General Relativity Fall 2019 Lecture 13: Geodesic Deviation; Einstein field Equations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:0911.0334V2 [Gr-Qc] 4 Jul 2020
Classical Physics: Spacetime and Fields Nikodem Poplawski Department of Mathematics and Physics, University of New Haven, CT, USA Preface We present a self-contained introduction to the classical theory of spacetime and fields. This expo- sition is based on the most general principles: the principle of general covariance (relativity) and the principle of least action. The order of the exposition is: 1. Spacetime (principle of general covariance and tensors, affine connection, curvature, metric, tetrad and spin connection, Lorentz group, spinors); 2. Fields (principle of least action, action for gravitational field, matter, symmetries and conservation laws, gravitational field equations, spinor fields, electromagnetic field, action for particles). In this order, a particle is a special case of a field existing in spacetime, and classical mechanics can be derived from field theory. I dedicate this book to my Parents: Bo_zennaPop lawska and Janusz Pop lawski. I am also grateful to Chris Cox for inspiring this book. The Laws of Physics are simple, beautiful, and universal. arXiv:0911.0334v2 [gr-qc] 4 Jul 2020 1 Contents 1 Spacetime 5 1.1 Principle of general covariance and tensors . 5 1.1.1 Vectors . 5 1.1.2 Tensors . 6 1.1.3 Densities . 7 1.1.4 Contraction . 7 1.1.5 Kronecker and Levi-Civita symbols . 8 1.1.6 Dual densities . 8 1.1.7 Covariant integrals . 9 1.1.8 Antisymmetric derivatives . 9 1.2 Affine connection . 10 1.2.1 Covariant differentiation of tensors . 10 1.2.2 Parallel transport . 11 1.2.3 Torsion tensor . 11 1.2.4 Covariant differentiation of densities . -
1.2 Topological Tensor Calculus
PH211 Physical Mathematics Fall 2019 1.2 Topological tensor calculus 1.2.1 Tensor fields Finite displacements in Euclidean space can be represented by arrows and have a natural vector space structure, but finite displacements in more general curved spaces, such as on the surface of a sphere, do not. However, an infinitesimal neighborhood of a point in a smooth curved space1 looks like an infinitesimal neighborhood of Euclidean space, and infinitesimal displacements dx~ retain the vector space structure of displacements in Euclidean space. An infinitesimal neighborhood of a point can be infinitely rescaled to generate a finite vector space, called the tangent space, at the point. A vector lives in the tangent space of a point. Note that vectors do not stretch from one point to vector tangent space at p p space Figure 1.2.1: A vector in the tangent space of a point. another, and vectors at different points live in different tangent spaces and so cannot be added. For example, rescaling the infinitesimal displacement dx~ by dividing it by the in- finitesimal scalar dt gives the velocity dx~ ~v = (1.2.1) dt which is a vector. Similarly, we can picture the covector rφ as the infinitesimal contours of φ in a neighborhood of a point, infinitely rescaled to generate a finite covector in the point's cotangent space. More generally, infinitely rescaling the neighborhood of a point generates the tensor space and its algebra at the point. The tensor space contains the tangent and cotangent spaces as a vector subspaces. A tensor field is something that takes tensor values at every point in a space. -
Local Flatness and Geodesic Deviation of Causal Geodesics
UTM 724, July 2008 Local flatness and geodesic deviation of causal geodesics. Valter Moretti1,2, Roberto Di Criscienzo3, 1 Dipartimento di Matematica, Universit`adi Trento and Istituto Nazionale di Fisica Nucleare – Gruppo Collegato di Trento, via Sommarive 14 I-38050 Povo (TN), Italy. 2 Istituto Nazionale di Alta Matematica “F.Severi”– GNFM 3 Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7, Canada. E-mail: [email protected], [email protected] Abstract. We analyze the interplay of local flatness and geodesic deviation measured for causal geodesics starting from the remark that, form a physical viewpoint, the geodesic deviation can be measured for causal geodesic, observing the motion of (infinitesimal) falling bodies, but it can hardly be evaluated on spacelike geodesics. We establish that a generic spacetime is (locally) flat if and only if there is no geodesic deviation for timelike geodesics or, equivalently, there is no geodesic deviation for null geodesics. 1 Introduction The presence of tidal forces, i.e. geodesic deviation for causal geodesics, can be adopted to give a notion of gravitation valid in the general relativistic context, as the geodesic deviation is not affected by the equivalence principle and thus it cannot be canceled out by an appropriate choice of the reference frame. By direct inspection (see [MTW03]), one sees that the absence of geodesic deviation referred to all type of geodesics is equivalent the fact that the Riemann tensor vanishes everywhere in a spacetime (M, g). The latter fact, in turn, is equivalent to the locally flatness of the spacetime, i.e. -
Einstein and Friedmann Equations
Outline ● Go over homework ● Einstein equations ● Friedmann equations Homework ● For next class: – A light ray is emitted from r = 0 at time t = 0. Find an expression for r(t) in a flat universe (k=0) and in a positively curved universe (k=1). Einstein Equations ● General relativity describes gravity in terms of curved spacetime. ● Mass/energy causes the curvature – Described by mass-energy tensor – Which, in general, is a function of position ● The metric describes the spacetime – Metric determines how particles will move ● To go from Newtonian gravity to General Relativity d2 GM 8 πG ⃗r = r^ → Gμ ν(gμ ν) = T μ ν dt2 r 2 c4 ● Where G is some function of the metric Curvature ● How to calculate curvature of spacetime from metric? – “readers unfamiliar with tensor calculus can skip down to Eq. 8.22” – There are no equations with tensors after 8.23 ● Curvature of spacetime is quantified using parallel transport ● Hold a vector and keep it parallel to your direction of motion as you move around on a curved surface. ● Locally, the vector stays parallel between points that are close together, but as you move finite distances the vector rotates – in a manner depending on the path. Curvature ● Mathematically, one uses “Christoffel symbols” to calculate the “affine connection” which is how to do parallel transport. ● Christoffel symbols involve derivatives of the metric. μ 1 μρ ∂ gσ ρ ∂ gνρ ∂ g Γ = g + + σ ν σ ν 2 ( ∂ x ν ∂ xσ ∂ xρ ) ● The Reimann tensor measures “the extent to which the metric tensor is not locally isometric to that of Euclidean space”. -
“Geodesic Principle” in General Relativity∗
A Remark About the “Geodesic Principle” in General Relativity∗ Version 3.0 David B. Malament Department of Logic and Philosophy of Science 3151 Social Science Plaza University of California, Irvine Irvine, CA 92697-5100 [email protected] 1 Introduction General relativity incorporates a number of basic principles that correlate space- time structure with physical objects and processes. Among them is the Geodesic Principle: Free massive point particles traverse timelike geodesics. One can think of it as a relativistic version of Newton’s first law of motion. It is often claimed that the geodesic principle can be recovered as a theorem in general relativity. Indeed, it is claimed that it is a consequence of Einstein’s ∗I am grateful to Robert Geroch for giving me the basic idea for the counterexample (proposition 3.2) that is the principal point of interest in this note. Thanks also to Harvey Brown, Erik Curiel, John Earman, David Garfinkle, John Manchak, Wayne Myrvold, John Norton, and Jim Weatherall for comments on an earlier draft. 1 ab equation (or of the conservation principle ∇aT = 0 that is, itself, a conse- quence of that equation). These claims are certainly correct, but it may be worth drawing attention to one small qualification. Though the geodesic prin- ciple can be recovered as theorem in general relativity, it is not a consequence of Einstein’s equation (or the conservation principle) alone. Other assumptions are needed to drive the theorems in question. One needs to put more in if one is to get the geodesic principle out. My goal in this short note is to make this claim precise (i.e., that other assumptions are needed). -
Analyzing Non-Degenerate 2-Forms with Riemannian Metrics
EXPOSITIONES Expo. Math. 20 (2002): 329-343 © Urban & Fischer Verlag MATHEMATICAE www.u rba nfischer.de/journals/expomath Analyzing Non-degenerate 2-Forms with Riemannian Metrics Philippe Delano~ Universit~ de Nice-Sophia Antipolis Math~matiques, Parc Valrose, F-06108 Nice Cedex 2, France Abstract. We give a variational proof of the harmonicity of a symplectic form with respect to adapted riemannian metrics, show that a non-degenerate 2-form must be K~ihlerwhenever parallel for some riemannian metric, regardless of adaptation, and discuss k/ihlerness under curvature assmnptions. Introduction In the first part of this paper, we aim at a better understanding of the following folklore result (see [14, pp. 140-141] and references therein): Theorem 1 . Let a be a non-degenerate 2-form on a manifold M and g, a riemannian metric adapted to it. If a is closed, it is co-closed for g. Let us specify at once a bit of terminology. We say a riemannian metric g is adapted to a non-degenerate 2-form a on a 2m-manifold M, if at each point Xo E M there exists a chart of M in which g(Xo) and a(Xo) read like the standard euclidean metric and symplectic form of R 2m. If, moreover, this occurs for the first jets of a (resp. a and g) and the corresponding standard structures of R 2m, the couple (~r,g) is called an almost-K~ihler (resp. a K/ihler) structure; in particular, a is then closed. Given a non-degenerate, an adapted metric g can be constructed out of any riemannian metric on M, using Cartan's polar decomposition (cf. -
How Extra Symmetries Affect Solutions in General Relativity
universe Communication How Extra Symmetries Affect Solutions in General Relativity Aroonkumar Beesham 1,2,∗,† and Fisokuhle Makhanya 2,† 1 Faculty of Natural Sciences, Mangosuthu University of Technology, P.O. Box 12363, Jacobs 4026, South Africa 2 Department of Mathematical Sciences, University of Zululand, P. Bag X1001, Kwa-Dlangezwa 3886, South Africa; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 13 September 2020; Accepted: 7 October 2020; Published: 9 October 2020 Abstract: To get exact solutions to Einstein’s field equations in general relativity, one has to impose some symmetry requirements. Otherwise, the equations are too difficult to solve. However, sometimes, the imposition of too much extra symmetry can cause the problem to become somewhat trivial. As a typical example to illustrate this, the effects of conharmonic flatness are studied and applied to Friedmann–Lemaitre–Robertson–Walker spacetime. Hence, we need to impose some symmetry to make the problem tractable, but not too much so as to make it too simple. Keywords: general relativity; symmetry; conharmonic flatness; FLRW models 1. Introduction In 1915, Einstein formulated his theory of general relativity, whose field equations with cosmological term can be written in suitable units as: 1 R − Rg + Lg = T , (1) ab 2 ab ab ab where Rab is the Ricci tensor, R the Ricci scalar, gab the metric tensor, L the cosmological parameter, and Tab the energy–momentum tensor. The field Equations (1) consist of a set of ten partial differential equations, which need to be solved. Despite great progress, it is worth noting that a clear definition of an exact solution does not exist [1]. -
The Weyl Tensor of Gradient Ricci Solitons
THE WEYL TENSOR OF GRADIENT RICCI SOLITONS XIAODONG CAO∗ AND HUNG TRAN Abstract. This paper derives new identities for the Weyl tensor on a gradient Ricci soliton, particularly in dimension four. First, we prove a Bochner-Weitzenb¨ock type formula for the norm of the self-dual Weyl tensor and discuss its applications, including connections between geometry and topology. In the second part, we are concerned with the interaction of different components of Riemannian curvature and (gradient and Hessian of) the soliton potential function. The Weyl tensor arises naturally in these investigations. Applications here are rigidity results. Contents 1. Introduction 2 2. Notation and Preliminaries 4 2.1. Gradient Ricci Solitons 5 2.2. Four-Manifolds 6 2.3. New Sectional Curvature 9 3. A Bochner-Weitzenb¨ock Formula 13 4. Applications of the Bochner-Weitzenb¨ock Formula 15 4.1. A Gap Theorem for the Weyl Tensor 15 4.2. Isotropic Curvature 20 5. A Framework Approach 21 5.1. Decomposition Lemmas 22 5.2. Norm Calculations 24 6. Rigidity Results 29 6.1. Eigenvectors of the Ricci curvature 31 arXiv:1311.0846v1 [math.DG] 4 Nov 2013 6.2. Proofs of Rigidity Theorems 35 7. Appendix 36 7.1. Conformal Change Calculation 36 7.2. Along the Ricci Flow 39 References 40 Date: September 19, 2018. 2000 Mathematics Subject Classification. Primary 53C44; Secondary 53C21. ∗This work was partially supported by grants from the Simons Foundation (#266211 and #280161). 1 2 Xiaodong Cao and Hung Tran 1. Introduction The Ricci flow, which was first introduced by R. Hamilton in [30], describes a one- parameter family of smooth metrics g(t), 0 t < T , on a closed n-dimensional manifold M n, by the equation ≤ ≤∞ ∂ (1.1) g(t)= 2Rc(t). -
Matrices and Tensors
APPENDIX MATRICES AND TENSORS A.1. INTRODUCTION AND RATIONALE The purpose of this appendix is to present the notation and most of the mathematical tech- niques that are used in the body of the text. The audience is assumed to have been through sev- eral years of college-level mathematics, which included the differential and integral calculus, differential equations, functions of several variables, partial derivatives, and an introduction to linear algebra. Matrices are reviewed briefly, and determinants, vectors, and tensors of order two are described. The application of this linear algebra to material that appears in under- graduate engineering courses on mechanics is illustrated by discussions of concepts like the area and mass moments of inertia, Mohr’s circles, and the vector cross and triple scalar prod- ucts. The notation, as far as possible, will be a matrix notation that is easily entered into exist- ing symbolic computational programs like Maple, Mathematica, Matlab, and Mathcad. The desire to represent the components of three-dimensional fourth-order tensors that appear in anisotropic elasticity as the components of six-dimensional second-order tensors and thus rep- resent these components in matrices of tensor components in six dimensions leads to the non- traditional part of this appendix. This is also one of the nontraditional aspects in the text of the book, but a minor one. This is described in §A.11, along with the rationale for this approach. A.2. DEFINITION OF SQUARE, COLUMN, AND ROW MATRICES An r-by-c matrix, M, is a rectangular array of numbers consisting of r rows and c columns: ¯MM.. -
SPINORS and SPACE–TIME ANISOTROPY
Sergiu Vacaru and Panayiotis Stavrinos SPINORS and SPACE{TIME ANISOTROPY University of Athens ————————————————— c Sergiu Vacaru and Panyiotis Stavrinos ii - i ABOUT THE BOOK This is the first monograph on the geometry of anisotropic spinor spaces and its applications in modern physics. The main subjects are the theory of grav- ity and matter fields in spaces provided with off–diagonal metrics and asso- ciated anholonomic frames and nonlinear connection structures, the algebra and geometry of distinguished anisotropic Clifford and spinor spaces, their extension to spaces of higher order anisotropy and the geometry of gravity and gauge theories with anisotropic spinor variables. The book summarizes the authors’ results and can be also considered as a pedagogical survey on the mentioned subjects. ii - iii ABOUT THE AUTHORS Sergiu Ion Vacaru was born in 1958 in the Republic of Moldova. He was educated at the Universities of the former URSS (in Tomsk, Moscow, Dubna and Kiev) and reveived his PhD in theoretical physics in 1994 at ”Al. I. Cuza” University, Ia¸si, Romania. He was employed as principal senior researcher, as- sociate and full professor and obtained a number of NATO/UNESCO grants and fellowships at various academic institutions in R. Moldova, Romania, Germany, United Kingdom, Italy, Portugal and USA. He has published in English two scientific monographs, a university text–book and more than hundred scientific works (in English, Russian and Romanian) on (super) gravity and string theories, extra–dimension and brane gravity, black hole physics and cosmolgy, exact solutions of Einstein equations, spinors and twistors, anistoropic stochastic and kinetic processes and thermodynamics in curved spaces, generalized Finsler (super) geometry and gauge gravity, quantum field and geometric methods in condensed matter physics. -
General Relativity Fall 2019 Lecture 11: the Riemann Tensor
General Relativity Fall 2019 Lecture 11: The Riemann tensor Yacine Ali-Ha¨ımoud October 8th 2019 The Riemann tensor quantifies the curvature of spacetime, as we will see in this lecture and the next. RIEMANN TENSOR: BASIC PROPERTIES α γ Definition { Given any vector field V , r[αrβ]V is a tensor field. Let us compute its components in some coordinate system: σ σ λ σ σ λ r[µrν]V = @[µ(rν]V ) − Γ[µν]rλV + Γλ[µrν]V σ σ λ σ λ λ ρ = @[µ(@ν]V + Γν]λV ) + Γλ[µ @ν]V + Γν]ρV 1 = @ Γσ + Γσ Γρ V λ ≡ Rσ V λ; (1) [µ ν]λ ρ[µ ν]λ 2 λµν where all partial derivatives of V µ cancel out after antisymmetrization. σ Since the left-hand side is a tensor field and V is a vector field, we conclude that R λµν is a tensor field as well { this is the tensor division theorem, which I encourage you to think about on your own. You can also check that explicitly from the transformation law of Christoffel symbols. This is the Riemann tensor, which measures the non-commutation of second derivatives of vector fields { remember that second derivatives of scalar fields do commute, by assumption. It is completely determined by the metric, and is linear in its second derivatives. Expression in LICS { In a LICS the Christoffel symbols vanish but not their derivatives. Let us compute the latter: 1 1 @ Γσ = @ gσδ (@ g + @ g − @ g ) = ησδ (@ @ g + @ @ g − @ @ g ) ; (2) µ νλ 2 µ ν λδ λ νδ δ νλ 2 µ ν λδ µ λ νδ µ δ νλ since the first derivatives of the metric components (thus of its inverse as well) vanish in a LICS. -
Geodesic Spheres in Grassmann Manifolds
GEODESIC SPHERES IN GRASSMANN MANIFOLDS BY JOSEPH A. WOLF 1. Introduction Let G,(F) denote the Grassmann manifold consisting of all n-dimensional subspaces of a left /c-dimensional hermitian vectorspce F, where F is the real number field, the complex number field, or the algebra of real quater- nions. We view Cn, (1') tS t Riemnnian symmetric space in the usual way, and study the connected totally geodesic submanifolds B in which any two distinct elements have zero intersection as subspaces of F*. Our main result (Theorem 4 in 8) states that the submanifold B is a compact Riemannian symmetric spce of rank one, and gives the conditions under which it is a sphere. The rest of the paper is devoted to the classification (up to a global isometry of G,(F)) of those submanifolds B which ure isometric to spheres (Theorem 8 in 13). If B is not a sphere, then it is a real, complex, or quater- nionic projective space, or the Cyley projective plane; these submanifolds will be studied in a later paper [11]. The key to this study is the observation thut ny two elements of B, viewed as subspaces of F, are at a constant angle (isoclinic in the sense of Y.-C. Wong [12]). Chapter I is concerned with sets of pairwise isoclinic n-dimen- sional subspces of F, and we are able to extend Wong's structure theorem for such sets [12, Theorem 3.2, p. 25] to the complex numbers nd the qua- ternions, giving a unified and basis-free treatment (Theorem 1 in 4).