Odonatological Abstract Service
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RECORDS of the HAWAII BIOLOGICAL SURVEY for 1995 Part 2: Notes1
RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1995 Part 2: Notes1 This is the second of two parts to the Records of the Hawaii Biological Survey for 1995 and contains the notes on Hawaiian species of plants and animals including new state and island records, range extensions, and other information. Larger, more compre- hensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 45]. New Hawaiian Pest Plant Records for 1995 PATRICK CONANT (Hawaii Dept. of Agriculture, Plant Pest Control Branch, 1428 S King St, Honolulu, HI 96814) Fabaceae Ulex europaeus L. New island record On 6 October 1995, Hawaii Department of Land and Natural Resources, Division of Forestry and Wildlife employee C. Joao submitted an unusual plant he found while work- ing in the Molokai Forest Reserve. The plant was identified as U. europaeus and con- firmed by a Hawaii Department of Agriculture (HDOA) nox-A survey of the site on 9 October revealed an infestation of ca. 19 m2 at about 457 m elevation in the Kamiloa Distr., ca. 6.2 km above Kamehameha Highway. Distribution in Wagner et al. (1990, Manual of the flowering plants of Hawai‘i, p. 716) listed as Maui and Hawaii. Material examined: MOLOKAI: Molokai Forest Reserve, 4 Dec 1995, Guy Nagai s.n. (BISH). Melastomataceae Miconia calvescens DC. New island record, range extensions On 11 October, a student submitted a leaf specimen from the Wailua Houselots area on Kauai to PPC technician A. Bell, who had the specimen confirmed by David Lorence of the National Tropical Botanical Garden as being M. -
Hundreds of Species of Aquatic Macroinvertebrates Live in Illinois In
Illinois A B aquatic sowbug Asellus sp. Photograph © Paul P.Tinerella AAqquuaattiicc mayfly A. adult Hexagenia sp.; B. nymph Isonychia sp. MMaaccrrooiinnvveerrtteebbrraatteess Photographs © Michael R. Jeffords northern clearwater crayfish Orconectes propinquus Photograph © Michael R. Jeffords ruby spot damselfly Hetaerina americana Photograph © Michael R. Jeffords aquatic snail Pleurocera acutum Photograph © Jochen Gerber,The Field Museum of Natural History predaceous diving beetle Dytiscus circumcinctus Photograph © Paul P.Tinerella monkeyface mussel Quadrula metanevra common skimmer dragonfly - nymph Libellula sp. Photograph © Kevin S. Cummings Photograph © Paul P.Tinerella water scavenger beetle Hydrochara sp. Photograph © Steve J.Taylor devil crayfish Cambarus diogenes A B Photograph © ChristopherTaylor dobsonfly Corydalus sp. A. larva; B. adult Photographs © Michael R. Jeffords common darner dragonfly - nymph Aeshna sp. Photograph © Paul P.Tinerella giant water bug Belostoma lutarium Photograph © Paul P.Tinerella aquatic worm Slavina appendiculata Photograph © Mark J. Wetzel water boatman Trichocorixa calva Photograph © Paul P.Tinerella aquatic mite Order Prostigmata Photograph © Michael R. Jeffords backswimmer Notonecta irrorata Photograph © Paul P.Tinerella leech - adult and young Class Hirudinea pygmy backswimmer Neoplea striola mosquito - larva Toxorhynchites sp. fishing spider Dolomedes sp. Photograph © William N. Roston Photograph © Paul P.Tinerella Photograph © Michael R. Jeffords Photograph © Paul P.Tinerella Species List Species are not shown in proportion to actual size. undreds of species of aquatic macroinvertebrates live in Illinois in a Kingdom Animalia Hvariety of habitats. Some of the habitats have flowing water while Phylum Annelida Class Clitellata Family Naididae aquatic worm Slavina appendiculata This poster was made possible by: others contain still water. In order to survive in water, these organisms Class Hirudinea leech must be able to breathe, find food, protect themselves, move and reproduce. -
Underwater Breathing: the Mechanics of Plastron Respiration
J. Fluid Mech. (2008), vol. 608, pp. 275–296. c 2008 Cambridge University Press 275 doi:10.1017/S0022112008002048 Printed in the United Kingdom Underwater breathing: the mechanics of plastron respiration M. R. FLYNN† AND J O H N W. M. B U S H Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA (Received 11 July 2007 and in revised form 10 April 2008) The rough, hairy surfaces of many insects and spiders serve to render them water-repellent; consequently, when submerged, many are able to survive by virtue of a thin air layer trapped along their exteriors. The diffusion of dissolved oxygen from the ambient water may allow this layer to function as a respiratory bubble or ‘plastron’, and so enable certain species to remain underwater indefinitely. Main- tenance of the plastron requires that the curvature pressure balance the pressure difference between the plastron and ambient. Moreover, viable plastrons must be of sufficient area to accommodate the interfacial exchange of O2 and CO2 necessary to meet metabolic demands. By coupling the bubble mechanics, surface and gas-phase chemistry, we enumerate criteria for plastron viability and thereby deduce the range of environmental conditions and dive depths over which plastron breathers can survive. The influence of an external flow on plastron breathing is also examined. Dynamic pressure may become significant for respiration in fast-flowing, shallow and well-aerated streams. Moreover, flow effects are generally significant because they sharpen chemical gradients and so enhance mass transfer across the plastron interface. Modelling this process provides a rationale for the ventilation movements documented in the biology literature, whereby arthropods enhance plastron respiration by flapping their limbs or antennae. -
Final Version
STUDIES ON THE FAUNA OF SURINAME AND OTHER GUYANAS: No. 40. Notonectidae of Suriname with additional records of other neotropical species by N. Nieser (Zoologisch Laboratorium, Utrecht) The material studied was mainly collected by Drs. P. H. VAN in DOESBURG, Jr. during his stay Surinam and during a visit to Venezuela. In addition, specimens from the Western Hemisphere brought together in the Rijksmuseum at Leiden by various collectors in and some samples taken Surinam by Dr. P. WAGENAAR HUM- MELINCK have been studied. Some specimens in the author’s col- lection, with unknown collector were also examined. The has been Na- material deposited at the Rijksmuseum van tuurlijke Historie at Leiden (LM); the Zoologisch Museum at Utrecht (UM) and the collection of the author (N). The collection of Drs. P. H. VAN DOESBURG now belongs to the Leiden Museum and is consequently indicated LM too. The author is indebted to Drs. VAN DOESBURG (Rijksmuseum van Natuurlijke Historie, Leiden) for allowing him to study his fine collection and the materials in the Leiden Museum of which he is in charge, and to Dr. WAGENAAR HUMMELINCK for further material. Both have read the manuscript critically and provided valuable suggestions for its completion. The Notonectidae can be distinguished from other families of Hemiptera- Heteropteraby the following characteristics: Antennae shorter than the rostrum head not head; eyes prominent; 4-segmented; fused with prothorax, without ocelli. Abdomen higher than wide, without respiratory funnel, with a ventral median carina laterally beset with hairs (in Buenoa sometimes few). The animals are aquatic raptorial insects and swim ontheir backs. -
Studies on the Genitalia of Some Aquatic and Semi-Aquatic Heteroptera
Studies on the Genitalia of some Aquatic and Semi-Aquatic Heteroptera By B. KUMAR lDeparlmenl of Zoolog-.". Birla College. Pilani. Rajasthan, India) Introduction and Acknowledgementr Genitalia of aquatic Heteroptera have attracted the attention of many workers and there are several valuable works concerning them. Particular mention may be made here of the studies of Pruthi (1925), Larsen (1938), Truxal (1952) and Scudder (1959). But a need for further study of these organs becomes apparent due to their taronomic value. Present paper deals rvith the study of genitalia in twelve families of aquatic and semi-aquatic Heteroplera and their bearing on the classification. The study reveals many inleresting facts hitherto unknown. The author wishes to express his gratitude to Dr. lI. C. Parsons (Canada) for kindly donating many of the otherwise unavailable specimens used in the present study. Grateful thanks are also due to l{r. R. J. lzzard of British \luseunl (Natural History) London for identifying some of the specimens used in the presenl work. Dr. A. K. Datta has given many helpful suggestions itr these invesligations for which the author feels indebted. Syetematic Coneideration of the Genitalia of the Familiee of Aquatic and Semi-Aquatic Heteroptera SALDOIDEA Saldidae Ouipositor (Figs. 1, 2, 3l .SnIrIn sp. probablg dironi First valvifers cone shaped and make contact by lheir poinled ends rvith lhe basivah'ulae of first valvulae; first yalvula is an elongated curved plate rvhich bears distally strong teeth on lhe upper surface, the inner surface of first valvula bears a elongated sclerite (basivalvula), pointed outer and of n'hich makes coutact with the first valvifer as mentioned above; first yalvula bears an arcuate ramus which curves over the first valvifer to make contact by a sclerite (n) with the anlerior extension of the ninth paratergile; second Entomol.Ts. -
Aquatic Macroinvertebrates Section a Aquatic Macroinvertebrates (Exclusive of Mosquitoes)
I LLINOI S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. \oc iatural History Survey. Library iiAOs (ClSCi;; ILLINOIS - NATURAL HISTORY Ai . .ý . - I-w. Iv mk U16 OL SURVEY CHAPTER 9 AQUATIC MACROINVERTEBRATES SECTION A AQUATIC MACROINVERTEBRATES (EXCLUSIVE OF MOSQUITOES) Final Report October, 1985 Section of Faunistic Surveys and Insect Identification Technical Report by Allison R. Brigham, Lawrence M. Page, John D. Unzicker Mark J. Wetzel, Warren U. Brigham, Donald W. Webb, and Liane Suloway Prepared for Wetlands Research, Inc. 53 West Jackson Boulevard Chicago, IL 60604 Arjpp, Section of Faunistic Surveys and Insect Identification Technical Report 1985 (6) 6'Wa- CHAPTER 9 AQUATIC MACROINVERTEBRATES SECTION A AQUATIC MACROINVERTEBRATES (EXCLUSIVE OF MOSQUITOES) Allison R. Brigham, Lawrence M. Page, John D. Unzicker Mark J. Wetzel, Warren U. Brigham, Donald W. Webb, and Liane Suloway INTRODUCTION Aquatic macroinvertebrates are primary and secondary level consumers that play an important role in transferring energy through the different trophic levels of the food chains of aquatic ecosystems. These animals feed upon submerged and emergent macrophytes, plankton, and organic material suspended in the water column. Burrowing and feeding activities aid in the decomposition of plant and animal matter and the eventual recycling of nutrients. In addition, these organisms prey upon each other and serve as food for fishes, certain birds, and other animals. In general, aquatic macroinvertebrates have not been systematically surveyed in Illinois, and rarely have individual species been studied ecologically. This is due, in part, to the inconspicuous nature of most freshwater inverte- brates and the many taxonomic problems which preclude distributional, ecologi- cal, and other studies. -
This Table Contains a Taxonomic List of Benthic Invertebrates Collected from Streams in the Upper Mississippi River Basin Study
This table contains a taxonomic list of benthic invertebrates collected from streams in the Upper Mississippi River Basin study unit as part of the USGS National Water Quality Assessemnt (NAWQA) Program. Invertebrates were collected from woody snags in selected streams from 1996-2004. Data Retreival occurred 26-JAN-06 11.10.25 AM from the USGS data warehouse (Taxonomic List Invert http://water.usgs.gov/nawqa/data). The data warehouse currently contains invertebrate data through 09/30/2002. Invertebrate taxa can include provisional and conditional identifications. For more information about invertebrate sample processing and taxonomic standards see, "Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory -- Processing, taxonomy, and quality control of benthic macroinvertebrate samples", at << http://nwql.usgs.gov/Public/pubs/OFR00-212.html >>. Data Retrieval Precaution: Extreme caution must be exercised when comparing taxonomic lists generated using different search criteria. This is because the number of samples represented by each taxa list will vary depending on the geographic criteria selected for the retrievals. In addition, species lists retrieved at different times using the same criteria may differ because: (1) the taxonomic nomenclature (names) were updated, and/or (2) new samples containing new taxa may Phylum Class Order Family Subfamily Tribe Genus Species Taxon Porifera Porifera Cnidaria Hydrozoa Hydroida Hydridae Hydridae Cnidaria Hydrozoa Hydroida Hydridae Hydra Hydra sp. Platyhelminthes Turbellaria Turbellaria Nematoda Nematoda Bryozoa Bryozoa Mollusca Gastropoda Gastropoda Mollusca Gastropoda Mesogastropoda Mesogastropoda Mollusca Gastropoda Mesogastropoda Viviparidae Campeloma Campeloma sp. Mollusca Gastropoda Mesogastropoda Viviparidae Viviparus Viviparus sp. Mollusca Gastropoda Mesogastropoda Hydrobiidae Hydrobiidae Mollusca Gastropoda Basommatophora Ancylidae Ancylidae Mollusca Gastropoda Basommatophora Ancylidae Ferrissia Ferrissia sp. -
Microsoft Outlook
Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA). -
Butterflies of North America
Insects of Western North America 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University, Fort Collins, CO 80523-1177 2 Insects of Western North America. 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa by Boris C. Kondratieff, Luke Myers, and Whitney S. Cranshaw C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 August 22, 2011 Contributions of the C.P. Gillette Museum of Arthropod Diversity. Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523-1177 3 Cover Photo Credits: Whitney S. Cranshaw. Females of the blow fly Cochliomyia macellaria (Fab.) laying eggs on an animal carcass on Fort Sill, Oklahoma. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, 80523-1177. Copyrighted 2011 4 Contents EXECUTIVE SUMMARY .............................................................................................................7 SUMMARY AND MANAGEMENT CONSIDERATIONS -
Liste Des Punaises Du Québec Et Des Régions Adjacentes (Hemiptera : Heteroptera)
ENTOMOFAUNE DU QUÉBEC LISTE DES PUNAISES DU QUÉBEC ET DES RÉGIONS ADJACENTES (HEMIPTERA : HETEROPTERA) Jean-François Roch DOCUMENT FAUNIQUE no 27 Version 2,3 JUIN 2020 Entomofaune du Québec 2. Photo de la page frontispice Punaise terne Lygus lineolaris (P. de B.) par Lina Breton. Arsenault, J. & L. Breton. 2003. Insectes et maladies des peupliers dans les pépinières forestières. Ministère des Ressources naturelles, de la Faune et des Parcs, Direction de la conservation des forêts, Gouvernement du Québec. 38 p. Entomofaune du Québec inc. 637-108 boulevard Talbot Saguenay, Québec G7H 6A4 (418) 545-5011, poste 2461 (418) 545-5012 Adrélec : [email protected] Site sur la Toile : http://entomofaune.qc.ca/ DOCUMENT FAUNIQUE no 27 Version 2,3 JUIN 2020 HÉMIPTÈRES - HÉTÉROPTÈRES 3. INTRODUCTION Ce document présente une liste des punaises trouvées dans le territoire du Québec et ses régions adjacentes. Elle résulte d’une revue de la littérature entomologique, d’un inventaire de collections appartenant à des organismes publics et à des entomologistes et d’une recherche sur internet. Provancher fut le premier à publier, de 1885 à 1890, un ouvrage d’identification des punaises pour le Canada, mais il donne très peu d’information sur la répartition des espèces. Uhler (1917) cite 163 espèces pour la province et 286 autres dans les régions adjacentes. Fournier (1950) mentionne que Moore (1950) catalogua 560 espèces et variétées. Hutchinson (1979), en se basant seulement sur la littérature entomologique, produisit une liste préliminaire de 101 punaises aquatiques et subaquatiques du Québec, mais cette liste comporte de nombreuses erreurs. Larochelle (1984) publia un important ouvrage d’identification sur les punaises terrestres du Québec, rapportant 488 espèces; en outre, il annexe une liste de 283 espèces et sous-espèces pouvant se rencontrer dans la province. -
Beiträge Zur Bayerischen Entomofaunistik 13: 67–207
Beiträge zur bayerischen Entomofaunistik 13:67–207, Bamberg (2014), ISSN 1430-015X Grundlegende Untersuchungen zur vielfältigen Insektenfauna im Tiergarten Nürnberg unter besonderer Betonung der Hymenoptera Auswertung von Malaisefallenfängen in den Jahren 1989 und 1990 von Klaus von der Dunk & Manfred Kraus Inhaltsverzeichnis 1. Einleitung 68 2. Untersuchungsgebiet 68 3. Methodik 69 3.1. Planung 69 3.2. Malaisefallen (MF) im Tiergarten 1989, mit Gelbschalen (GS) und Handfänge 69 3.3. Beschreibung der Fallenstandorte 70 3.4. Malaisefallen, Gelbschalen und Handfänge 1990 71 4. Darstellung der Untersuchungsergebnisse 71 4.1. Die Tabellen 71 4.2. Umfang der Untersuchungen 73 4.3. Grenzen der Interpretation von Fallenfängen 73 5. Untersuchungsergebnisse 74 5.1. Hymenoptera 74 5.1.1. Hymenoptera – Symphyta (Blattwespen) 74 5.1.1.1. Tabelle Symphyta 74 5.1.1.2. Tabellen Leerungstermine der Malaisefallen und Gelbschalen und Blattwespenanzahl 78 5.1.1.3. Symphyta 79 5.1.2. Hymenoptera – Terebrantia 87 5.1.2.1. Tabelle Terebrantia 87 5.1.2.2. Tabelle Ichneumonidae (det. R. Bauer) mit Ergänzungen 91 5.1.2.3. Terebrantia: Evanoidea bis Chalcididae – Ichneumonidae – Braconidae 100 5.1.2.4. Bauer, R.: Ichneumoniden aus den Fängen in Malaisefallen von Dr. M. Kraus im Tiergarten Nürnberg in den Jahren 1989 und 1990 111 5.1.3. Hymenoptera – Apocrita – Aculeata 117 5.1.3.1. Tabellen: Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 117 5.1.3.2. Apidae, Formicidae, Chrysididae, Pompilidae, Vespidae, Sphecidae, Mutillidae, Sapygidae, Tiphiidae 122 5.1.4. Coleoptera 131 5.1.4.1. Tabelle Coleoptera 131 5.1.4.2. -
Life History of Neoplea Striola (Hemiptera: Pleidae)
The Great Lakes Entomologist Volume 19 Number 4 - Winter 1986 Number 4 - Winter Article 5 1986 December 1986 Life History of Neoplea Striola (Hemiptera: Pleidae) J. E. McPherson Southern Illinois University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation McPherson, J. E. 1986. "Life History of Neoplea Striola (Hemiptera: Pleidae)," The Great Lakes Entomologist, vol 19 (4) Available at: https://scholar.valpo.edu/tgle/vol19/iss4/5 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. McPherson: Life History of <i>Neoplea Striola</i> (Hemiptera: Pleidae) 1986 THE GREAT LAKES ENTOMOLOGIST 217 LIFE HISTORY OF NEOPLEA STRIOLA (HEMIPTERA: PLEIDAE) J. E. McPherson I ABSTRACT The life history of Neop/ea striola was studied in southern Illinois during 1983-1985. This apparently univoltine species overwintered as adults and became active in early March. First instars appeared in mid-May followed by marked overlapping of the subsequent instars. No active adults were found after November. The pygmy backswimmer Neop/ea striola (Fieber) occurs in America north of Mexico from Florida north to Ontario, west to Manitoba, south to Texas, and east to Florida (Sanderson 1982); it has also been reported from Utah (Drake and Chapman 1953). In Illinois. it ha'i been recorded only from the northern 112 of the state (Lauck 1959).