Lecture Notes in Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Lecture Notes in Mathematics Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann Subseries: Mathematisches Institut der Universit~it und Max-Planck-lnstitut for Mathematik, Bonn - voL 5 Adviser: E Hirzebruch 1111 Arbeitstagung Bonn 1984 Proceedings of the meeting held by the Max-Planck-lnstitut fur Mathematik, Bonn June 15-22, 1984 Edited by E Hirzebruch, J. Schwermer and S. Suter I IIII Springer-Verlag Berlin Heidelberg New York Tokyo Herausgeber Friedrich Hirzebruch Joachim Schwermer Silke Suter Max-Planck-lnstitut fLir Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3, Federal Republic of Germany AMS-Subject Classification (1980): 10D15, 10D21, 10F99, 12D30, 14H10, 14H40, 14K22, 17B65, 20G35, 22E47, 22E65, 32G15, 53C20, 57 N13, 58F19 ISBN 3-54045195-8 Springer-Verlag Berlin Heidelberg New York Tokyo ISBN 0-387-15195-8 Springer-Verlag New York Heidelberg Berlin Tokyo CIP-Kurztitelaufnahme der Deutschen Bibliothek. Mathematische Arbeitstagung <25. 1984. Bonn>: Arbeitstagung Bonn: 1984; proceedings of the meeting, held in Bonn, June 15-22, 1984 / [25. Math. Arbeitstagung]. Ed. by E Hirzebruch ... - Berlin; Heidelberg; NewYork; Tokyo: Springer, 1985. (Lecture notes in mathematics; Vol. 1t11: Subseries: Mathematisches I nstitut der U niversit~it und Max-Planck-lnstitut for Mathematik Bonn; VoL 5) ISBN 3-540-t5195-8 (Berlin...) ISBN 0-387q5195-8 (NewYork ...) NE: Hirzebruch, Friedrich [Hrsg.]; Lecture notes in mathematics / Subseries: Mathematischee Institut der UniversitAt und Max-Planck-lnstitut fur Mathematik Bonn; HST This work ts subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re~use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesetlschaft Wort", Munich. © by Springer-Verlag Berlin Heidelberg 1985 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstn 2146/3140-543210 VORWORT Die mathematische Arbeitstagung in Bonn hatte seit ihrem Anfang im Jahre ]957 bis hin zum 25. Treffen 1984 stets ihren eigenen unver- wechselbaren Charakter. Das Programm wird nicht im voraus festme- legt, sondern Vortragende und Themen ergeben sich spontan aus einer Programmdiskussion aller Teilnehmer unter Leitung von F. Hirzebruch. Dies erm~glicht, auf neueste Entwicklungen in einzelnen mathemati- schen Gebieten unmittelbar einzugehen,und sie auf der Tagung vorzu- stellen. Dar~ber hinaus ist die Arbeitstagung nicht ausschlieSlich einem speziellen mathematischen Thema gewidmet, sondern es finden sich vonder Zahlentheorie [ber die Topologie und Geometrie bis hin zur Analysis ~ber die Jahre hinweg Beitr~ge aus fast allen Gebieten der Mathematik. Gerade diesem informellen und arbeitsmiBigem Charak- ter der Tagung h~tte die Ver~ffentlichung von Ergebnisberichten widersprochen. Da jedoch immer wieder stark danach gefragt wurde, hat man, erst seit dem Jahre 1974, einen Kompromi8 gefunden. Die Sprecher fassen ihre Vortr~ge - meist nur handschriftlich - kurz zusam~,en, und diese werden gesammelt zum Abschlu8 eines jeden Tref- fens an die Teilnehmer verteilt. Anl~81ich der 25. mathematischen Arbeitstagung im Jahre 1984 wurde und wird hiervon in mehrfacher Hinsicht abgewichen: Einige Mathematiker wurden im voraus gebeten, in Uberblicksvortr~qen Ent- wicklungen und Probleme in ihren eigenen Arbeitsgebieten darzustel- len. Diese Beitr~ge finden sich im ersten Teil des vorliegenden Bandes. Den zweiten Teil bilden Ausarbeitungen der meisten der ad- hoc Vortr~ge, deren Sprecher erst w~hrend der Arbeitstagung aus- gewihlt wurden. Vielleicht spiegelt sich trotz dieser ~nderungen im Procedere ein wenig der Charakter der Arbeitstagung wider. Im Anhang sind die Programme der Arbeitstagungen 1957 - 1984 wieder- gegeben. Die M~he der Schreibarbeit fast aller Beitr~ge haben mit viel Geduld und Sorgfalt Frau K. Deutler und Frau C. Pearce auf sich genommen, denen wir daf~r sehr dankbar sind. Bonn, November 1984 Die Herausgeber 25. Mathematische Arbeit~ta~un~ 1984 (15. - 22. Ju~i) J. Tits: Groups and group functors attached to Kac-Moody data M. Atiyah: The eigenvalues of the Dirac operator A. Connes: K-theory, cyclic cohomology and operator algebras G. Segal: Loop groups G. Harder : Special values of Hecke L-functions and abelian integrals H. Wente: A counterexample in 3-space to a conjecture of H. Hopf G. Faltings: Compactification of Ag/Z C.T.C. Wall: Geometric structures and algebraic surfaces J. Harris: Recent work on Hodge structures Y.T. Siu: Some recent results in complex manifold theory related to vanishing theorems for the semipositive case W. Schmid: Recent progress in representation theory W. Ballmann: Manifolds of non-positive curvature B. Mazur - Conjectures of Beilinson on L-functions and K-theory Ch. Soul@: H.-O. Peitgen: Morphology of Julia sets S.S. Chern: Some applications of the method of moving frames S. Lang: Vojta's conjecture on heights and Green's function S. Donaldson: 4-manifolds with indefinite intersection form D. Zagier: Modular points, modular curves, modular surfaces and modular forms G. van der Geer: Schottky's problem R. Bryant: G 2 and Spin(7)-holonomy S. Wolpert: Homology of Teichm~ller spaces J.-P. Serre: l-adic representations M.F. Atiyah: On Manin's manuscript "New dimensions in geometry" Inhaltsverzeichnis ~BERBLI CKS VORTR~GE Connes, A. - Introduction to non commutative differen- 3-16 tial geometry Harder, G., - Special values of Hecke L-functions and 17-49 Schappacher, N. abelian integrals Harris, J. - An introduction to infinitesimal varia- 51-58 tions of Hodge structures Manin, Y. - New dimensions in geometry 59-101 Atiyah, M. - Commentary on the article of Manin 103-109 Peitgen, H.O., - The Mandelbrot set in a model for phase 111-134 Richter, P.H. transitions Schmid, W. - Recent developments in representation 135-153 theory Segal, G.B. - Loop groups 155-168 Siu, Y.-T. - Some recent results in complex manifold 169-192 theory related to vanishing theorems for the semipositive case Tits, J. - Groups and group functors attached to 193-223 Kac-Moody data Zagier, D. - Modular points, modular curves, modular 225-248 surfaces and modular forms Ad-hoc VORTR~GE Atiyah, M. - Eigenvalues of the Dirac operator 251-260 Ballmann, W. - Manifolds of non positive curvature 261-268 Bryant, R. - Metrics with holonomy G 2 or Spin(7) 269-277 Chern, S.S., - On Riemannian metrics adapted to three- 279-308 Hamilton, R.S. dimensional contact manifolds (Appendix by Alan Weinstein) Donaldson, S.K. - 4-manifolds with indefinite intersection 309-320 form Faltings, G. - Arithmetische Kompaktifizierung des 321 - 383 Modulraums der abelschen Variet~ten van der Geer, G. - The Schottky problem 385-406 Lang, S. - Vojta's conjecture 407-419 Wente, H.C. - A counterexample in 3-space to a 421-429 conjecture of H. Hopf Wolpert, S.A. The topology and geometry of the moduli 431-451 space of Riemann surfaces ANHANG Programme der 25 Arbeitstagungen von 453-478 1957-1984 Teilnehmer der Arbeitstagung 1984 479-481 INTRODUCTION TO NON COMMUTATIVE DIFFERENTIAL GEOMETRY A. Connes Institut des Hautes Etudes Scientifiques 35, Route des Chartres F-91440 Bures-Sur-Yvette France This is the introduction to a series of papers in which we shall extend the calculus of differential forms and the de Rham homology of currents beyond their customary framework of manifolds, in order to deal with spaces of a more elaborate nature, such as, a) the space of leaves of a foliation, b) the dual space of a finitely generated non-abelian discrete group (or Lie group), c) the orbit space of the action of a discrete group (or Lie group) on a manifold. What such spaces have in common is to be, in general, badly behaved as point sets, so that the usual tools of measure theory, topology and differential geometry lose their pertinence. These spaces are much better understood by means of a canonically associated algebra which is the group convolution algebra in case b). When the space V is an ordinary manifold, the associated algebra is commutative. It is an algebra of complex-valued functions on V, endowed with the pointwise operations of sum and product. A smooth manifold V can be considered from different points of view such as ~) Measure theory (i.e. V appears as a measure space with a fixed measure class), 8) Topolog~ (i.e. V appears as a locally compact space), T) Differential geometry (i.e. V appears as a smooth manifold). Each of these structures on V is fully specified by the corresponding algebra of functions, namely: ~) The commutative von Neumann algebra L~(V] of classes of essentially bounded measurable functions on V, 8) The C*- algebra C0(V) of continuous functions on V which vanish at infinity, y) The algebra C~(V) of smooth functions with compact support. C It has long been known to operator algebraists that measure theory and topology extend far beyond their usual framework to: A) Th__e theory of weights and yon Neumann algebras. B) C*- algebras, K theory an d index theory. Let us briefly discuss these two fields, A) The theory of weights and yon Neumann algebras. To an ordinary measure space (X,~) correspond the von Neumann algebra L (X,~) and the weight ~ : ~(f) : SX fd~ Vf 6 L~(x,~) + Any pair (M,~) of a commutative yon Neumann algebra M and weight is obtained in this way from a measure space (X,~). Thus the place of ordinary measure theory in the theory of weights on von Neumann algebras is similar to that of commutative algebras among arbitrary ones. This is why A) is often called non-commutative measure theory. Non-cO~autative measure theory has many features which are trivial in the commutative case. For instance to each weight ~ on avon Neumann algebra M corresponds canonically a one-parameter group ot~C Aut M of automorphisms of M, its modular automorphism group. When M is commutative, one has a ~(x)t = x, Vx 6 M, and for any weight ~ on M.
Recommended publications
  • Arxiv:2009.07259V1 [Math.AP] 15 Sep 2020
    A GEOMETRIC TRAPPING APPROACH TO GLOBAL REGULARITY FOR 2D NAVIER-STOKES ON MANIFOLDS AYNUR BULUT AND KHANG MANH HUYNH Abstract. In this paper, we use frequency decomposition techniques to give a direct proof of global existence and regularity for the Navier-Stokes equations on two-dimensional Riemannian manifolds without boundary. Our techniques are inspired by an approach of Mattingly and Sinai [15] which was developed in the context of periodic boundary conditions on a flat background, and which is based on a maximum principle for Fourier coefficients. The extension to general manifolds requires several new ideas, connected to the less favorable spectral localization properties in our setting. Our argu- ments make use of frequency projection operators, multilinear estimates that originated in the study of the non-linear Schr¨odingerequation, and ideas from microlocal analysis. 1. Introduction Let (M; g) be a closed, oriented, connected, compact smooth two-dimensional Riemannian manifold, and let X(M) denote the space of smooth vector fields on M. We consider the incompressible Navier-Stokes equations on M, with viscosity coefficient ν > 0, @ U + div (U ⊗ U) − ν∆ U = − grad p in M t M ; (1) div U = 0 in M with initial data U0 2 X(M); where I ⊂ R is an open interval, and where U : I ! X(M) and p : I × M ! R represent the velocity and pressure of the fluid, respectively. Here, the operator ∆M is any choice of Laplacian defined on vector fields on M, discussed below. arXiv:2009.07259v1 [math.AP] 15 Sep 2020 The theory of two-dimensional fluid flows on flat spaces is well-developed, and a variety of global regularity results are well-known.
    [Show full text]
  • Differential Forms Diff Geom II, WS 2015/16
    J.M. Sullivan, TU Berlin B: Differential Forms Diff Geom II, WS 2015/16 B. DIFFERENTIAL FORMS instance, if S has k elements this gives a k-dimensional vector space with S as basis. We have already seen one-forms (covector fields) on a Given vector spaces V and W, let F be the free vector space over the set V × W. (This consists of formal sums manifold. In general, a k-form is a field of alternating k- P linear forms on the tangent spaces of a manifold. Forms ai(vi, wi) but ignores all the structure we have on the set are the natural objects for integration: a k-form can be in- V × W.) Now let R ⊂ F be the linear subspace spanned by tegrated over an oriented k-submanifold. We start with ten- all elements of the form: sor products and the exterior algebra of multivectors. (v + v0, w) − (v, w) − (v0, w), (v, w + w0) − (v, w) − (v, w0), (av, w) − a(v, w), (v, aw) − a(v, w). B1. Tensor products These correspond of course to the bilinearity conditions Recall that, if V, W and X are vector spaces, then a map we started with. The quotient vector space F/R will be the b: V × W → X is called bilinear if tensor product V ⊗ W. We have started with all possible v ⊗ w as generators and thrown in just enough relations to b(v + v0, w) = b(v, w) + b(v0, w), make the map (v, w) 7→ v ⊗ w be bilinear. b(v, w + w0) = b(v, w) + b(v, w0), The tensor product is commutative: there is a natural linear isomorphism V⊗W → W⊗V such that v⊗w 7→ w⊗v.
    [Show full text]
  • Applications of the Hodge Decomposition to Biological Structure and Function Modeling
    Applications of the Hodge Decomposition to Biological Structure and Function Modeling Andrew Gillette joint work with Chandrajit Bajaj and John Luecke Department of Mathematics, Institute of Computational Engineering and Sciences University of Texas at Austin, Austin, Texas 78712, USA http://www.math.utexas.edu/users/agillette university-logo Computational Visualization Center , I C E S ( DepartmentThe University of Mathematics, of Texas atInstitute Austin of Computational EngineeringDec2008 and Sciences 1/32 University Introduction Molecular dynamics are governed by electrostatic forces of attraction and repulsion. These forces are described as the solutions of a PDE over the molecular surfaces. Molecular surfaces may have complicated topological features affecting the solution. The Hodge Decomposition relates topological properties of the surface to solution spaces of PDEs over the surface. ∼ (space of forms) = (solutions to ∆u = f 6≡ 0) ⊕ (non-trivial deRham classes)university-logo Computational Visualization Center , I C E S ( DepartmentThe University of Mathematics, of Texas atInstitute Austin of Computational EngineeringDec2008 and Sciences 2/32 University Outline 1 The Hodge Decomposition for smooth differential forms 2 The Hodge Decomposition for discrete differential forms 3 Applications of the Hodge Decomposition to biological modeling university-logo Computational Visualization Center , I C E S ( DepartmentThe University of Mathematics, of Texas atInstitute Austin of Computational EngineeringDec2008 and Sciences 3/32 University Outline 1 The Hodge Decomposition for smooth differential forms 2 The Hodge Decomposition for discrete differential forms 3 Applications of the Hodge Decomposition to biological modeling university-logo Computational Visualization Center , I C E S ( DepartmentThe University of Mathematics, of Texas atInstitute Austin of Computational EngineeringDec2008 and Sciences 4/32 University Differential Forms Let Ω denote a smooth n-manifold and Tx (Ω) the tangent space of Ω at x.
    [Show full text]
  • [Math.GT] 7 Mar 2013 Ae Stems Ftetinuaintnst Zero
    GEOMETRIC STRUCTURES ON THE COCHAINS OF A MANIFOLD SCOTT O. WILSON Abstract. In this paper we develop several algebraic structures on the sim- plicial cochains of a triangulated manifold that are analogues of objects in differential geometry. We study a cochain product and prove several state- ments about its convergence to the wedge product on differential forms. Also, for cochains with an inner product, we define a combinatorial Hodge star oper- ator, and describe some applications, including a combinatorial period matrix for surfaces. We show that for a particularly nice cochain inner product, these combinatorial structures converge to their continuum analogues as the mesh of a triangulation tends to zero. 1. Introduction In this paper we develop combinatorial analogues of several objects in differential and complex geometry, including the Hodge star operator and the period matrix of a Riemann surface. We define these structures on the appropriate combinatorial analogue of differential forms, namely simplicial cochains. As we recall in section 3, the two essential ingredients to the smooth Hodge star operator are Poincar´eDuality and a metric, or inner product. We’ll define the combinatorial star operator in much the same way, using both an inner product and Poincar´eDuality, expressed on cochains in the form of a (graded) commutative product. Using the inner product introduced in [6], we prove the following: Theorem 1.1. The combinatorial star operator, defined on the simplicial cochains of a triangulated Riemannian manifold, converges to the smooth Hodge star operator as the mesh of the triangulation tends to zero. We show in section 7 that, on a closed surface, this combinatorial star operator gives rise to a combinatorial period matrix and prove: arXiv:math/0505227v4 [math.GT] 7 Mar 2013 Theorem 1.2.
    [Show full text]
  • Sample Questions for Preliminary Complex Analysis Exam
    SAMPLE QUESTIONS FOR PRELIMINARY COMPLEX ANALYSIS EXAM VERSION 2.0 Contents 1. Complex numbers and functions 1 2. Definition of holomorphic function 1 3. Complex Integrals and the Cauchy Integral Formula 2 4. Sequences and series, Taylor series, and series of analytic functions 2 5. Identity Theorem 3 6. Schwarz Lemma and Cauchy Inequalities 4 7. Liouville's Theorem 4 8. Laurent series and singularities 4 9. Residue Theorem 5 10. Contour Integrals 5 11. Argument Principle 6 12. Rouch´e'sTheorem 6 13. Conformal maps 7 14. Analytic Continuation 7 15. Suggested Practice Exams 8 1. Complex numbers and functions (1.1) Write all values of ii in the form a + bi. 2 (1.2) Prove thatp sin z = z has infinitely many complex solutions. (1.3) Find log 3 + i, using the principal branch. 2. Definition of holomorphic function (2.1) Find all v : R2 ! R2 such that for z = x + iy, f(z) = (x3 − 3xy2) + iv(x; y) is analytic. (2.2) Prove that if g : C ! C is a C1 function, the following two definitions of \holomor- phic" are the same: @g (a) @z = 0 0 2 2 (b) the derivative transformation g (z0): R ! R is C-linear, for all z0 2 C. That 0 0 is, g (z0)mw = mwg (z0) for all w 2 C, where mw is the linear transformation given by complex multiplication by w. @h (2.3) True or false: If h is an entire function such that @z 6= 0 everywhere, then h is injective. 1 2 VERSION 2.0 (2.4) Find all possible a; b 2 R such that f (x; y) = x2 +iaxy +by2, x; y 2 R is holomorphic as a function of z = x + iy.
    [Show full text]
  • Operator-Valued Tensors on Manifolds: a Framework for Field
    Operator-Valued Tensors on Manifolds: A Framework for Field Quantization 1 2 H. Feizabadi , N. Boroojerdian ∗ 1,2Department of pure Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., Tehran, Iran. Abstract In this paper we try to prepare a framework for field quantization. To this end, we aim to replace the field of scalars R by self-adjoint elements of a commu- tative C⋆-algebra, and reach an appropriate generalization of geometrical concepts on manifolds. First, we put forward the concept of operator-valued tensors and extend semi-Riemannian metrics to operator valued metrics. Then, in this new geometry, some essential concepts of Riemannian geometry such as curvature ten- sor, Levi-Civita connection, Hodge star operator, exterior derivative, divergence,... will be considered. Keywords: Operator-valued tensors, Operator-Valued Semi-Riemannian Met- rics, Levi-Civita Connection, Curvature, Hodge star operator MSC(2010): Primary: 65F05; Secondary: 46L05, 11Y50. 0 Introduction arXiv:1501.05065v2 [math-ph] 27 Jan 2015 The aim of the present paper is to extend the theory of semi-Riemannian metrics to operator-valued semi-Riemannian metrics, which may be used as a framework for field quantization. Spaces of linear operators are directly related to C∗-algebras, so C∗- algebras are considered as a basic concept in this article. This paper has its roots in Hilbert C⋆-modules, which are frequently used in the theory of operator algebras, allowing one to obtain information about C⋆-algebras by studying Hilbert C⋆-modules over them. Hilbert C⋆-modules provide a natural generalization of Hilbert spaces arising when the field of scalars C is replaced by an arbitrary C⋆-algebra.
    [Show full text]
  • Hodge Theory
    HODGE THEORY PETER S. PARK Abstract. This exposition of Hodge theory is a slightly retooled version of the author's Harvard minor thesis, advised by Professor Joe Harris. Contents 1. Introduction 1 2. Hodge Theory of Compact Oriented Riemannian Manifolds 2 2.1. Hodge star operator 2 2.2. The main theorem 3 2.3. Sobolev spaces 5 2.4. Elliptic theory 11 2.5. Proof of the main theorem 14 3. Hodge Theory of Compact K¨ahlerManifolds 17 3.1. Differential operators on complex manifolds 17 3.2. Differential operators on K¨ahlermanifolds 20 3.3. Bott{Chern cohomology and the @@-Lemma 25 3.4. Lefschetz decomposition and the Hodge index theorem 26 Acknowledgments 30 References 30 1. Introduction Our objective in this exposition is to state and prove the main theorems of Hodge theory. In Section 2, we first describe a key motivation behind the Hodge theory for compact, closed, oriented Riemannian manifolds: the observation that the differential forms that satisfy certain par- tial differential equations depending on the choice of Riemannian metric (forms in the kernel of the associated Laplacian operator, or harmonic forms) turn out to be precisely the norm-minimizing representatives of the de Rham cohomology classes. This naturally leads to the statement our first main theorem, the Hodge decomposition|for a given compact, closed, oriented Riemannian manifold|of the space of smooth k-forms into the image of the Laplacian and its kernel, the sub- space of harmonic forms. We then develop the analytic machinery|specifically, Sobolev spaces and the theory of elliptic differential operators|that we use to prove the aforementioned decom- position, which immediately yields as a corollary the phenomenon of Poincar´eduality.
    [Show full text]
  • Vector-Valued Holomorphic Functions
    Appendix A Vector-valued Holomorphic Functions Let X be a Banach space and let Ω ⊂ C be an open set. A function f :Ω→ X is holomorphic if f(z0 + h) − f(z0) f (z0) := lim (A.1) h→0 h h∈C\{0} exists for all z0 ∈ Ω. If f is holomorphic, then f is continuous and weakly holomorphic (i.e. x∗ ◦ f ∗ ∗ is holomorphic for all x ∈ X ). If Γ := {γ(t):t ∈ [a,b]} is a finite, piecewise smooth contour in Ω, we can form the contour integral f(z) dz. This coincides Γ b with the Bochner integral a f(γ(t))γ (t) dt (see Section 1.1). Similarly we can define integrals over infinite contours when the corresponding Bochner integral is absolutely convergent. Since 1 2 f(z) dz, x∗ = f(z),x∗ dz, Γ Γ many properties of holomorphic functions and contour integrals may be extended from the scalar to the vector-valued case, by applying the Hahn-Banach theorem. For example, Cauchy’s theorem is valid, and also Cauchy’s integral formula: 1 f(z) f(w)= dz (A.2) − 2πi |z−z0|=r z w whenever f is holomorphic in Ω, the closed ball B(z0,r) is contained in Ω and w ∈ B(z0,r). As in the scalar case one deduces Taylor’s theorem from this. Proposition A.1. Let f :Ω→ X be holomorphic, where Ω ⊂ C is open. Let z0 ∈ Ω,r>0 such that B(z0,r) ⊂ Ω.Then W. Arendt et al., Vector-valued Laplace Transforms and Cauchy Problems: Second Edition, 461 Monographs in Mathematics 96, DOI 10.1007/978-3-0348-0087-7, © Springer Basel AG 2011 462 A.
    [Show full text]
  • Differential Geometry: Discrete Exterior Calculus
    Differential Geometry: Discrete Exterior Calculus [Discrete Exterior Calculus (Thesis). Hirani, 2003] [Discrete Differential Forms for Computational Modeling. Desbrun et al., 2005] [Build Your Own DEC at Home. Elcott et al., 2006] Chains Recall: A k-chain of a simplicial complex Κ is linear combination of the k-simplices in Κ: c = ∑c(σ )⋅σ σ∈Κ k where c is a real-valued function. The dual of a k-chain is a k-cochain which is a linear map taking a k-chain to a real value. Chains and cochains related through evaluation: –Cochains: What we integrate –Chains: What we integrate over Boundary Operator Recall: The boundary ∂σ of a k-simplex σ is the signed union of all (k-1)-faces. ∂ ∂ ∂ ∂ +1 -1 The boundary operator extends linearly to act on chains: ∂c = ∂ ∑c(σ )⋅σ = ∑c(σ )⋅∂σ σ∈Κ k σ∈Κ k Discrete Exterior Derivative Recall: The exterior derivative d:Ωk→ Ωk+1 is the operator on cochains that is the complement of the boundary operator, defined to satisfy Stokes’ Theorem. -1 -2 -1 -3.5 -2 0.5 0.5 2 0 0.5 2 0 0.5 2 1.5 1 1 Since the boundary of the boundary is empty: ∂∂ = 0 dd = 0 The Laplacian Definition: The Laplacian of a function f is a function defined as the divergence of the gradient of f: ∆f = div(∇f ) = ∇ ⋅∇f The Laplacian Definition: The Laplacian of a function f is a function defined as the divergence of the gradient of f: ∆f = div(∇f ) = ∇ ⋅∇f Q.
    [Show full text]
  • Annales Scientifiques De L'é.Ns
    ANNALES SCIENTIFIQUES DE L’É.N.S. J.-B. BOST Potential theory and Lefschetz theorems for arithmetic surfaces Annales scientifiques de l’É.N.S. 4e série, tome 32, no 2 (1999), p. 241-312 <http://www.numdam.org/item?id=ASENS_1999_4_32_2_241_0> © Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1999, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www. elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé- matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. sclent. EC. Norm. Sup., 4° serie, t. 32, 1999, p. 241 a 312. POTENTIAL THEORY AND LEFSCHETZ THEOREMS FOR ARITHMETIC SURFACES BY J.-B. BOST ABSTRACT. - We prove an arithmetic analogue of the so-called Lefschetz theorem which asserts that, if D is an effective divisor in a projective normal surface X which is nef and big, then the inclusion map from the support 1-D) of -D in X induces a surjection from the (algebraic) fondamental group of \D\ onto the one of X. In the arithmetic setting, X is a normal arithmetic surface, quasi-projective over Spec Z, D is an effective divisor in X, proper over Spec Z, and furthermore one is given an open neighbourhood ^ of |-D|(C) on the Riemann surface X(C) such that the inclusion map |D|(C) ^ f^ is a homotopy equivalence.
    [Show full text]
  • Chapter 1 Holomorphic and Real Analytic Calculus
    This version: 28/02/2014 Chapter 1 Holomorphic and real analytic calculus In this chapter we develop basic analysis in the holomorphic and real analytic settings. We do this, for the most part, simultaneously, and as a result some of the ways we do things are a little unconventional, especially when compared to the standard holomorphic treatments in, for example, texts like [Fritzsche and Grauert 2002, Gunning and Rossi 1965,H ormander¨ 1973, Krantz 1992, Laurent-Thiebaut´ 2011, Range 1986, Taylor 2002]. We assume, of course, a thorough acquaintance with real analysis such as one might find in [Abraham, Marsden, and Ratiu 1988, Chapter 2] and single variable complex analysis such as one might find in [Conway 1978]. 1.1 Holomorphic and real analytic functions Holomorphic and real analytic functions are defined as being locally prescribed by a convergent power series. We, therefore, begin by describing formal (i.e., not depending on any sort of convergence) power series. We then indicate how the usual notion of a Taylor series gives rise to a formal power series, and we prove Borel’s Theorem which says that, in the real case, all formal power series arise as Taylor series. This leads us to consider convergence of power series, and then finally to consider holomorphic and real analytic functions. Much of what we say here is a fleshing out of some material from Chapter 2 of [Krantz and Parks 2002], adapted to cover both the holomorphic and real analytic cases simultaneously. 1.1.1 Fn Because much of what we say in this chapter applies simultaneously to the real and complex case, we shall adopt the convention of using the symbol F when we wish to refer to one of R or C.
    [Show full text]
  • Correspondences in Arakelov Geometry and Applications to the Case of Hecke Operators on Modular Curves
    CORRESPONDENCES IN ARAKELOV GEOMETRY AND APPLICATIONS TO THE CASE OF HECKE OPERATORS ON MODULAR CURVES RICARDO MENARES Abstract. In the context of arithmetic surfaces, Bost defined a generalized Arithmetic 2 Chow Group (ACG) using the Sobolev space L1. We study the behavior of these groups under pull-back and push-forward and we prove a projection formula. We use these results to define an action of the Hecke operators on the ACG of modular curves and to show that they are self-adjoint with respect to the arithmetic intersection product. The decomposition of the ACG in eigencomponents which follows allows us to define new numerical invariants, which are refined versions of the self-intersection of the dualizing sheaf. Using the Gross-Zagier formula and a calculation due independently to Bost and K¨uhnwe compute these invariants in terms of special values of L series. On the other hand, we obtain a proof of the fact that Hecke correspondences acting on the Jacobian of the modular curves are self-adjoint with respect to the N´eron-Tate height pairing. Contents 1. Introduction1 2 2. Functoriality in L1 5 2 2.1. The space L1 and related spaces5 2 2.2. Pull-back and push-forward in the space L1 6 2 2.3. Pull-back and push-forward of L1-Green functions 12 3. Pull-back and push-forward in Arakelov theory 16 2 3.1. The L1-arithmetic Chow group, the admissible arithmetic Chow group and intersection theory 16 3.2. Functoriality with respect to pull-back and push-forward 18 4.
    [Show full text]