, Biometrika 6 (1908), 1-25 Stulajter, F. (1978): Nonlinear estimators of polynomials in mean values of a Gaussian stochastic process, Kybernetika 14 (1978), 206-220 Styan, G.P.H. (1973): Hadamard products and multivariate statistical analysis, Linear Algebra Appl., 6 (1973), pp. 217-240 Styan, G.P.H. (1983): Generalised inverses in: Encyclopedia of statistical sciences, Vol. 3, S. Kotz, N.L. Johnson and C.B. Read (eds.), pp. 334-337, wiley, New York, 1983 Styan, G.P.H. (1985): Schur complements and statistics, in: Proc. First International Tampere Seminar on Linear Statistical Models, T. Pukkila and S. Puntaten (eds.), pp. 37-75, Dept, of Math. Sciences, Univ. of Tampere, Finland, 1985 Subrahamanyan, M. (1972): A property of simple least squares estimates, Sankhya B34 (1972), 355-356 Sugaria, N. and Y. Fujikoshi (1969): Asymptotic expansions of the non-null distributions of the likelihood ratio criteria for multivariate linear hypothesis and independence, Ann. Math. Stat. 40 (1969), 942-952 Sun, J.-G. (2000): Condition number and backward error for the generalized singular value decomposition, Siam J. Matrix Anal. Appl. 22 (2000), 323-341 Sun, W. (1994): A New Method for Localization of Gross Errors. Surv. Rev. 1994, 32, 344-358. Sun, Z. and Zhao, W. (1995): An algorithm on solving least squares solution of rank-defective linear regression equations with constraints. Numer. Math., Nanjing 17, 3 (1995), 252-257. S¨unkel, H. (1984): Fourier analysis of geodetic networks. Erice Lecture Notes, this volume, Heidelberg. S¨unkel, H. (1999): Ein nicht-iteratives Verfahren zur Transformation geodatischer¨ Koordinaten, Oster.¨ Zeitschrift f¨ur Vermessungswesen 64 (1999) 29-33. Svendsen, J.G.G. (2005): Some properties of decorrelation techniques in the ambiguity space. GPS Solutions. doi:10.1007/s10291-005-0004-6 Swallow, W.H. and S.R. Searle (1978): Minimum variance quadratic unbiased estimation (MIVQUE) of variance components, Technometrics 20 (1978), 265-272 Swamy, P.A.V.B. (1971): Statistical inference in random coefficient regression models, Springer- Verlag, Heidelberg Berlin New York 1971 Swamy, P.A.V.B. and J.A. Mehta (1969): On Theil’s mixed regression estimators, J. Americ. Stst. Assoc., 64 (1969), pp. 273-276 Swamy, P.A.V.B. and J.A. Mehta (1977): A note on minimum average risks estimators for coefficients in linear models, Communications in Stat., Part A -Theory and Methods, 6 (1977), pp. 1181-1186 Sylvester, J.J. (1850): Additions to the articles, On a new class of theorems, and On Pascal’s theorem, Phil. Mag. 37 (1850), 363-370 Sylvester, J.J. (1851): On the relation between the determinants of linearly equivalent quadratic functions, Phil. Mag. 14 (1851), 295-305 Szabados, T. (1996): An elementary introduction to the Wiener process and stochastic integrals, Studia Scientiarum Mathematicarum Hungarica 31 (1996), 249-297 Szasz, D. (1996): Boltzmann’s ergodic hypothesis, a conjecture for centuries?, Studia Scientiarum Mathematicarum Hungarica 31 (1996), 299-322 Takos, I. (1999): Adjustment of observation equations without full rank, Bolletino di Geodesia e Scienze Affini 58 (1999), 195-208 Tanana, V.P. (1997): Methods for solving operator equations, VSP, Utrecht, Netherlands 1997 Tanizaki, H. (1993): Nonlinear filters - estimation and applications, Springer-Verlag, Heidelberg Berlin New York 1993 Tanner, A. (1996): Tools for statistical inference, 3rd ed., Springer-Verlag, Heidelberg Berlin New York 1996 992 References

Tarpey, T. (2000): A note on the prediction sum of squares statistic for restricted least squares, The American Statistician 54 (2000), 116-118 Tarpey, T. and B. Flury (1996): Self-consistency, a fundamental concept in statistics, Statistical Science 11 (1996), 229-243 Tasche, D. (2003): Unbiasedness in least quantile regression, in: R. Dutter, P. Filzmoser, U. Gather, P.J. Rousseeuw (eds.), Developments in Robust Statistics, 377-386, Physica Verlag, Heidelberg 2003 Tashiro, Y. (1977): On methods for generating uniform random points on the surface of a sphere, Ann. Inst. Statist. Math. 29 (1977), 295-300 Tatarski, V.J. (1961): Wave propagation in a turbulent medium Mc Graw Hill book Comp., New York 1961 Tate, R.F. (1959): Unbiased estimation functions of location and scale parameters, Ann. Math. Statist. 30 (1959), 341-366 Tate, R.F. and G.W. Klett (1959): Optimal confidence intervals for the variance of a normal distribution, J. Am. Statist. Ass.. 16 (1959), 243-258 Tatom, F.B. (1995): The relationship between fractional calculus and fractals. Fractals, 1995, 3, 217-229 Teicher, H. (1961): Maximum likelihood characterization of distribution, Ann. Math. Statist. 32 (1961), 1214-1222 Tennekes, H. and J.L. Lumley (1972): A First Course in Turbulence, MIT Press, 300 pages, Cambridge, MA Terasvirta,¨ T. (1981): Some results on improving the least squares estimation of linear models by mixed estimators, Scandinavian Journal of Statistics 8 (1981), pp. 33-38 Terasvirta,¨ T. (1982): Superiority comparisons of homogeneous linear estimators. Communications in Statistics, All, pp. 1595-1601 Taylor, J.R. (1982): An introduction to error analysis, University Science Books, Sausalito 1982 Taylor, G.I. (1935): Statistical theory of turbulence. Proc. Roy. Soc. A 151, pp. 421-478. Taylor, G.I. (1938): The spectrum of turbulence. Proceedings Royal Society of London A 164, pp. 476-490. Taylor, G.I. (1938): Production and dissipation of vorticity in a turbulent fluid. Proceedings Royal Society of London A164, pp. 15-23. Tesafikova, E. and Kubacek, L. (2003): Estimators of dispersion in models with constraints (demoprogram). Department of Algebra and Geometry, Faculty of Science, Palacky University, Olomouc, 2003. Tesafikova, E. and Kubacek, L. (2004): A test in nonlinear regression models. Demo program. Department of Algebra and Geometry, Faculty of Science, Palacky University, Olomouc, 2004 (in Czech). Tesafikova, E. and Kubacek, L. (2005): Variance components and nonlinearity. Demoprogram. Department of Algebra and Geometry, Faculty of Science, Palacky University, Olomouc, 2005. Teunissen, P.J.G. (1985a): The geometry of geodetic inverse linear mapping and non-linear adjustment, Netherlands Geodetic Commission, Publications on Geodesy, New Series, Vol. 8/1, Delft 1985 Teunissen, P.J.G. (1985b): Zero order design: generalized inverses, adjustment, the datum problem and S-transformations, In: Optimization and design of geodetic networks, Grafarend, E.W. and F. Sanso eds., Springer-Verlag, Heidelberg Berlin New York 1985 Teunissen, P.J.G. (1987): The 1 and 2D Symmetric Helmert Transformation: Exact Non-linear Least-Squares Solutions. Reports of the Department of Geodesy, Section Mathematical and Physical Geodesy, No. 87.1, Delft Teunissen, P.J.G. (1989a): Nonlinear inversion of geodetic and geophysical data: diagnosing nonlinearity, In: Brunner, F.K. and C. Rizos (eds.): Developments in four-dimensional geodesy, Lecture Notes in Earth Sciences 29 (1989), 241-264 Teunissen, P.J.G. (1989b): First and second moments of non-linear least-squares estimators, Bull. Geod. 63 (1989), 253-262 References 993

Teunissen, P.J.G. (1990): Non-linear least-squares estimators, Manuscripta Geodaetica 15 (1990), 137-150 Teunissen, P.J.G. (1991): Circular Letter to all Special Study Group 4.120 Members, 24.01.1991, nicht ver6:ffentlicht. Teunissen, P.J.G. (1993): Least-squares estimation of the integer GPS ambiguities, LGR series, No. 6, Delft Geodetic Computing Centre, Delft 1993 Teunissen, P.J.G. (1995a): The invertible GPS ambiguity transformation, Manuscripta Geodaetica 20 (1995), 489-497 Teunissen, P.J.G. (1995b): The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation, Journal of Geodesy 70 (1995), 65-82 Teunissen, P.J.G. (1997): A canonical theory for short GPS baselines. Part I: The baseline precision, Journal of Geodesy 71 (1997), 320-336 Teunissen, P.J.G. (1997): On the sensitivity of the location, size and shape of the GPS ambiguity search space to certain changes in the stochastic model, Journal of Geodesy 71 (1997), 541-551 Teunissen, P.J.G. (1997): On the GPS widelane and its decorrelating property, Journal of Geodesy 71 (1997), 577-587 Teunissen, P.J.G. (1997): The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans, Journal of Geodesy 71 (1997), 589-602 Teunissen, P.J.G. (1998): Quality Control and GPS. In: Teunissen PJG, KIeusberg A(eds) GPSfor Geodesy, 2nd ed, Springer Verlag, Berlin, Hedilberg, pp. 271-318 Teunissen, P. (1998b): First and second moments of non-linear least-quares estimations, Bull. Geod. 63 (1989) 253-262 Teunissen, P.J.G. (1999a): The probability distribution of the GPS baseline for a class of integer ambiguity estimators. J Geod 73: 275-284 Teunissen, P.J.G. (1999b): An optimality property of the integer leastsquares estimator. J. Geod. 73:587-593 Teunissen, P.J.G. (2003): Theory of integer equivariant estimation with application to GNSS. J. Geod. 77:402-410 Teunissen, P.J.G. and Knickmeyer, E.H. (1988): Non-linearity and least squares, CISM Journal ASCGC 42 (1988) 321-330. Teunissen, P.J.G. and Kleusberg, A. (1998): GPS for geodesy, 2nd enlarged edition. Springer, Heidelberg Teunissen, P.J.G., Simons, D.G., and Tiberius, C.C.J.M. (2005): Probability and observation theory. Lecture Notes Delft University of Technology, 364 p Teunissen, P.J.G. and A.R. Amiri-Simkooei (2008): Least-squares variance component estimation, Journal of Geodesy, 82 (2008): 65-82. Teunissen, P.J.G. (2008):On a stronger-than-best property for best prediction, J. Geodesy 82 (2008) 165-175 Theil, H. (1963): On the use of incomplete prior information in regression analysis, J,. Amer. Stat. Assoc., 58 (1963), pp. 401-414 Theil, H. (1965): The analysis of disturbances in regression analysis, J. Am. Statist. Ass. 60 (1965), 1067-1079 Theil, H. (1971): Principles of econometrics, Wiley, New York 1971 Theil, H. and A.S. Goldberger (1961): On Pure and Mixed Statistical Estimation in Economics, International Economic Review, Vol. 2, 1961, p. 65 Theobald, C.M. (1974): Generalizations of Mean Square Error Applied to Ridge Regression, Journal of the Royal Statistical Society 36 (series B): 103-106. Thompson, R. (1969). Iterative estimation of variance components for non-orthogonal data, Biometrics 25 (1969), 767-773 Thompson, W.A. (1955): The ratio of variances in variance components model, Ann. Math. Statist. 26 (1955), 325-329 Thompson, E. H. (1959a): A method for the construction of orthogonal matrices, Photogrammetria III (1959) 55-59. 994 References

Thompson, E. H. (1959b): An exact linear solution of the absolute orientation. Photogrammetria XV (1959) 163-179. Thomson, D.J. (1982): Spectrum estimation and harmonic analysis, Proceedings Of The IEEE 70 (1982), 1055-1096 Thorand, V. (1990): Algorithmen zur automatischen Berechnung von Naherungskoordinaten in geodatischen¨ Lagenetzen. Vermessungstechnik, 4, 120-124. Thorpe, J.A. (1979): Elementary Topics in Differential Geometry. Springer-Verlag, New York. Tychonoff, A.N. (1963): Solution of incorrectly formulated problems and regularization method, Dokl. Akad. Nauk. SSSR, 151 (1963), pp. 501-504 Tiberius, C.C.J.M., de Jonge, P.J. (1995): Fast positioning using the LAMBDA method. In: Proceedings DSNS-95, paper 30, 8 p Tiberius, C.C.J.M., Teunissen, P.J.G. and de Jonge, P.J. (1997): Kinematic GPS: performance and quality control. In: Proceedings KIS97, pp. 289-299 Tiberius, C.C.J.M., Jonkman, N. and F. Kenselaar (1999): The Stochastics of GPS Observables. GPS World 10: 49-54 Tiberius, C.C.J.M. and F. Kenselaar (2000): Estimation of the stochastic model for GPS code and phase observables, Survey Review 35 (2000), 441-455 Tiberius, C.C.J.M. and F. Kenselaar (2003): Variance Component Estimation and Precise GPS Positioning: Case study, Journal of surveying engineering, 129(1): 11-18, 2003. Tikhonov, A.N. (1963): Solution of incorrectly formulated problems arid regularization method. Dokl. Akad. Nauk. SSSR, 1 51, 501-504. Tikhonov, A.N. and V.Y.Arsenin (1977): Solutions of ill-posed problems, J. Wiley, New York 1977 Tikhonov, A.N., Leonov, A.S. and A.G. Yagola (1998): Nonlinear ill-posed problems, Vol. 1, Appl. Math. and Math. Comput. 14, Chapman & Hall, London 1998 Tjostheim,¨ D. (1990): Non-linear time series and Markov chains, Adv. Appl. Prob. 22 (1990), 587-611 Tjur, T. (1998): Nonlinear regression, quasi likelihood, and overdispersion in generalized linear models, American Statistician 52 (1998), 222-227 Tobias, P.A. and D.C. Trinidade (1995): Applied reliability, Chapman and Hall, Boca Raton 1995 Tominaga, Y. and I. Fujiwara (1997): Prediction-weighted partial least-squares regression (PWPLS), Chemometrics and Intelligent Lab Systems 38 (1997), 139-144 Tong, H. (1990): Non-linear time series, Oxford University Press, Oxford 1990 Toranzos F.I. (1952): An asymmetric bell-shaped frequency curve, Ann. Math. Statist. 23 (1952), 467-469 Torge, W. and Wenzel, H.G. (1978): Dreidimensionale Ausgleichung des Testnetzes Westharz.Deutsche Geodattsche Kommission, Bayerische Akademie der Wissenschaften Report B234, M¨unchen. Torge, W. (2001): Geodesy, 3rd edn. Walter de Gruyter, Berlin Toro-Vizearrondo, C. and T.D. Wallace (1969): A Test of the Mean Square Error Criterion for Restrictions in Linear Regression, Journal of the American Stst. Assoc., 63 (1969), pp. 558-572 Toutenburg, H. (1968): Vorhersage im allgemeinen linearen Regressionsmodell mit Zusatzinformationuber ¨ die Koeffzienten, Operationsforschung Maths Statistik, Vol. 1, pp. 107-120, Akademic Verlag, Berlin 1968 Toutenburg, H. (1970a): Vorhersage im allgemeinen linearen Regressionsmodell mit stochastischen Regressoren, Math. Operationsforschg. Statistik 2 (1970), 105-116 Toutenburg, H. (1970b): Probleme linearer Vorhersagen im allgemeinen linearen Regressionsmodell, Biometrische Zeitschrift, 12: pp. 242-252 Toutenburg, H. (1970c): Uber¨ die Wahl zwischen erwartungstreuen und nichterwartungstreuen Vorhersagen, Operationsforschung Mathematische Statistik, vol. 2, pp. 107-118, Akademic Verlag, Berlin 1970 Toutenburg, H. (1973): Lineare Restriktionen und Modellwahl im allgemeinen linearen Regressionsmodell, Biometrische Zeitschrift, 15 (1973), pp. 325-342 Toutenburg, H. (1975): Vorhersage in linearen Modellen, Akademie Verlag, Berlin 1975 References 995

Toutenburg, H. (1976): Minimax-linear and MSE-linear estimators in generalized regression, Biometr. J. 18 (1976), pp. 91-104 Toutenburg, H. (1982): Prior Information in Linear Models, Wiley, New York. Toutenburg, H. (1989a): Investigations on the MSE-superiority of several estimators of filter type in the dynamic linear model (i.e. Kalman model), Technical Report 89-26, Center for Multivariate Analysis, The Pennsylvania State University, State College Toutenburg, H. (1989b): Mean-square-error-comparisons between restricted least squares, mixed and weighted mixed estimators, Forschungsbericht 89/12, Fachbereich Statistik, Universitat Dortmund, Germany Toutenburg, H. (1996): Estimation of regression coefficients subject to interval constraints, Sankhya: The Indian Journal of Statistics A, 58 (1996), 273-282 Toutenburg, H. and Schaffrin, B. (1989): Biased mixed estimation and related problems, Technical Report, Universitat Stuttgart, Germany Toutenburg, H. and Trenkler, G. (1990): Mean square error matrix comparisons of optimal and classical predictors and estimators in linear regression, Computational Statistics and Data Analysis 10: 297-305 Toutenburg, H., Trenkler, G. and Liski, E.P. (1992): Optimal estimation methods under weakened linear restrictions, Computational Statistics and Data Analysis 14: 527-536. Toutenburg, H. and Shalabh (1996): Predictive performance of the methods of restricted and mixed regression estimators, Biometrical Journal 38: 951-959. Toutenburg, H., Fieger, A. and Heumann, C. (1999): Regression modelling with fixed effects- missing values and other problems, in C. R. Rao and G. Szekely (eds.), Statistics of the 21st Century, Dekker, New York. Townsend, A.A. (1976): The Structure of Turbulent Shear Flow, Second Edition, Cambridge University Press, 429 pages 1976 Townsend, E.C. and S.R. Searle (1971): Best quadratic unbiased estimation of variance components from unbalanced data in the l-way classification, Biometrics 27 (1971), 643-657 Trefethen, L.N. and D. Bau (1997): Numerical linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia 1997 Trenkler, G. (1985): Mean square error matrix comparisons of estimators in linear regression, Communications in Statistics, Part A-Theory and Methods 14: 2495-2509 Trenkler, G. (1987): Mean square error matrix comparisons among restricted least squares estimators, Sankhya, Series A 49: 96-104 Trenkler, G. and Trenkler, D. (1983): A note on superiority comparisons of linear estimators, Communications in Statistics, Part A-Theory and Methods 17: 799-808 Trenkler, G. and Toutenburg, H. (1990): Mean-square error matrix comparisons between biased estimators an overview of recent results, Statistical Papers 31: 165-179 Troskie, C.G. and D.O. Chalton (1996): Detection of outliers in the presence of , in: Multidimensional statistical analysis and theory of random matrices, Proceedings of the Sixth Lukacs Symposium, eds. Gupta, A.K. and V.L. Girko, 273-292, VSP, Utrecht 1996 Troskie, C.G., Chalton, D.O. and M. Jacobs (1999): Testing for outliers and influential observations in multiple regression using restricted least squares, South African Statist. J. 33 (1999), 1-40 Trujillo-Ventura, A. and Ellis, J.H. (1991): Multiobjective air pollution monitoring network design. Atmos Environ 25:469-479 Tscherning, C.C. (1978): Collocation and least-squares methods as a tool for handling gravity field dependent data obtained through space research techniques. Bull Geod 52:199-212 Tseng, Y.Y. (1936): The characterisitic value problem of Hermitian functional operators in a non-Hilbert space, Ph.D. Thesis, Univeristy of Chicago, Chicago 1936 Tseng, Y.Y. (1949a): Sur les solutions des equations` operatrices` fonctionnelles entre les espaces enitaires, C.R. Acad. Sci. Paris, 228 (1949), pp. 640-641 Tseng, Y.Y. (1949b): Generalized inverses of unbounded operators between two arbitrary spaces, Dokl. Acas. Nauk SSSR (new series) 67 (1949), pp. 431-434 Tseng, Y.Y. (1949c): Properties and classification of generalized inverses of closed operators, Dokl. Acad. Nauk SSSR (new series) 67 (1949), pp. 607-610 996 References

Tseng, Y.Y. (1956): Virtual solutions and general inversions, Uspehi. Mat. Nauk (new series) 11, (1956), pp. 213-215 Tsimikas, J.V. and J. Ledolter (1997): Mixed model representation of state space models: New smoothing results and their application to REML estimation, Statistica Sinica 7 (1997), 973-991 Tu, R. (1996): Comparison between confidence intervals of linear regression models with and without restriction. Commun. Stat., Theory Methods 28, 12 (1999), 2879-2898. Tufts, D.W. and R. Kumaresan (1982): Estimation of frequencies of multiple sinusoids: making linear prediction perform like maximum likelihood, Proc. of IEEE Special issue on Spectral estimation 70 (1982), 975-989 Tukey, J.W. (9159): An introduction to the measurement of spectra, in: Grenander U.: Probability and statistics, New York Turkington, D. (2000): Generalised vec operators and the seemingly unrelated regression equations model with vector correlated disturbances, Journal of Econometrics 99 (2000), 225-253 Ulrych, T.J. and R.W. Clayton (1976): Time series modelling and maximum entropy, Phys. Earth and Planetary Interiors 12 (1976), 188-200 Vainikko, G.M. (1982): The discrepancy principle for a class of regularization methods, USSR. Comp. Math. Math. Phys. 22 (1982), 1-19 Vainikko, G.M. (1983): The critical level of discrepancy in regularization methods, USSR. Comp. Math. Math. Phys. 23 (1983), 1-9 Van Der Waerden, B.L. (1950): Modern Algebra, 3rd Edition, F. Ungar Publishing Co., New York 1950. Van Huffle, S. (1990): Solution and properties of the restricted total least squares problem, Proceedings of the International Mathematical Theory of Networks and Systems Symposium (MTNS 1989), 521-528 Vanicek, P. and E.W. Grafarend (1980): On the weight estimation in leveling, National Oceanic and Atmospheric Administration, Report NOS 86, NGS 17, Rockville 1980 Vanicek, P. and Krakiwsky, E.J. (1982): Geodesy: The concepts. North-Holland Publishing Company, Amsterdam-New York-Oxford 1982. Van Loa, C.F. (1978): Computing integrals involving the . IEEE Trans. Autom. Control AC- 23: 395-404 Van Mierlo, J. (1988): R¨uckwartschnitt¨ mit Streckenverhaltnissen,¨ Algemain Vermessungs Nachrichten 95 (1988) 310-314. Van Montfort, K. (1988): Estimating in structural models with non-normal distributed variables: some alternative approaches, Leiden 1988 Van Ness, J.W. (1965): Asymptotic normality of bispectral estimates, Technical report No 14, Dept. Statistics, Stanford University 1965 Vasconcellos, K.L.P. and M.C. Gauss (1997): Approximate bias for multivariate nonlinear heteroscedastic regressions, Brazilian J. Probability and Statistics 11 (1997), 141-159 Vasconcelos, W.V. (1998): Computational methods in commutative algebra and algebraic geometry, Springer-Verlag, Berlin-Heidelberg 1998. Ventsel, A.D. and M.I. Freidlin (1969): On small random perturbations of dynamical systems, Report delivered at the meeting of the Moscow Mathematical Society on March 25, 1969, Moscow 1969 Ventzell, A.D. and M.I. Freidlin (1970): On small random perturbations of dynamical systems, Russian Math. Surveys 25 (1970), 1-55 Verbeke, G. and G. Molenberghs (2000): Linear mixed models for longitudinal data, Springer- Verlag, Heidelberg Berlin New York 2000 Vernik, L. and Zoback, M.D. (1992): Estimation of ma.xjmum horizontal principal stress magnitude from stress-induced well bore breakouts in the Cajon Pass scientific research borehole, J. geophys. Res., B97, 5109-5119 Vernizzi, A., Goller, R. and P. Sais (1995): On the use of shrinkage estimators in filtering extraneous information, Giorn. Econ. Annal. Economia 54 (1995), 453-480 References 997

Veroren, L.R. (1980): On estimation of variance components, Statistica Neerlandica 34 (1980), 83-106 Vetter, M. (1992): Automatische Berechnung zweidimensionaler Naherungskoordinaten - Konzeption und Realisierung im Programm AURA (Automatische Berechnung und Revision approximativer Koordinaten). Allgemeine Vermessungs-N achrichten, 99. Jg., Heft 6, 245-255. Vichi, M. (1997): Fitting L2 norm classification models to complex data sets, Student 2 (1997), 203-213 Viertl, R. (1996): Statistical Methods for Non-Precise DATA. CRC Press, Boca Raton, New York, London and Tokyo, 1996 Vigneau, E., Devaux, M.F., Qannari, E.M. and P. Robert (1997): Principal component regression, ridge regression and ridge principal component regression in spectroscopy calibration, J. Chemometrics 11 (1997), 239-249 Vincenty, T. (1978): Vergleich zweier Verfahren zur Berechnung der geodatischen¨ Breite und Hohe¨ aus rechtwinkligen koorninaten, Allgemeine Vermessungs-Nachrichten 85 (1978) 269-270. Vincenty, T. (1980): Zur raumlich-ellipsoidischen¨ Koordinaten-Transformation, Zeitschrift f¨ur Vermessungswesen, 105 (1980) 519-521. Vinod, H.D. and L.R. Shenton (1996): Exact moments for autoregressive and random walk models for a zero or stationary initial value, Econometric Theory 12 (1996), 481-499 Vinograde, B. (1950): Canonical positive definite matrices underinternal linear transformations, Proc. Amer. Math. Soc.1 (1950), 159-161 Vogel, M. and Van Mierlo, J. (1994): Deformation Analysis of the Kfar-Hanassi Network. Perelmuter Workshop on Dynamic Deformation Models, Haifa, Israel. Vogler, C.A. (1904): Zeitschrift f¨ur Vermessungswesen 23 (1904), pp. 394-402 Voinov, V.G. and M.S. Nikulin (1993): Unbiased estimators and their applications, volume 1: univariate case, Kluwer, Academic Publishers, Dordrecht 1993 Voinov, V.G. and M.S. Nikulin (1993): Unbiased estimators and their applications, volume 2: multivariate case, Kluwer, Academic Publishers, Dordrecht 1993 Volaufova, J. (1980): On the confidence region of a vector parameter. Math. Slovaca 30 (1980), 113-120. Volterra, V. (1930): Theory of functionals, Blackie, London 1930 Von Mises, R. (1981):uber ¨ die Ganzzahligkeit der Atomgewichte und verwandte Fragen, Phys. Z. 19 (1918), 490-500 Wackernagel, H. (1995): Multivariate geostatistics. Springer, Heidelberg Wackernagel, H. (2003): Multivariate geostatistics. Springer-Verlag, Berlin, 3rd edition. Waerden Van Der, B.L. (1967): Algebra II. Springer-Verlag, Berlin. Wagner, H. (1959): Linear programming techniques for regression analysis, J. Am. Statist. Ass. 56 (1959), 206-212 Wahba, G. (1975): Smoothing noisy data with spline functions, Numer. Math. 24 (1975), 282-292 Wald, A. (1939): Contributions to the theory of statistical estimation and testing hypotheses, Ann. Math. Statistics 10 (1939), 299-326 Wald, A. (1945): Sequential tests for statistical hypothesis, Ann. Math. Statistics 16 (1945), 117-186 Walder, O. (2006): Forpflanzung der Un scharfe von Messdaten auf abgeleitete differential geometrische Grossen, PFG 6 (2006), 491-499 Walder, O. (2007a): An application of the fuzzy theory in surface interpolation and surface deformation analysis, Fuzzy sets and systems 158 (2007), 1535-1545 Walder, O. (2007b): On analysis and forecasting of surface movement and deformation: Some AR models and their application, Ace. Verm, Nachr., 3 (2007), 96-100 Walder, O. and M. Buchroithner (2004): A method for sequential thinning of digital raster terrain models, PF G 3, (2004), 215-221 Walk, H. (1967a): Randeigenschaften zufalliger P otenzreihen und eine damit zusamnlenhangende Verrillgemeirierung des Satzes von Fatou und Nevanlinna (mit K. Hinderer). Math. Ann. 172, 94-104 (1967). 998 References

Walk, H. (1967b): Symmetrisierte und zentrierte Folgen von Zufallsvariablen. Math. Z. 102, 44-55 (1967). Walk, H. (1968): Uber¨ das Randverhalten zufalliger Potenzreihen. 1. reine angew. Math. 230, 66-103 (1968). Walk, H. (1969a): Approximation durch Folgen linearer positiver Operatoren. Arch. Math. 20, 398-404 (1969). Walk, H. (1969b): Wachsumsverhalten zufalliger Potenzreihen. Z. Wahrscheinlichkeitstheorie verw. Gebiete 12, 293-306 (1969) Walk, H. (1970a): Bemerkungen tiber multiplikative Systeme. Math. Ann. 186, 36-44 (1970) Walk, H. (1970b): Approximation unbeschrankter Funktionen durch lineare positive Operatoren. Habilitationsschrift, Dniv. Stuttgart, Juni 1970. Walk, H. (1972): Konvergenz- und Guteaussagen f¨ur die Approximation durch Folgen linearer positiver - Operatoren (mit M. W. Muller). Proceedings of the International Conference on Constructive Function Theory, Varna, May 1970, 221-233 (1972). Walk, H. (1973): Zufallige Potenzreihen mit multiplikativ abhangigen Koeffizienten. Buletinul Institutului Politehnic din Jasi 19 (23), 107-114 (1973). Walk, H. (1974): A generalization of renewal processes (mit K. Hinderer). European Meeting of Statisticians, Budapest 1972. Colloquia Mathematica Societatis Janos Bolyai 9, 315-318 (1974). Walk, H. (1977a): Approximation von Ableitungen unbeschrankter Funktionen durch line are Operatoren. Mathematica - Revue d’Analyse Numerique et de Theorie de l’Approximation 6, 99-105 (1977). Walk, H. (1977b): An invariance principle in stochastic approximation. Recent Developments in Statistics (eds. J. R. Barra et al.), 623-625 (1977). North Holland, Amsterdam Walk, H. (1979): Sequential estimation of the solution of an integral equation in filtering theory. In: Stochastic and Stochastic Differential Systems (eds. M. Kohlmann, W. Vogel), 598-605. Springer-Verlag, Berlin, 1979 Walk, H. (1980): A functional central limit theorem for martingales in C(K) and its application to sequential - estimates.J. reine angew. Math. 314 (1980), 117-135 Walk, H. (1983): Stochastic iteration for a constrained optimization problem. Commun. Statist. - Sequential Analysis 2 (1983-84), 369-385 Walk, H. (1985): On recursive estimation of the mode, Statistics and Decisions 3 (1985), 337-350. Walk, H. (1988): Limit behavior of stochastic approximation processes. Statistics and Decisions 6 (1988), 109-128. Walk, H. (1992a): Stochastic Approximation and Optimization of Random Systems (mit L. Ljung und G. Pflug) (113 S.). Birkhauser, Basel, 1992 Walk, H. (1992b): Stochastic Approximation and Optimization of Random Systems (mit L. Ljung und G. Pflug) (113 S.). Birkhauser, Basel, 1992. Walk, H. (1998): Weak and strong universal consistency of semi-recursive partitioning and kernel regression estimates (mit Gyorfi L, Kohler M). Stat. Decis. 16 (1998) 1-18 Walk, H. (2001): Strong universal point wise consistency of recursive regression estimates. Ann. Inst. Statist. Math. 53 (2001), 691-707. Walk, H. (2002): Almost sure convergence properties of Nadaraya-Watson regression estimates. In: Modeling Uncertainty: An Examination of its Theory, Methods and Applications (eds. M. Dror, P. L’Ecuyer, F. Szidarovszky), 201-223 (2002). Kluwer Academic Publishers, Dordrecht. Walk, H. (2003): The estimation problem of minimum mean’ squared error (mit L. Devroye, L. Gyorfi und D. Scnafer). Statistics and Decisions 21 (2003), 15-28 Walk, H. (2005): Strong laws of large numbers by elementary Tauberian arguments. Monatsh. Math. 144 (2005), 329-346. Walk, H. (2006): Rates of convergence for partitioning and nearest neighbor regression estimates with unbounded data (mit M. Kohler und A. Krzyzak). 1. Multivariate Anal. 97 (2006), 311-323 Walk, H. (2008a): A universal strong law of large numbers for conditional expectations via nearest neighbors. J. Multivariate Anal. 99 (2008), 1035-1050. References 999

Walk, H. (2008b): Non parametric nearest neighbor based empirical portfolio selection strategies (mit L. Gyorfi und F. Udina). Statistics and Decisions 26 (2008), 145-157 . Walk, H. (2009a): Optimal global rates of convergence for nonparametric regression with unbounded data (mit M. Kohler und A. Krzyzak). 1. Statist. Planning Inference 139 (2009), 1286-1296. Walk, H. (2009b): Strong laws of large numbers and nonparametric estimation. Universitat Stuttgart, Fachbereich Mathematik, Preprint 2009-003. In: Recent Developments in Applied Probability and Statistics (eds. L. Devroye, B. Karasozen, M. Kohler, R. Korn), 183-214 (2010). Physica-Verlag, Heidelberg Walk, H. (2010): Strong consistency of kernel estimates of regression function under dependence. Statist. Probab. Letters 80 (2010), 1147-1156 . Walker, J.S. (1996): Fast Fourier transforms, 2nd edition, CRC Press, Boca Raton 1996 Walker, P.L. (1996): Elliptic functions, J. Wiley, New York 1996 Walker, S. (1996): An EM algorithm for nonlinear random effect models, Biometrics 52 (1996), 934-944 Wallace, D.L. (1980): The Behrens-Fisher and Fieller-Creasy problems, in: R.A. Fisher: an appre- ciation, Fienberg and Hinkley, eds, Springer-Verlag, Heidelberg Berlin New York 1980, 117-147 Wan, A.T.K. (1994): The sampling performance of inequality restricted and pre-test estimators in a misspecified linear model, Austral. J. Statist. 36 (1994), 313-325 Wan, A.T.K. (1994): Risk comparison of the inequality constrained least squares and other related estimators under balanced loss, Econom. Lett. 46 (1994), 203-210 Wan, A.T.K. (1994): The non-optimality of interval restricted and pre-test estimators under squared error loss, Comm. Statist. A - Theory Methods 23 (1994), 2231-2252 Wan, A.T. (1999): A note on almost unbiased generalized ridge regression estimator under asymmetric loss, J. Statist. Comput. Simul. 62 (1999), 411-421 Wan, A.T.K. and K. Ohtani (2000): Minimum mean-squared error estimation in linear regression with an inequality constraint, J. Statist. Planning and Inference 86 (2000), 157-173 Wang, C.C. (1970): A new representation theorem for isotropic functions: an answer to Professor G.F. Smith’s criticism of my papers on representations for isotropic functions. Arch. Rat. Mech. Anal 36. Wang, C.C. (1971): Corrigendum to my recent papers on “Representations for isotropic functions”, Arch. Rational Mech. Anal. 43 (1971) 392-395 Wang H. and D. Suter (2003): Using Symmetry in Robust Model Fitting, Pattern Recognition Letters (PRL), Vol. 24, No.16, pp. 2953-2966 Wang, J. (1996): Asymptotics of least-squares estimators for constrained nonlinear regression, Annals of Statistics 24 (1996), 1316-1326 Wang, J. (1999): Stochastic Modeling for Real-Time Kinematic GPS/GLONASS Positioning. Journal of The Institute of Navigation 46: 297-305 Wang, J. (2000): An approach to GLONASS ambiguity resolution, Journal of Geodesy 74 (2000), 421-430 Wang, J. and Satirapod, C. and Rizos, C.(2002): Stochastic assessment of GPS carrier phase measurements for precise static relative positioning, Journal of Geodesy, 76:95-104, 2002. Wang, M. C. and G.E. Uhlenbeck (1945): On the theory of the Brownian motion II, Review of Modern Physics 17 (1945), 323-342 Wang, N., Lin, X. and R.G. Guttierrez (1998): Bias analysis and SIMEX approach in generalized linear mixed measurement error models, J. Amer. Statist. Ass., 93, (1998), 249-261 Wang, N., Lin, X. and R.G. Guttierrez (1999): A bias correction regression calibration approach in generalized linear mixed measurement error models, Commun.Statist. Theory Meth. 28 (1999), 217-232 Wang, Q-H. and B-Y. Jing (1999): Empirical likelihood for partial linear models with fixed designs, Statistics & Probability Letters 41 (1999), 425-433 Wang, S. and Uhlenbeck, G.I. (1945): On the theory of the Brownian motion II, Rev. Modern Phys. 17 (1945), 323-342 1000 References

Wang, S.G. and Chow, S.C. (1993): Advanced linear models. Theory and applications. Marcel Dekker, Inc., New York, 1993. Wang, S.G. and Ma, W.Q. (2002): On exact tests of linear hypothesis in linear models with nested error structure. J. Stat. Plann. Inference 106, 1-2 (2002), 225-233. Wang, T. (1996): Cochran Theorems for multivariate components of variance models, Sankhya: The Indian Journal of Statistics A, 58 (1996), 238-342 Ward, P. (1996): GPS Satellite Signal Characteristics. In: Kaplan, E.D. (ed.): Understanding GPS-Principles and Applications. Artech House Publishers, BostonILondon, 1996 Wassel, S.R. (2002): Rediscovering a family of means, Mathematical Intelligencer 24 (2002), 58-65 Waterhouse, W.C. (1990): Gauss’s first argument for least squares, Archive for the History of Exact Sciences 41 (1990), 41-52 Watson, G.S. (1983): Statistics on spheres, J. Wiley, New York 1983 Watson, G.S. (1956): Analysis of dispersion on a sphere, Monthly Notices of the Royal Astronomical Society, Geophysical Supplement 7 (1956), 153-159 Watson, G.S. (1956): A test for randomness of directions, Monthly Notices of the Royal Astronomical Society Geophysical Supplement 7 (1956), 160-161 Watson, G.S. (1960): More significance tests on the sphere, Biometrika 47 (1960), 87-91 Watson, G.S. (1961): Goodness-of-fit tests on a circle, Biometrika 48 (1961), 109-114 Watson, G.S. (1962): Goodness-of-fit tests on a circle-II, Biometrika 49 (1962), 57-63 Watson, G.S. (1964): Smooth regression analysis, Sankhya: The Indian Journal of Statistics: Series A (1964), 359-372 Watson, G.S. (1965): Equatorial distributions on a sphere, Biometrika 52 (1965), 193-201 Watson, G.S. (1966): Statistics of orientation data, Jour. of Geology 74 (1966), 786-797 Watson, G.S. (1967): Another test for the uniformity of a circular distribution, Biometrika 54 (1967), 675-677 Watson, G.S. (1967): Some problems in the statistics of directions, Bull. of I.S.I. 42 (1967), 374-385 Watson, G.S. (1968): Orientation statistic in the earth sciences, Bull of the Geological Institutions of the Univ. of Uppsala 2 (1968), 73-89 Watson, G.S. (1969): Density estimation by orthogonal series, Ann. Math. Stat. 40 (1969): Density estimation by orthogonal series, Ann. Math. Stat. 40 (1969), 1469-1498 Watson, G.S. (1970): The statistical treatment of orientation data, Geostatistics - a colloquium (ed. D.F. Merriam), Plenum Press, New York 1970, 1-10 Watson, G.S. (1974): Optimal invariant tests for uniformity, Studies in Probability and Statistics, Jerusalem Academic Press (1974), 121-128 Watson, G.S. (1981) : The Langevin distribution on high -dimensional spheres, J. Appl. Statis. 15 (1981) 123-130 Watson, G.S. (1982) : Asymptotic spectral analysis of cross - product matrices, Tech. Report Dep.Statist., Princeton University 1982 Watson, G.S: (1982): The estimation of palaeomagnetic pole positions, Statistics in Probability: Essay in hohor of C.R. Rao, North-Holland, Amsterdam and New York Watson, G.S. (1982): Distributions on the circle and sphere, in: Gani, J. and E.J. Hannan (eds.): Essays in Statistical Science, Sheffield, Applied Probability Trust, 265-280 (J. of Applied Probability, special volume 19A) Watson, G.S. (1983) : Large sample theory for distributions on the hypersphere with rotational symmetry, Ann. Inst.Statist. Math. 35 (1983) 303-319 Watson, G.S. (1983): Statistics on Spheres. Wiley, New York Watson, G.S. (1984) : The theory of concentrated Langevin distributions, J. Multivariate Analysis 14 (1984) 74-82 Watson, G.S. (1986): Some estimation theory on the sphere, Ann. Inst. Statist. Math. 38 (1986), 263-275 Watson, G.S. (1987): The total approximation problem, in: Approximation theory IV, eds. Chui, C.K. et al., 723-728, Academic Press New York London 1987 References 1001

Watson, G.S. (1988): The Langevin distribution on high dimensional spheres, J. Applied Statistics 15 (1988), 123-130 Watson, G. (1998): On the role of statistics in polomagnetic proof of continental drift, Canadian J. Statistics 26 (1998), 383-392 Watson, G.S. and E.J. Williams (1956): On the construction of significance tests on the circle and the sphere, Biometrika 43 (1956), 344-352 Watson, G.S. and E. Irving (1957): Statistical methods in rock magnetism, Monthly Notices Roy. Astro. Soc. 7 (1957), 290-300 Watson, G.S. and M.R. Leadbetter (1963): On the estimation of the probability density-I, Ann. Math. Stat 34 (1963), 480-491 Watson, G.S. and S. Wheeler (1964): A distribution-free two-sample test on a circle, Biometrika 51 (1964), 256 Watson, G.S. and R.J. Beran (1967): Testing a sequence of unit vectors for serial correlation, Jour. of Geophysical Research 72 (1967), 5655-5659 Watson, G.S., Epp, R. and J.W. Tukey (1971): Testing unit vectors for correlation, J. of Geophysical Research 76 (1971), 8480-8483 Webster, R., Atteia, O. and Dubois, J-P. (1994): Coregionalization of trace metals in the soil in the Swiss Jura. Eur J Soil Sci 45:205-218 Wedderburn, R. (1974): Quasi-likelihood functions, generalized linear models, and the Gauß- Newton method, Biometrica 61 (1974), 439-447 Wedderburn, R. (1976): On the existence and uniqueness of the maximum likelihood estimates for certain generalized linear models, Biometrika 63: 27-32 Wei, B.C. (1998): Exponential family: nonlinear models, Springer-Verlag, Heidelberg Berlin New York 1998 Wei, B.-C. (1998): Testing for varying dispersion in exponential family nonlinear models, Ann. Inst. Statist. Math. 50 (1998), 277-294 Wei, M. (1997): Equivalent formulae for the supremum and stability of weighted pseudoinverses, Mathematics of Computation 66 (1997), 1487-1508 Wei, M. (2000): Supremum and stability of weighted pseudoinverses and weighted least squares problems: analysis and computations, Nova Science Publisher, New York 2000 Wei, M. (2001): Supremum and stability of weighted pseudoinverses and weighted least squares problems analysis and computations, Nova Science Publishers, New York 2001 Wei, M. and A.R. De Pierro (2000): Upper perturbation bounds of weighted projections, weighted and constrained least squares problems, SIAM J. Matrix Anal. Appl. 21 (2000), 931-951 Wei, M. and A.R. De Pierro (2000): Some new properties of the equality constrained and weighted least squares problem, Linear Algebra and its Applications 320 (2000), 145-165 Weibull, M. (1953): The distribution of t- and F-statistics and of correlation and regression coefficients in stratified samples from normal populations with different means, Skand. Aktuarietidskr., 36, Supple., 1-106. Weisberg, S. (1985): Applied Linear Regression, 2nd ed., Wiley, New York Weiss, J. (1993): Resultant methods for the inverse kinematics problem, Computational Kinematics (Eds.) J. Angeles et al., Kluwer Academic Publishers, Netherlands 1993. Weiss, G. and R. Rebarber (2000): Optimizability and estimability for infinite-dimensional linear systems, Siam J. Control Optim. 39 (2000), 1204-1232 Weisstein, E.W. (1999): Legendre Polynomial, CRC Press LLC, Wolfram Research Inc. 1999 Wellisch, S. (1910): Theorie und Praxis der Ausgleichungsrechnung Band 2: Probleme der Ausgleichungsrechnung, 46-49, Kaiserliche und konigliche¨ Hof-Buchdruckerei und Hof- Verlags-Buchhandlung, Carl Fromme, Wien und Leipzig 1910 Wellner, J. (1979): Permutation tests for directional data, Ann. Statist. 7 (1979), 924-943 Wells, D.E., Lindlohr, W., Schaffrin, B. and E. Grafarend (1987): GPS design: Undifferenced carrier beat phase observations and the fundamental difference theorem, University of New Brunswick, Surveying Engineering, Technical Report Nr. 116, 141 pages, Fredericton/Canada 1987 1002 References

Welsch, W. (1982): Zur Beschreibung des homogenen Strains oder Einige Betrachtungen zur affinen Transformation, Zeitschrijt f¨ur Vermessungswesen 107(1982), Heft 5, 8.173-182 Welsch, W., Schlemmer, H. and Lang, M., (Hrsg.) (1992): Geodatische¨ Me:Bverfahren im Maschinenbau. Schriftenreihe des Deutschen Vereins fiir Vermessungswesen, Verlag Konrad Wittwer, Stuttgart. Welsh, A.H. (1987): The trimmed mean in the linear model, Ann. Statist. 15 (1987), pp. 20-36 Welsh, A.H. (1996): Aspects of statistical inference, J. Wiley, New York 1996 Wenzel, H.G. (1977): Zur Optimierung von Schwerenetzen, Z. Vermessungswesen 102 (1977), 452-457 Werkmeister, P. (1916): Graphische Ausgleichung bei trigonometrischer Punktbestimmung durch Einschneiden, Zeitschrift f¨ur Vermessungswesen 45 (1916), 113-126 Werkmeister, P. (1916): Trigonometrische Punktbestimmung durch einfaches Einschneiden mit Hilfe von Vertikalwinkeln, Zeitschrift f¨ur Vermessungswesen 45 (1916) 248-251. Werkmeister, P. (1920): Uber¨ die Genauigkeit trigonometrischer Punktbestimmungen, Zeitschrift f¨ur Vermessungswesen 49 (1920) 401-412, 433-456. Werner, D. (1913): Punktbestimmung durch Vertikalwinkelmessung, Zeitschrift f¨ur Vermessungswesen 42 (1913) 241-253. Werner, H.J. (1985): More on BL U estimation in regression models with possibly singular covariances. Linear Algebra Appl. 67 (1985), 207-214. Werner, H.J. and Yapar, C. (1995): More on partitioned possibly restricted linear regression. In: New trends in probability and statistics. Multivariate statistics and matrices in statistics. (Proceed. 5th Conf. Tartu - Plihajarve, Estonia, May 23-28, 1994, E.-M. Tiit et al., ed.), Vol. 3, 1995, Utrecht, pp. 57-66. Werner, H.J. and Yapar, C. (1996): A BLUE decomposition in the general linear regression model. Linear Algebra Appl. 237/238 (1996), 395-404. Wernstedt, J. (1989): Experimentelle Prozeßanalyse, Oldenbourg Verlag, M¨unchen 1989 Wess, J. (1960): The conformal invariance in quantum field theory, in: Il Nuovo Cimento, Nicola Zanichelli (Hrsg.), Vol. 18, Bologna 1960 Wetzel, W., Johnk,¨ M.D. and P. Naeve (1967): Statistische Tabellen, de Gruyter, Berlin 1977 Winkler, F. (1996): A polynomial algorithm in computer algebra, Springer-Verlag, Wien 1996. Whittaker, E.T. and G. Robinson (1924): The calculus of observations, Blackie, London 1924 Whittle, P. (1952): On principal components and least square methods of factor analysis, Skand. Aktuarietidskr., 35, 223-239. Whittle, P. (1954): On Stationary Processes in the Plane. Biometrika 41, 434-449. Whittle, P. (1963): Prediction and regulation, D. van Nostrand Co., Inc., Princeton 1963 Whittle, P. (1963): Stochastic processes in several dimensions, Bull. Inst. Int. Statist. 40 (1963), 974-994 Whittle, P. (1973): Some general points in the theory of optimal experimental design, J. Roy. Statist.-Soc. B35 (1973), 123-130 Wickerhauser, M.V. (1996): Adaptive Wavelet-Analysis, Theorie und Software, Vieweg & Sohn Verlag, Braunschweig/Wiesbaden 1996 Wiener, N. (1923): Differential Space, J. Math. and Phys. 2 (1923) 131-174 Wiener, N. (1949): Extrapolation, interpolation and smoothing of stationary time series, New York 1949 Wiener, N. (1958): Non linear problems in random theory, MIT - Press 1958 Wiener, N. (1964): Selected papers of N. Wiener, MIT - Press 1964 Wiener, N. (1968): Kybernetik, rororo-Taschenbuch, Hamburg 1968 Wieser, A.; Brunner, F.K. (2001): An Extended Weight Model for GPS Phase Observations. Earth, Planets and Spac 52:777-782 Wieser, A.; Brunner, F.K. (2001): Robust estimation applied to correlated GPS phase observations. Presented at First International Symposium on Robust Statistics and Fuzzy Techniques in Geodesy and GIS, Zurich, Switzerland, 2001 Wieser, A. (2002): Robust and fuzzy techniques for parameter estimation and quality assessment in GPS. Reihe ‘Ingenieurgeodasie - TV Graz’, J- Shaker Verlag, Aachen (English) References 1003

Wieser, A. and Gaggl, M. and Hartinger, H. (2005): Improved positioning accuracy with high sensitivity GNSS receivers and SNR aided integrity monitoring of pseudo-range observations. In: Proc ION GNSS 2005, September 13-16, Long Beach, CA: 1545-1554 Wigner, E.P. (1958): On the distribution of the roots of certain symmetric matrices, Ann. Math. 67 (1958) Wilcox, R.R. (1997): Introduction to robust estimation and hypothesis testing, Academic Press, San Diego 1997 Wilcox, R.R. (2001): Fundamentals of modern statistical methods, Springer-Verlag, Heidelberg Berlin New York 2001 Wilders, P. and E. Brakkee (1999): Schwarz and Schur: an algebraical note on equivalence properties, SIAM J. Sci. Comput. 20 (1999), 2297-2303 Wilkinson, J. (1965): The algebraic eigenvalue problem, Clarendon Press, Oxford 1965 Wilks, S.S. (1932a): Certain generalizations in the analysis of variance, Biometrika 24, 471-494 Wilks, S.S. (1932b): On the sampling distribution of the multiple correlation coefficient, Ann. Math. Stat., 3, 196-203 Wilks, S.S. (1932c): Moments and distributions of estimates of population parameters from fragmentary samples, Annals of Mathematical Statistics 3: 163-195 Wilks, S.S. (1934): Moment-generating operators for determinants of product moments in samples from a normal system, Ann. of Math 35, 312-340 Wilks, S.S. (1962): Mathematical statistics, J. Wiley, New York 1962 Williams, E.J. (1963): A comparison of the direct and fiducial arguments in the estimation of a parameter, J. Roy. Statist. Soc. B25 (1963), 95-99 Wimmer, G. (1995): Properly recorded estimate and confidence regions obtained by an approximate covariance operator in a special nonlinear model, Applications of Mathematics 40 (1995), 411-431 Wimmer, H. (1981a): Ein Beitrag zur Gewichtsoptimierung geodatischer¨ Netze, Deutsche Geodatische¨ Kommission, M¨unchen, Reihe C (1981), 269 Wimmer, H. (1981b): Second-order design of geodetic networks by an iterative approximation of a given criterion matrix, in: Proc. of the IAG Symposium on geodetic networks and computations, R. Sigle ed., Deutsche Geodatische¨ Kommission, M¨unchen, Reihe B, Nr. 258 (1981), Heft Nr. III, 112-127 Wimmer, H. (1982): Ein Beitrag zur gewitchs optimierung geodetischer Netu Report C 269, Deutsche Geodestiche Kommission, Bayerische Akademic der Wissenschaften, M¨unchen 1982 Wishart, J. (1928): The generalized product moment distribution in samples from a normal multivariate population, Biometrika 20 (1928), 32-52 Wishart, J. (1931): The mean, and second moment coefficient of the multiple correlation coefficient in samples from a normal population, Biometrika, 22, 353-361. Wishart, J. (1933): The generalized product moment distribution in a normal system, Proc. Camb. Phil. Soc., 29, 260-270 Wishart, J. (1948a): Proofs of the distribution law of the second order moment statistics, Biometrika, 35, 55-57. Wishart, J. (1948b): Test of homogeneity of regression coefficients, and its application in the analysis of covariance, presented to the Colloque International de Calcul des Probabilites et de Statistique Mathematique, Lyon. Wishart, J. (1955): Multivariate analysis, App. Stat., 4, 103-116 Wishart, J. and M.S. Bartlett (1932): The distribution of second order moment statistics in a normal system, Proc. Camb. Phil. Soc., 28, 455-459. Wishner, R., Tabaczynski, J. and M. Athans (1969): A comparison of three non-linear filters, Automatica 5 (1969), 487-496 Witkovsky, V. (1996): On variance-covariance components estimation in linear models with AR(1) disturbances. Acta Math. Univ. Comen., New Ser. 65, 1 (1996), 129-139. Witkovsky, V. (1998): Modified minimax quadratic estimation of variance components, Kybernetika 34 (1998), 535-543 1004 References

Witting, H. and G. Nolle¨ (1970): Angewandte Mathematische Statistik, Teubner Verlag, Stuttgart 1970 Wold, S., Wold, H.O., Dunn, W.J. and Ruhe, A. (1984): The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses, SIAM Journal on Scientific and Statistical Computing 5: 735-743 Wolf, H. (1961): Das Fehlerfortpflanzungsgesetz mit Guedern II, ZfV Wolf, H. (1968): Ausgleichungsrechnung nach der Methode der kleinsten Quadrate, Ferdinand D¨ummlers Verlag, Bonn 1968 Wolf, H. (1973): Die Helmert-Inverse bei freien geodatischen¨ Netzen, Z. Vermessungswesen 98 (1973), 396-398 Wolf, H. (1975): Ausgleichungsrechnung I, Formeln zur praktischen Anwendung, Duemmler, Bonn 1975 Wolf, H. (1976): The Helmert block method, its origin and development, Proc. 2nd Int. Symp. on problems related to the Redefinition of North American Geodetic Networks, 319-326, Arlington 1976 Wolf, H. (1977): Eindeutige und mehrdeutige Geodatische¨ Netze. Adh. Braunschw. Wiss. Ges., Band 28, G6ttingen, FRG, 1977. Wolf, H. (1980a): Ausgleichungsrechnung II, Aufgaben und Beispiel zur praktischen Anwendung, Duemmler, Bonn 1980 Wolf, H. (1980b): Hypothesentests im Gauß-Helmert-Modell, Allg. Vermessungsnachrichten 87 (1980), 277-284 Wolf, H. (1997): Ausgleichungsrechnung I und II, 3. Au age, Ferdinand D¨ummler Verlag, Bonn 1997 Wolkowicz, H. and G.P.H. Styan (1980): More bounds for eigenvalues using traces, Linear Algebra Appl. 31 (1980), 1-17 Wolter, K.H. and Fuller, W.A. (1982), Estimation of the quadratic errors-in-variables model, Biometrika 69 (1982), 175-182 Wong, C.S. (1993): Linear models in a general parametric form, Sankhya 55 (1993), 130-149 Wong, W.K. (1992): A unified approach to the construction of minimax designs, Biometrika 79 (1992), 611-620 Wood, A. (1982): A bimodal distribution for the sphere, Applied Statistics 31 (1982), 52-58 Woolson, R.F. and W.R. Clarke (1984): Analysis of categorical incomplete data, J. Roy. Statist. Soc. A147 (1984), 87-99 Worbs, E. (1955): Carl Friedrich Gauß, ein Lebensbild, Leipzig 1955 Wu, C.F. (1986): Jackknife, bootstrap and other resampling methods in regression analysis, Annals of Statistics 14: 1261-1350 Wu, C.F. (1980): On some ordering properties of the generalized inverses of non negative definite matrices, Linear Algebra Appl., 32 (1980), pp. 49-60 Wu, C.F.J. (1981): Asymptotic theory of nonlinear least squares estimation, Ann. Stat. 9 (1981), 501-513 Wu, I.T., Wu, S.C., Hajj, G.A., Bertiger, W.I. and Lichten, S.M. (1993): Effects of antenna orientation on GPS carrier phase. Manuscripta Geodaetica 18: 91-98 Wu, Q. and Z. Jiang (1997): The existence of the uniformly minimum risk equivariant estimator in Sure model, Commun. Statist. - Theory Meth. 26 (1997), 113-128 Wu, W. (1984): On the decision problem and mechanization of the theorem proving elementary geometry, Scientia Sinica 21 (1984) 150-172. Wu, Y. (1988): Strong consistency and exponential rate of the “minimum L1-norm” estimates in linear regression models, Computational Statistics and Data Analysis 6: 285-295 Wunsch, G. (1986): Handbuch der Systemtheorie, Oldenbourg Verlag, M¨unchen 1986 Wyss, M., Liang, B.Y., Tanagawa, W. and Wu, X. (1992): Comparison of orientations of stress and strain tensors based on fault plane solutions in Kaoiki, Hawaii, J. geophys. Res., 97, 4769-4790 Xi, Z. (1993): Iterated Tikhonov regularization for linear ill-posed problems, Ph.D. Thesis, Universitat¨ Kaiserslautern, Kaiserslautern 1993 References 1005

Xu, C., Ding, K., Cai, J. and Grafarend, E. (2009): Method for determining weight scale factor parameter in joint inverse problem of geodesy, Journal of Geodynamics, Vol. 47, 39-46. doi:10.1016/j.jog.2008.06.005 Xu, P. and Rummel, R. (1994): Generalized ridge regression with applications in determination of potential fields, Manuscripta. Geodetica, 20, pp. 8-20 Xu, P.L. (1986): Variance-covariance propagation for a nonlinear function, J. Wuhan Techn. UnL Surv. Mapping, 11, No. 2, 92-99 Xu, P.L. (1989a): On the combined adjustment of gravity and levelling data, Ph.D. diss., Wuhan Tech. Univ. Surv. Mapping Xu, P.L. (1989b): On robust estimation with correlated observations, Bull. Geeodesique` 63 (1989), 237-252 Xu, P.L. (1989c): Statistical criteria for robust methods, ITC Journal, 1 (1989), pp. 37-40 Xu, P.L. (1991): Least squares collocation with incorrect prior information, Z. Vermessungswesen 116 (1991), 266-273 Xu, P.L. (1992): The value of minimum norm estimation of geopotential fields, Geophys. J. Int. 111 (1992), 170-178 Xu, P.L. (1993): Consequences of Constant Parameters and Confidence Intervals of Robust Estimation, Boll. Geod. Sci. Affini, 52, pp. 231-249 Xu, P.L. (1995): Testing the hypotheses of non-estimable functions in free net adjustment models, manuscripta geodaetica 20 (1995), 73-81 Xu, P.L. (1996): Statistical aspects of 2-D symmetric random tensors, Proc. FIG int. Symp. Xu, P.L. (1999a): Biases and accuracy of, and an alternative to, discrete nonlinear filters, Journal of Geodesy 73 (1999), 35-46 Xu, P.L. (1999b): Spectral theory of constrained second-rank symmetric random tensors, Geophys. J. Int. 138 (1999), 1-24 Xu, P.L. (2001): Random simulation and GPS decorrelation, Journal of Geodesy 75 (2001), 408-423 Xu, P.L. (2002a): Isotropic probabilistic models for directions, planes and referential systems, Proc. Royal Soc. London A458 (2002), 2017-2038 Xu, P.L. (2002b): A Hybrid Global Optimization Method: One-dimensional Case , J. comput. appl. Math., 147, pp. 301-314. Xu, P.L. (2003): A Hybrid Global Optimization Method: The Multi-dimensional Case, J. comput. appl. Math., 155, pp. 423-446 Xu, P.L. (2005): Sign-constrained Robust Least Squares, Subjective Breakdown Point and the Effect of Weights of Observations, J. of Geodesy, 79 (2005), pp. 146-159 Xu, P.L. (2006) : Voronoi cells, probabilistic bounds and hypothesis testing in mixed integer linear models, IEEE Transactions on Information Theory 52 (2006) 3122-3138 Xu, P.L. and E.W. Grafarend (1996a): Statistics and geometry of the eigenspectra of three- dimensional second-rank symmetric random tensors, Geophysical Journal International 127 (1996), 744-756 Xu, P.L. and E.W. Grafarend (1996b): Probability distribution of eigenspectra and eigendirections of a twodimensional, symmetric rank two random tensor, Journal of Geodesy 70 (1996), 419-430 Xu, P.L., Shen, Y., Fukuda, Y. and Liu, Y. (2006): Variance component estimation in linear inverse ellipsoid models, J. Geodesy 80 (2006) 69-81 Xu, P.L., Liu, Y., Shen, Y. and Fukuda, Y. (2007): Estimability analysis of variance ad covariance components. J. Geodesy 81 (2007) 593-602 Xu, Z.H., Wang, S.Y., Huang, Y.R. and Gao, A. (1992): Tectonic stress field of China inferred from a large number of small earthquakes, J. geophys. Res., B97, 11867-11877 Yadrenko, M.I. (1987): Correlation theory of stationary and related random functions, Vol I, Basic results, Springer Verlag, New York 1987 Yaglom, A.M. (1961): Second-order homogeneous random fields in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, 593-622, University of California Press, Berkeley 1961 1006 References

Yaglom, A.M. (1962): An introduction to the theory of stationary random functions. Dover New York, 1962. Yaglom, A.M. (1987): Correlation theory of stationary and related random functions. Springer, New York Yakhot, V. et. al (1989): Space-time correlations in turbulence: kinematical versus dynamical effects, Phys. Fluids A1 (1989) 184-186 Yancey, T.A., Judge, G.G., and Bock, M.E. (1974): A mean square error test when stochastic restrictions are used in regression, Communications in Statistics, Part A-Theory and Methods 3: 755-768 Yang, H. (1996): Efficiency matrix and the partial ordering of estimate, Commun. Statist. - Theory Meth. 25(2) (1996), 457-468 Yang, Y. (1994): Robust estimation for dependent observations, Manuscripta geodaetica 19 (1994), 10-17 Yang, Y. (1999): Robust estimation of geodetic datum transformation, Journal of Geodesy 73 (1999), 268-274 Yang, Y. (1999): Robust estimation of systematic errors of satellite laser range, Journal of Geodesy 73 (1999), 345-349 Yang, Y., Song, L. and Xu, T. (2001): Robust Estimator for the Adjustment of Correlated GPS Networks. Presented at First International Symposium on Robust Statistics and Fuzzy Techniques in Geodesy and GIS, Zurich, Switzerland, 2001. Yang, Y., Song, L. and Xu, T. (2002): Robust parameter estimation for geodetic correlated observations. Acta Geodaetica et Cartographica Sinica, 31(2), pp. 95-99 Yazji, S. (1998): The effect of the characteristic distance of the correlation function on the optimal design of geodetic networks, Acta Geod. Geoph. Hung. 33 (2-4) (1998), 215-234 Ye, Y. (1997): Interior point algorithms: Theory and analysis, J. Wiley, New York 1997 Yeh, A.B. (1998): A bootstrap procedure in linear regression with nonstationary errors, The Canadian J. Stat. 26 (1998), 149-160 Yeung, M.-C. and T.F. Chan (1997): Probabilistic analysis of Gaussian elimination without pivoting, SIAM J. Matrix Anal. Appl. 18 (1997), 499-517 Ylvisaker, D. (1977): Test resistance, J. Am. Statist. Ass. 72, 551-557, 1977 Yohai, V.J. (1987): High breakdown point and high efficiency robust estimates for regression, Ann. Stat., 15 (1987), pp. 642-656 Yohai, V.J. and R.H. Zamar (1997): Optimal locally robust M-estimates of regression, J. Statist. Planning and Inference 64 (1997), 309-323 Yor, M. (1992): Some aspects of Brownian motion, Part I: Some special functionals, Birkhauser-¨ Verlag, Basel Boston Berlin 1992 Yor, M. (1992): Some aspects of Brownian motion, Part II: Some recent martingale problems, Birkhauser-Verlag,¨ Basel Boston Berlin 1997 You, R.J.(2000): Transformation of Cartesian to geodetic coordinates without iterations, Journal of Surveying Engineering 126 (2000) 1-7. Youssef, A.H.A. (1998): Coefficient of determination for random regression model, Egypt. Statist. J. 42 (1998), 188-196 Yu, Z.C. (1992): A generalization theory of estimation of variance-covariance components, Manusc. Geodetica, 17, 295-301 Yu, Z.C. (1996): A universal formula of maximum likelihood estimation of variance-covariance components, Journal of Geodesy 70 (1996), 233-240 Yu. Z. and M. Li (1996): Simultaneous location and evaluation of multi-dimensional gross errors, Wuhan Tech. University of Surveying and mapping, Science reports, 1, (1996), pp. 94-103 Yuan, K.H. and P.M. Bentler (1997): Mean and covariance structure analysis - theoretical and practical improvements, J. Am. Statist. Ass. 92 (1997), 767-774 Yuan, K.H. and P.M. Bentler (1998): Robust mean and covariance structure analysis, British Journal of Mathematical and Statistical Psychology (1998), 63-88 References 1007

Yuan, Y. (1999): On the truncated conjugate gradient method, Springer-Verlag, Heidelberg Berlin New York Yuan, Y. (2000): On the truncated conjugate gradient method, Math. Prog. 87 (2000), 561-571 Yunck, T.P. (1993): Coping with the Atmosphere and Ionosphere in Precise Satellite and Ground Positioning In: Environmental Effects on Spacecraft Positioning and Trajectories, Geophysical Monograph 73, WGG, Vol l3, pp 1-16 Yusuf, S., Peto, R., Lewis, J., Collins, R. and P. Sleight (1985): Beta blockade during and after myocardial infarction: An overview of the randomized trials, Progress in Cardiovascular Diseases 27 (1985), 335-371 Zabell, S. (1992): R.A. Fisher and the fiducial argument, Statistical Science 7 (1992), 369-387 Zackin, R., de Gruttola, V. and N. Laird (1996): Nonparametric mixed-effects for repeated binary data arising in serial dilution assays: Application to estimating viral burden in AIDS, J. Am. Statist. Ass. 91 (1996), 52-61 Zacks, S. (1971): The theory of statistical inference, J. Wiley, New York 1971 Zadeh, L. (1965): Fuzzy sets, Information and Control 8 (1965), 338-353 Zaiser, J. (1986): Begr¨undung Beobachtungsgleichungen und Ergebnisse f¨ur dreidimensionales geometrisch-physikalishes Modell der Geodasie,¨ Zeitschrift f¨ur Vermessungswesen 111 (1986) 190-196. Zavoti J. and T. Jansco (2006): The solution of the 7 parameter Datum transformation problem with and withour the Grobner¨ basis, Acta. Geod. Geophy. Hung. 41 (2006) 87-100 Zeavoti,` J. (1999): Modified versions of estimates based on least squares and minimum norm, Acta Geod. Geoph. Hung. 34 (1999), 79-86 Zehfuss, G. (1858): Uber¨ eine gewisse Determinante, Zeitschrift f¨ur Mathematik und Physik 3 (1858), 298-301 Zellner, A. (1962): An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias, Journal of the American Statistical Association 57: 348-368 Zellner, A. (1971): An introduction to Bayesian inference in econometrics, J. Wiley, New York 1971 Zha, H. (1995): Comments on large least squares problems involving Kronecker products, SIAM J. Matrix Anal. Appl. 16 (1995), 1172 Zhan, X. (2000): Singular values of differences of positive semi-definite matrices, Siam J. Matrix Anal. Appl. 22 (2000), 819-823 Zhang, B.X., Liu, B.S. and Lu, C.Y. (2004): A study of the equivalence of the BLUEs between a partitioned singular linear model and its reduced singular linear models. Acta Math. Sin., Engl. Ser. 20, 3 (2004), 557-568. Zhang, Y. (1985): The exact distribution of the Moore-Penrose inverse of X with a density, in: Multivariate Analysis VI, Krishnaiah, P.R. (ed), 633-635, Elsevier, New York 1985 Zhang, S. (1994): Anwendung der Drehmatrix in Hamilton normierten Quaternionenen bei der B¨undelblock Ausgleichung, Zeitschrift f¨ur Vermessungswesen 119 (1994) 203-211. Zhang, J., Zhang, K. and Grenfell, R. (2004a): On the relativistic Doppler Effects and high accuracy velocity estimation using GPS. In Proc The 2004 International Symposium on GNSSIGPS, December 6-8, Sydney, Australia Zhang, J., Zhang, K., Grenfell, R., Li, Y. and Deakin, R. (2004b): Real-Time DopplerlDoppler Rate Derivation for Dynamic Applications. In Proc The 2004 International Symposium on GNSSIGPS, December 6-8, Sydney, Australia Zhang, J., Zhang, K., Grenfell, R. and Deakin, R. (2006a): GPS satellite velocity and acceleration Determination using the Broadcast Ephemeris. The Journal of Navigation 59: 293-305 Zhang, J., Zhang, K., Grenfell, R. and Deakin, R. (2006b): Short note: On the relativistic Doppler effect for precise velocity determination using GPS. Journal of Geodesy 80: 104-110 Zhang, J.Z., Chen, L.H. and N.Y. Deng (2000): A family of scaled factorized Broyden-like methods for nonlinear least squares problems, SIAM J. Optim. 10 (2000), 1163-1179 Zhang, Z. and Y. Huang (2003): A projection method for least squares problems with a quadratic equality constraint, SIAM J. Matrix Anal. Appl. 25 (2003), 188-212 1008 References

Zhao, L.P., and Prentice, R.L. (1990): Correlated binary regression using a generalized quadratic model, Biometrika 77: 642-648 Zhao, L.P., Prentice, R.L., and Self, S.G. (1992): Multivariate mean parameter estimation by using a partly exponential model, Journal of the Royal Statistical Society, Series B 54: 805-811 Zhao, Y. and S. Konishi (1997): Limit distributions of multivariate kurtosis and moments under Watson rotational symmetric distributions, Statistics & Probability Letters 32 (1997), 291-299 Zhdanov, M.S. (2002): Geophysical inverse theory and regularization problems, Methods in Geochemistry and Geophysics 36, Elsevier, Amsterdam Boston London 2002 Zhenhua, X. (1993): Iterated Tikhonov regularization for linear ill-posed problem, Ph.D.Thesis University of Kaiserslautern, Kaiserslautern 1993 Zhen-Su, S., Jackson, E. and Orszag, S. (1990): Intermittency of turbulence, in: The Legacy of John von Neumann (J. Glimm, J. Impagliazzo, I. Singer eds.) Proc. Symp. , Vol. 50, 197-211, American Mathematical Society, Providence, Rhode Island 1990 Zhou, J. (2001): Two robust design approaches for linear models with correlated errors, Statistica Sinica 11 (2001), 261-272 Zhou, K.Q. and S.L. Portnoy (1998): Statistical inference on hetero-skedastic models based on regression quantiles, J. Nonparametric Statistics 9 (1998), 239-260 Zhou, L.P. and Mathew, T. (1993): Combining independent tests in linear models. J. Am. Stat. Assoc. 88, 422 (1993), 650-655. Zhu, J. (1996): Robustness and the robust estimate, Journal of Geodesy 70 (1996), 586-590 Zhu, Z. and Stein, M.L. (2006): Spatial sampling design for prediction with estimated parameters. J Agricult Biol Environ Stat 11:24-49 Ziegler, A., Kastner, C. and M. Blettner (1998): The generalised estimating equations: an annotated bibliography, Biometrical Journal 40 (1998), 115-139 Zimmermann, H.-J. (1991): Fuzzy and its applications, 2nd ed., Kluwer Academic Publishers, Dordrecht 1991 Zippel, R. (1993): Effective polynomial computation, Kluwer Academic Publications, Boston 1993. Zolotarev, V.M. (1997): Modern theory of summation of random variables, VSP, Utrecht 1997 Zmyslony R. (1980): A characterization of best linear unbiased estimators in the general linear model. In: Mathematical statistics and probability theory. (Proceed. 6th Int. Conf., Wisla, Poland, 1978, Lect. Notes Stat. 2), 1980, pp. 365-373. Zoback, M.D. (1992a): Introduction to special section on the Cajon Pass scientific drilling project, J. geophys. Res., B97, 4991-4994 Zoback, M.D. (1992b): First and second-order patterns of stress in the lithosphere: the World Stress Map Project, J. geophys. Res., B97, 11703-11728 Zoback, M.D. (1992c): Stress field constraints on intraplate seismicityin eastern North America, J. geophys. Res., B97, 11761-11782 Zoback, M.D. and Healy, J. (1992): In-situ stress measurements to 3.5 km depth in the Cajon Pass scientific research borehole: Implications for the mechanics of crustal faulting, J. geophys. Res., B97, 5039-5057 Zumberge, J.F. and Bertiger, W.I. (1996): Ephemeris and Clock Navigation Message Accuracy. In: Parkinson B.W., Spilker J.J. (eds) Global Positioning System: Theory and Applications, Volume 1, American Institute of Aeronautics and Astronautics, Washington DC, pp. 585-599 Zurm¨uhl, R. and S. Falk (1984): Matrizen und ihre Anwendungen, Teil 1: Grundlagen, 5.ed., Springer-Verlag, Heidelberg Berlin New York 1984 Zurm¨uhl, R. and S. Falk (1986): Matrizen und ihre Anwendungen, Teil 2: Numerische Methoden, 5.ed., Springer-Verlag, Heidelberg Berlin New York 1986 Zvara, K. (1989): Regression Analysis. Academia, Praha, 1989 (in Czech). Zwanzig, S. (1980): The choice of approximative models in nonlinear regression, Statistics, Vol. 11, No. 1, 23-47. Zwanzig, S. (1983): A note to the paper of Ivanov and Zwanzig on the asymptotic expansion of the least squares estimator. Statistics, Vol. 14, No. 1, 29-32. References 1009

Zwanzig, S. (1985): A third order comparison of least squares, jacknifing and cross validation for error variance estimation in nonlinear regression. Statistics, VoL 16, No. 1, 47-54. Zwanzig, S. (1987): On the consistency of the least squares estimator in nonlinear errors- in-variables models, Folia Oeconomia, Acta Universitatis Lodziensis. 8 poo Zwanzig, S. (1989): On an asymptotic minimax result in nonlinear errors-in-variables models, Proceedings of the Fourth Prague Symposium on Asymptotic Statistics, Prague 1989, 549-558. Zwanzig, S. (1990): Discussion to A. Pazman: Small-sample distributional properties of nonlinear regression estimator (a geometric approach). Statistics Vol. 21, No. 3, 361-363. Zwanzig, S. (1991): Least squares estimation in nonlinear functional relations. Proceedings Probastat 91, Bratislava, 171-177. Zwanzig, S. (1994): On adaptive estimation in nonlinear regression. Kybemetika, Vol. 30, No. 3, 359-367. Zwanzig, S. (1997): On L1-norm estimators in nonlinear regression and in nonlinear error-in-variables models, in L1-Statistical Procedures and Related Topics IMS Lecture Notes-Monographs Series. Vol 31, 1997, 101-118. Zwanzig, S. (1998a): Application of Hipparcos dates: A new statistical method for star reduction. Proceedings of Journees 1997, Academy of Sciences of the Czech Republic, Astronomical Institute, 142-144. Zwanzig, S. (1998b): Experimental design for nonlinear error-in-variables models,Proceedings of the Third St.-Petersburg Workshop on Simulation, 225-230. Zwanzig, S. (1999): How to adjust nonparametric regression estimators to models with errors in the variables, Theory of Stochastic Processes. 5 (21) 272-277. Zwanzig, S. (2000): Experimental design for nonlinear error-in-variables models, in Advanced in Stochastc Simulation Methods Ed. Balakrishan, Melas, Ermakov Zwanzig, S. (2007): Local linear estimation in nonparametric errors-in-variables models. Theory of Stochastic Processes, VoL 13, 316-327 Zwet van, W.R. and J. Osterhoff (1967): On the combination of independent test statistics, Ann. Math. Statist. 38 (1967), 659-680 Zwinck, E. (ed) (1988): Christian Doppler- Leben und Werk; Der Doppler effekt. Schriftenreihe des Landespressebiiros / Presse- und Informationszentrum des Bundeslandes Salzburg, Sonderpublikationen 76, 140p (in German) Zyskind, G. (1967): On canonical forms, non-negative covariance matrices and best and simple least squares linear estimators in linear models. Ann. Math. Stat. 38 (1967), 1092-1109. Zyskind, G. (1969): On best linear estimation and a general Gauss-Markov theorem in linear mod- els with arbitrary nonnegative covariance structure, SIAM J. Appl. Math. 17 (1969), 1190-1202 Zyskind, G. (1975): Error structures. Projections and conditional inverses in linear model theory. In A survey of statistical design and linear models, J.W. Srivastava (ed.), pp. 647-663, North Holland, Amsterdam 1975 Index

A. Bjerhammar’s left inverse, 121 Cauchy–Green tensor, 128 Additive rank partitioning, 268, 289 Cayley calculus, 236 Adjoint form, 151 Cayley inverse, 342, 395 Algebraic partitioning, 69 , 465, 468 Algorithms Central point, 362 Buchberger, 534, 536 Central statistical moment of second order, Euclidean, 534 189 ANOVA, 240 Centralized Lagrangean, 465 Antisymmetry operator, 152 Choleski decomposition, 617 Arithmetic mean, 146, 187, 192, 379 Choleski factorization, 136 Arnoldi method, 135 Circular normal distribution, 363, 374, 375 Associativity, 595 Clifford algebra, 593 Columns space, 141 Commutativity, 595 Balancing variance, 335 Complex algebra, 593 Basis, 168 Composition algebra, 592, 622 Bessel function, 371 Condition equation, 194 Best Linear Uniformly Unbiased Estimation, Condition equations, 122 207 Conformal, 380 Bias matrix, 308, 332, 386 Constrained Lagrangean, 108, 196, 237, 238, Bias norms, 309 284, 311 Bias vector, 308, 332, 340, 386, 387, 392, 394, Constraint Lagrangean, 208 395 Coordinate mapping, 265 Bias weight matrix, 340, 342, 394, 395 Coordinates, 152 BIQUUE, 426 Cartesian, 557 Bounded parameters, 3 Correlated observations, 185 Break points, 142 Covariance, 754 Buchberger algorithm, 592 Covariance components, 231 Covariance factor, 227 Covariance factorization, 215 Canonical base, 136 Covariances, 215 Canonical form, 673, 696 Criterion matrix, 118 Canonical LESS, 134 Cross product, 150, 153, 155, 158 Canonical MINOLESS, 297, 299, 300 Cumulative pdf, 679, 738 Canonical observation vector, 132 Cumulative probability, 723–725 Canonical unknown vector, 136 Curved surfaces, 102 Cartesian coordinates, 117, 642, 675 Cyclic ordering, 152

E. Grafarend and J. Awange, Applications of Linear and Nonlinear Models, 1011 Springer Geophysics, DOI 10.1007/978-3-642-22241-2, © Springer-Verlag Berlin Heidelberg 2012 1012 Index

D. Hilbert, 538 First derivatives, 96, 106, 191, 284, 303, 366, Datum defect, 265 413, 450 Datum problem, 495 First moment, 194, 754 Dedekind, 538 First moments, 422 Degrees of freedom, 94, 228, 267, 682, 729 First order moments, 205 , 467 1st Grassmann relation, 150 , 16, 102, 104 Fisher normal distributed, 378 Differential Geometry, 102 Fisher sphere, 361 Dilatation, 473, 674, 683 Fisher-von Mises, 362 Dilatation factor, 650 Fixed effects, 187, 307, 317, 326, 329, 333, Direct equations, 374 334, 339, 384 Direct map, 641 Fourier, 381 Dispersion matrix, 205, 207, 309, 394, 424, Fourier–Legendre linear model, 59 754 Fourier–Legendre space, 51 Dispersion vector, 217 Fourier-Legendre series, 381 Distances, 557 Fourth central moment, 755 Division algebra, 593, 602, 622 Fourth order moment, 196 Division algorithm, 539 Free parameters, 3 Frobenius, 311 E. Noether, 538 Frobenius error matrix, 462 EIGEN, 728 , 468 Eigencolumn, 300 Frobenius norm, 116, 311, 332, 387 Eigenspace, 302 Frobenius norms, 334, 387 Eigenspace analysis, 111, 130 Frobenius theorem, 593 Eigenspace synthesis, 130, 142 Fuzzy sets and systems, 128 Eigensystems, 135, 301 Eigenvalue, 300, 302 Eigenvalue Analysis, 728 G-inverse, 103 Eigenvalue decomposition, 130, 132, 136 Gain matrix, 520 Eigenvalues, 558 Gamma function, 645 positive eigenvalues, 113 Gauss elimination, 110, 209, 414, 451, 534, zero eigenvalues, 113 535, 545 Eigenvectors, 302 Gauss normal distribution, 362 Elliptic curve, 375 Gauss–Jacobi Combinatorial Algorithm, 172, Equations 176, 178 polynomial, 538 Gauss–Markov model, 208 Error propagation, 470 Gauss-Lapace normal distribution, 688 Error propagation law, 210, 402, 403, 407, 758 Gauss-Laplace pdf, 677 Error vector, 210 Gauß trapezoidal, 402 Error-in-variables, 384 General bases, 130 Euclidean, 113 General Gauss–Markov model Euclidean length, 95 with mixed effects, 426 Euclidean metric forms, 375 General inverse Helmert transformation, 673 Euclidean space, 112, 118 General reciprocal, 602 Euclidian observation space, 642 General Relativity, 113 Euler circles, 104 Generalized inverse, 103, 105, 129, 194, 315, Euler–Lagrange strain, 128 317 Euler–Lagrange tensor, 128 Geodesic, 362 Expectation operator, 757 Geodesy, 529 Grassmann column vector, 166 Grassmann coordinates, 141, 150, 152, 154, Fibering, 95, 104, 263, 268 158, 159, 166, 169 Finite matrices, 602 direct, 170 First central moment, 754 inverse, 170, 171 Index 1013

Grassmann manifold, 102 Injective mapping, 638 Grassmann space, 141, 152, 154, 158, 164, Injectivity, 94 168, 169 Injectivity defect, 302 Grassmann vector, 159 Inner product, 111, 363 Grassmann–Pl¨ucker coordinates, 122 Interval calculus, 122 Greatest common divisors (gcd), 534 Invariant quadratic estimation, 187, 221, 237 Groebner basis, 527, 539, 592 Inverse equations, 374 definition, 540 Inverse Jacobian determinant, 372 Maple computation, 891 Inverse map, 102, 641 Mathematica computation, 889 Inverse partitioned matrices, 109 Inverse spectrum, 149 Inverse transformations, 132 Hankel matrix, 606, 610 IQUUE, 190 Hat matrix, 114, 122, 146, 149, 150 Helmert equation, 231 Helmert matrix, 231, 609 Jacobi determinant, 666, 673 augmented, 678 Jacobi map, 102 extended, 678 Jacobi matrix, 69, 102, 114, 403, 641, 700, 759 quadratic, 678 Jacobian, 641 Helmert random variable, 694 Jacobian determinant, 551, 647, 684 Helmert traces, 231 Join, 150 Helmert transformation, 679 Join and meet, 141 quadratic , 677 rectangular , 677 Helmert’s ansatz, 229, 230 Kalman filter, 493, 517, 519, 520 Helmert’s distribution, 681 Kernel, 94 Helmert’s polar coordinates, 733 Khatri–Rao product, 116 Helmert’s random variable, 708 Killing analysis, 598 Hesse matrix, 114, 204, 403, 474, 759 Kolmogorov–Wiener prediction, 440 High leverage points, 172 Krige’s prediction concept, 441 Hilbert basis invariants, 128 Kronecker, 538 Hilbert Basis Theorem, 538, 539 Kronecker matrix, 116 Hilbert space, 108 Kronecker–Zehfuss product, 116, 338, 391, Hodge dualizer, 151 495 Hodge star operator, 141, 150, 587, 640 Kummer, 538 Hodge star symbol, 158 KW prediction, 441 Holonomity condition, 120, 122 Homogeneous equations, 223 Homogeneous inconsistent equations, 411 Lagrange function, 204 Homogeneous linear prediction, 438 Lagrange multiplier, 105, 108, 110, 191, 238, Horizontal rank partitioning, 122, 132 414 Hurwitz theorem, 593 Lagrange multipliers, 284, 310, 413, 415, 422, Hypothesis testing, 339, 394 423 Lagrange parameter, 449 Lagrange polynomial, 124 Ideal, 536, 537 Lagrangean, 72, 336, 366, 390, 556, 557 Ideal membership, 540 multiplier, 536 Idempotent, 113, 213 Lanczos method, 136 Implicit Function Theorem, 263 Langevin distribution, 362 Inconsistent linear equation, 506 Langevin sphere, 361 Independent random variables, 640 Latent condition equations, 142, 168 Inhomogeneous inconsistent equations, 411 Latent conditions, 164 Inhomogeneous linear equations, 100 Latent restrictions, 141, 168 Injective, 265, 267 Laurent polynomials, 599 1014 Index

Leading Monomial (LM), 539 Moore-Penrose inverse, 602 Least Common Multiple (LCM), 541 Multideg, 540 Least squares, 95, 180, 185, 240, 563, 602 Multilinear algebra, 150 Historical background, 180 Multiplicative rank partitioning, 266, 272 Least squares solution, 98, 103, 108, 268, 272, Multipolynomial resultant, 547, 592 411, 414 Multipolynomial resultants, 529, 549 Left complementary index, 267 Multivariate Gauss–Markov model, 496 Left eigenspace, 133 Multivariate LESS, 495 Left Gauss metric, 128 Multivariate polynomials, 539 Left inverse, 129 LESS, 98 Leverage point, 157, 162 Necessary condition, 557 Lexicographic ordering, 536, 545, 887 Necessary conditions, 96, 106, 109, 191, 204, graded reverse, 888 208, 238, 270, 284, 304, 312, 336, Lie algebra, 592, 598 337, 367, 390, 413, 448, 451 Likelihood normal equations, 204 Non-symmetric matrices, 135 Linear estimation, 332 Non-vanishing eigenvalues, 111 Linear Gauss–Markov model, 421 Nondegenerate bilinear form, 111 Linear model, 108, 121, 150 Nonlinear error propagation, 758 Linear operator, 95, 265, 268, 757 Nonlinear model, 102 Linear space, 103, 265 Nonlinear models, 104, 525 Loss function, 361, 366 Nonlinear prediction, 438 LUUE, 190 Nonlinear problem, 461 Normal equation, 367 Normal equations, 110, 191, 310, 337, 390, Maple, 536 391, 412, 414–416, 511 Mathematica, 536 Normal models, 196 Matlab, 536 Normal space, 101 “roots” command, 536 Normalized column vectors, 166 Matrix algebra, 265, 593, 602 Normalized Grassmann vector, 159 Maximal rank, 103 Null space, 94, 265–267 Maximum, 536 Maximum Likelihood Estimation, 187, 202 Maximum norm solution, 113 Objective functions, 113, 114 Mean, 198 Oblique normal distribution, 374, 375 Mean matrix, 754 Observation equation, 518 Mean Square Estimation Error, 307, 339, 345, Observation point, 102 386, 392–395, 399 Observation space, 94, 102, 111, 113, 130, Measurement errors, 517 187, 214, 265, 266, 268, 364 Median, 187, 198 Observational equations, 511 Median absolute deviation, 187 Observed Fischer information, 204 Meet, 150, 153 Octonian algebra, 593 Minimum, 536 One variance component, 223, 226, 230, 236 Minimum bias, 310 Optimality conditions, 206 Minimum distance mapping, 101, 102 Optimization problem, 202 Minimum geodesic distance, 362, 366 Orthogonal, 51 Minimum norm, 268, 272, 618, 619 Orthogonal column space, 141 Minimum variance, 207, 422 Orthogonal complement, 101 MINOLESS, 266 Orthogonal matrix, 606 Mixed models, 240 Orthogonal projection , 104 Model manifold, 265 Orthogonality condition, 157, 229 Modified Bessel function, 363 Orthogonality conditions, 164 Monomial ordering, 887 Orthonormal, 51, 679 Moore–Penrose inverse, 274, 289 Orthonormal base vectors, 130, 150 Index 1015

Orthonormal frame of reference, 154 Quadratic form, 189 Orthonormal matrix, 467, 474, 608 Quadratic Lagrangean, 337, 390 Orthonormality, 673 Quaternion algebra, 593 Outlier, 188, 198 Quotient set, 104 Outliers, 172, 332 Overdetermined, 95, 186 Overdetermined system of linear equations, Random, 428 136 Random effect, 329, 339, 384, 386, 392, 399, 426, 438 Random regression model, 474 Parameter space, 94, 102, 175, 187, 265, 266, Random variable, 519 268, 364, 450 Range, 267 Partial differential equations, 540 Range space, 94, 103, 266, 267 Partial inverse, 602 Rank factorization, 289, 617 Partial redundancies, 164 Rank identity, 284 PCA, 728 Rank partitioning, 12, 95, 132, 157, 164, 215, Permutation matrix, 198 263, 266, 298 Permutation operator, 151 Reduced Groebner basis, 537, 890 Pl¨ucker coordinate, 153 Reduced Lagrangean, 465 Pl¨ucker coordinates, 141, 150, 154, 158, 159, Redundancy, 147 166, 169 Redundancy matrix, 146, 147, 157, 164 Polar coordinates, 363, 642, 675 Regularization parameter, 307 Polar decompositions, 131 Relative index, 111 Polynomial, 528 Residual vector, 192, 316 Polynomial coefficients, 94 , 236 Polynomial equations, 540 Ridge estimator, 342, 395 Polynomial of degree one, 94 Riemann manifold, 380 Polynomials Right complementary index, 267 equivalence, 540 Right eigenspace, 133 ordering Right eigenspace analysis, 146 lexicographic, 535 Right Gauss metric, 128 roots, 536 Right strain component, 128 univariate, 536, 559 Risk function, 449, 464 Positive definite, 106, 109, 113, 116, 130, 207, Robust, 332 208, 296, 308, 312, 314, 332, 338, Robust approximation, 122 391, 416, 427, 558, 617 Root mean square error, 187, 198, 679 Positive semidefinite, 106, 108, 112, 296, 617 Rotation, 131, 461, 674 Prediction equations, 520 Rotation matrix, 684 Prediction error, 520 Rotational invariances, 439 Prediction stage, 519 Principal Component Analysis, 728 Probability density function, 363, 638 Sample mean, 665, 667, 676 Probability distribution, 194 Sample median, 188, 198 Procrustes Algorithm, 461, 464, 472 Sample variance, 667, 676, 683 Projection lines, 556 Scale change, 674 Projection matrices, 213 Scale factor, 461 Pseudo-observations, 176 Schur complement, 615 Pseudoinvese, 602 Second central moment, 339, 393 Pullback operation, 175 Second central moments, 385 Second derivative, 106, 109, 271, 304, 367, 413, 450 Quadratic bias, 342, 396 Second moment, 194, 754 Quadratic estimation, 193 Second order design, 114, 115 Quadratic estimator, 193 Second order moment, 196 1016 Index

Second order moments, 205 Total degree, 888 Selfdual, 155 Total least squares, 108, 448 Semidefinite, 111 Trace, 390 Sequential optimization problem, 312 , 521 Series inversion, 659 Translation, 461, 674 Set-theoretical partitioning, 104 Translation vector, 473 Similarity transformation, 521, 522 Translational invariant, 190, 193, 195, 228 Simple linear model, 200 Trend components, 441 Singular value decomposition, 467, 728 Tykhonov–Phillips regularization, 302, 307 Skew product symbol, 158 Tykhonov–Phillips regulator, 342, 395 Slices, 103 Slicing, 95, 263 Spatial redundancies, 157 Unbiased estimation, 677 Special Gauss–Markov model, 189, 205, 206, Unconstrained Lagrangean, 96, 106, 208, 220, 223, 225, 239, 315, 318, 271, 464 322, 326 Uniformly unbiased, 191, 193 Special linear Gauss–Markov model, 392 Unity, 595 with datum defect, 308 Univariate polynomials, 539 , 113 Unknown parameters, 115 Spherical coordinates, 361 Updating equations, 520 Standard deviation, 188, 681 Standard multivariate model, 497 State differential equation, 522 State equations, 519 Vandermonde matrix, 606, 611 Statistical moment of first order, 189 Variance, 215, 231, 754 Stochastic, 205 Variance factor, 227 Stochastic observations, 187, 517 Variance factorization, 215 Student’s random variable, 699 Variance-covariance, 215, 240, 403, 754 Subdeterminants, 157, 162, 169 Vector derivative, 106 Sufficiency condition, 96, 106, 109, 192, 284, Vector of curtosis, 755 413 Venn diagram, 104 Sufficiency conditions, 204, 208, 304, 312, Vertical rank partitioning, 95, 98 337, 390, 391 Von Mises, 362 Sufficient condition, 558 Von Mises circle, 361 Sufficient conditions, 451 Von Mises distribution, 755 Surjective, 94, 265, 267 Surjectivity defect, 94, 228, 302 SVD, 728 Weak isotropy, 439 Sylvester resultant, 548 Weight factor, 342, 395 Symmetric matrix, 129, 189, 224 Weight matrix, 115, 199, 472 System equations, 518 Weighted arithmetic mean, 175 Weighted arithmetic means, 178 Weighted Frobenius matrix norm, 207 Tangent space, 102 Weighted left inverse, 129 Taylor series, 399, 653, 655 Weighted Moore–Penrose inverse, 293 Taylor–Karman matrix, 404 Witt algebra, 592, 599 Taylor–Karman structure, 118, 402 Theory of Turbulence, 118 Third central moment, 754 Zehfuss product, 116 Three fundamental partitionings, 95 Zero correlation, 385