Some Studies on Graminicolous Didymella Spp. in New Zealand

Total Page:16

File Type:pdf, Size:1020Kb

Some Studies on Graminicolous Didymella Spp. in New Zealand Some Studies on Graminicolous Didymella spp. in New Zealand A Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the University Of Canterbury by Michelle Alexandra Mace-::;: 1999 To my family and Nathalie Table of Contents TABLE OF CONTENTS Table of Contents ......................................................................................................... i Table of Figures and Plates .......................................................................................... vii Table of Tables ............................................................................................................ x List of Abbreviations ................................................................................................. xviii Acknowledgements ...................................................................................................... xix Abstract ........................................................................................................................ xxi 1.0 Introduction 1.01 Hosts .................................................................................................................... 1 1.02 Taxonomy of Didymella ...................................................................................... 2 1.021 Appearance of D. exitialis on host substrate and in culture ........................ 2 1.022 Disease impact on wheat and endophytic nature of D. exitialis ................. 3 1.03 Didymella species in the Canterbury and Southland Regions ............................. 5 1.04 Life cycle ............................................................................................................. 7 1.05 The infection process ........................................................................................... 7 1.06 Control .................................................................................................................. 7 1 .07 Resistance ............................................................................................................ 8 1.08 The role of D. exitialis in late summer asthma .................................................... 8 1.09 Aims and objectives of the study ......................................................................... 10 2.0 Field investigations of Didymella spp. 2.01 Introduction .......................................................................................................... 11 2.02 Resistance ............................................................................................................ 11 2.03 Fungicides ............................................................................................................ 11 2.04 Endophytes ........................................................................................................... 12 2.05 Sporobolomyces ................................................................................................... 12 2.06 Latent infections ................................................................................................... 13 2.07 The confusion between the distinction of a latent and an endophytic nature ...... 14 2.08 Yield, endophytes, environment, fungicides and disease .................................... 15 2.09 Aims ..................................................................................................................... 16 2.10 Materials and methods ......................................................................................... 17 2.101 Trials and assessments ................................................................................ 17 2.1011 1995/96 .............................................................................................. 17 2.1012 1996197 .............................................................................................. 18 2.1013 1997/98 .............................................................................................. 18 2.102 Assessments of disease, plant pathogens and senescence in the trials ....... 18 2.1021 1995/96 .............................................................................................. 18 2.1022 1996197 .............................................................................................. 19 2.1023 1997/98 .............................................................................................. 19 2.1 03 Isolations from surface sterilised leaves ..................................................... 19 2.1031 1995/96 and 1996197 ......................................................................... 19 2.104 Enumeration ofleaf surface microflora ...................................................... 20 ii 2.1041 1995/96 .............................................................................................. 20 2.1042 1996/97 .............................................................................................. 21 2.105 Direct counts of micro-organisms present in the phylloplane .................... 22 2.106 High humidity and leaf imprinting ............................................................. 22 2.107 Field survey ................................................................................................. 23 2.1071 1995/96 .............................................................................................. 23 2.1072 1996/97 .............................................................................................. 23 2.108 The effects of fungicide applications on the Sporobolomyces populations .................................................................................................. 24 2.1081 1996/97 and 1997/98 ......................................................................... 24 2.109 Resistance ................................................................................................... 24 2.1091 1995/96 and 1996/97 ......................................................................... 24 2.110 Fungicide experiment ................................................................................. 24 2.20 Results .................................................................................................................. 27 2.201 Disease ........................................................................................................ 27 2.2011 1995/96 .............................................................................................. 27 2.2012 1996/97 .......................................................... , ................................... 27 2.202 Isolations from surface sterilised leaves ..................................................... 28 2.2021 Levels of Didymella spp., Sporobolomyces spp., and bacterial species cultured from wheat leaves from the trials carried out during 1995/96 and 1996/97 .............................................................. 28 2.20211 1995/96 ................................................................................... 28 2.20212 1996/97 ................................................................................... 28 2.2022 Levels of Didymella isolated from tebuconazole and azoxystrobin treated leaves ................................................................ 29 2.20221 1995/96 ................................................................................... 29 2.20222 1996/97 ................................................................................... 29 2.203 Field survey ................................................................................................. 48 2.2031 1995/96 ............................................... :.............................................. 48 2.2032 1996/97 .............................................................................................. 48 2.2033 Grasses present at the crop margins ................................................... 49 2.2034 Resistance .......................................................................................... 50 2.20341 1995/96 and 1996/97 .............................................................. 50 2.2035 Sporulation of Didymella on senesced leaf material ......................... 50 2.20351 1995/96 ................................................................................... 50 2.20352 1996/97 ................................................................................... 52 2.2036 Presence of Sporobolomyces in 1996/97 and 1997/98 ...................... 53 2.2037 Seed plating ....................................................................................... 54 2.2038 Antagonism ................................................................ : ....................... 54 2.2039 High humidity and leaf imprinting .................................................... 54 2.2040 Embedded leaves ............................................................................... 55 2.2041 Leaf clearing ...................................................................................... 56 2.205 Indirect method of enumeration of phylloplane micro-organisms ............. 56 2.2051 Leaf washings .................................................................................... 56 2.20511 1995/96 ................................................................................... 57 2.20512 1996/97 ................................................................................... 59 2.206 The effect of fungicide application on the duration of green flag leaf area ......................................................................................................
Recommended publications
  • Biology and Recent Developments in the Systematics of Phoma, a Complex Genus of Major Quarantine Significance Reviews, Critiques
    Fungal Diversity Reviews, Critiques and New Technologies Reviews, Critiques and New Technologies Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance Aveskamp, M.M.1*, De Gruyter, J.1, 2 and Crous, P.W.1 1CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands 2Plant Protection Service (PD), P.O. Box 9102, 6700 HC Wageningen, The Netherlands Aveskamp, M.M., De Gruyter, J. and Crous, P.W. (2008). Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity 31: 1-18. Species of the coelomycetous genus Phoma are ubiquitously present in the environment, and occupy numerous ecological niches. More than 220 species are currently recognised, but the actual number of taxa within this genus is probably much higher, as only a fraction of the thousands of species described in literature have been verified in vitro. For as long as the genus exists, identification has posed problems to taxonomists due to the asexual nature of most species, the high morphological variability in vivo, and the vague generic circumscription according to the Saccardoan system. In recent years the genus was revised in a series of papers by Gerhard Boerema and co-workers, using culturing techniques and morphological data. This resulted in an extensive handbook, the “Phoma Identification Manual” which was published in 2004. The present review discusses the taxonomic revision of Phoma and its teleomorphs, with a special focus on its molecular biology and papers published in the post-Boerema era. Key words: coelomycetes, Phoma, systematics, taxonomy.
    [Show full text]
  • (US) 38E.85. a 38E SEE", A
    USOO957398OB2 (12) United States Patent (10) Patent No.: US 9,573,980 B2 Thompson et al. (45) Date of Patent: Feb. 21, 2017 (54) FUSION PROTEINS AND METHODS FOR 7.919,678 B2 4/2011 Mironov STIMULATING PLANT GROWTH, 88: R: g: Ei. al. 1 PROTECTING PLANTS FROM PATHOGENS, 3:42: ... g3 is et al. A61K 39.00 AND MMOBILIZING BACILLUS SPORES 2003/0228679 A1 12.2003 Smith et al." ON PLANT ROOTS 2004/OO77090 A1 4/2004 Short 2010/0205690 A1 8/2010 Blä sing et al. (71) Applicant: Spogen Biotech Inc., Columbia, MO 2010/0233.124 Al 9, 2010 Stewart et al. (US) 38E.85. A 38E SEE",teWart et aal. (72) Inventors: Brian Thompson, Columbia, MO (US); 5,3542011/0321197 AllA. '55.12/2011 SE",Schön et al.i. Katie Thompson, Columbia, MO (US) 2012fO259101 A1 10, 2012 Tan et al. 2012fO266327 A1 10, 2012 Sanz Molinero et al. (73) Assignee: Spogen Biotech Inc., Columbia, MO 2014/0259225 A1 9, 2014 Frank et al. US (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this CA 2146822 A1 10, 1995 patent is extended or adjusted under 35 EP O 792 363 B1 12/2003 U.S.C. 154(b) by 0 days. EP 1590466 B1 9, 2010 EP 2069504 B1 6, 2015 (21) Appl. No.: 14/213,525 WO O2/OO232 A2 1/2002 WO O306684.6 A1 8, 2003 1-1. WO 2005/028654 A1 3/2005 (22) Filed: Mar. 14, 2014 WO 2006/O12366 A2 2/2006 O O WO 2007/078127 A1 7/2007 (65) Prior Publication Data WO 2007/086898 A2 8, 2007 WO 2009037329 A2 3, 2009 US 2014/0274707 A1 Sep.
    [Show full text]
  • Rhynchosporium Secalis (Oud.) Davis and Barley Leaf Scald in South Australia
    *^'lii i;['tìrulrr LIßI{ÅIìY Rlrynchosporíum secølis (Oud.) Davis and Barleyl-eaf Scafd in SouthAustralia J.^4. Davidson Depar"lrnent of Plant Science Thesis submitted for Master of Agricultural Science, University of Adelaide, MaY, L992 Pæp AIMS I LITERATIIRE REVIEW 1ll CHAPTER 1: SURVEY OF THE PATHOGENICITY RANGE OF RITVNCHOSPORIUM SECALIS, THE CAUSAI PATHOGEN OF BARLEY LEAF SCALD, IN SOUTH AUSTRALIA. INTRODUCTION 2 GENERAI MATERIALS 2 A. MOBILE NURSERIES Materials and Methods 4 Results 6 B. GLASSHOUSE TESTING Materials and Methods 16 Results 18 C. DISCUSSION % CHAPTER 2: MEASUREMENT OF RESISTANCE TO RHYNCHOSPORIUM SECALIS IN BARLEY, IN THE FIELD AND THE GLASSHOUSE. INTRODUCTION 38 A. FIELD SCREENING Materials and Methods 39 Results 42 B. GLASSHOUSE SCREENING Materials and Methods 46 l) CoupARrsoN oF SpRAy INocur,¿.uoN AND SINGLE DROPLET INOCULATION (i) Spray Inoculation Materials and Methods 47 Results ß (ii) Single Droplet Inoculation Materials and Methods 53 Results 53 Discussion 57 B) MEASUREMENT OF DISEASE COMPONENTS (i) Comparison of four Rhynchosporiurn secalis pathotypes 1 Materials and Methods 58 {,t Results 60 (ii) Effect of inoculum concentration Materials and Methods 72 Results 73 (iii) Measurement of disease components on sixteen barley lines Materials and Methods 80 Results 81 C. DISCUSSION m I CHAPTER 8: YIELD LOSSES IN BARLEY ASSOCIATED WITH LEAF SCALD 4 ,t,l it INTRODUCTION gI, Materials and Methods 95 Results 103 i L DISCUSSION TN 'tj 'l i CHAPTER 4: GENERAL DISCUSSION 7ß I APPEÎ{DICES II ji ,l 't itl i'l "l BIBLIOGRAPITY XXVII ll f,,{ ,] l ! I : I I fl Abstract Title: Rhynchosporium secalis (Oud.) Davis and Barley Leaf Scald in South Australia.
    [Show full text]
  • Taxonomy and Multigene Phylogenetic Evaluation of Novel Species in Boeremia and Epicoccum with New Records of Ascochyta and Didymella (Didymellaceae)
    Mycosphere 8(8): 1080–1101 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/8/9 Copyright © Guizhou Academy of Agricultural Sciences Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae) Jayasiri SC1,2, Hyde KD2,3, Jones EBG4, Jeewon R5, Ariyawansa HA6, Bhat JD7, Camporesi E8 and Kang JC1 1 Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou Province 550025, P.R. China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3World Agro forestry Centre East and Central Asia Office, 132 Lanhei Road, Kunming 650201, P. R. China 4Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 1145, Saudi Arabia 5Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 6Department of Plant Pathology and Microbiology, College of BioResources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei 106, Taiwan, ROC. 7No. 128/1-J, Azad Housing Society, Curca, P.O. Goa Velha, 403108, India 89A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. CircoloMicologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gliStudiNaturalisticidella Romagna, C.P. 144, Bagnacavallo (RA), Italy *Correspondence: [email protected] Jayasiri SC, Hyde KD, Jones EBG, Jeewon R, Ariyawansa HA, Bhat JD, Camporesi E, Kang JC 2017 – Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae).
    [Show full text]
  • The Emergence of Cereal Fungal Diseases and the Incidence of Leaf Spot Diseases in Finland
    AGRICULTURAL AND FOOD SCIENCE AGRICULTURAL AND FOOD SCIENCE Vol. 20 (2011): 62–73. Vol. 20(2011): 62–73. The emergence of cereal fungal diseases and the incidence of leaf spot diseases in Finland Marja Jalli, Pauliina Laitinen and Satu Latvala MTT Agrifood Research Finland, Plant Production Research, FI-31600 Jokioinen, Finland, email: [email protected] Fungal plant pathogens causing cereal diseases in Finland have been studied by a literature survey, and a field survey of cereal leaf spot diseases conducted in 2009. Fifty-seven cereal fungal diseases have been identified in Finland. The first available references on different cereal fungal pathogens were published in 1868 and the most recent reports are on the emergence of Ramularia collo-cygni and Fusarium langsethiae in 2001. The incidence of cereal leaf spot diseases has increased during the last 40 years. Based on the field survey done in 2009 in Finland, Pyrenophora teres was present in 86%, Cochliobolus sativus in 90% and Rhynchosporium secalis in 52% of the investigated barley fields.Mycosphaerella graminicola was identi- fied for the first time in Finnish spring wheat fields, being present in 6% of the studied fields.Stagonospora nodorum was present in 98% and Pyrenophora tritici-repentis in 94% of spring wheat fields. Oat fields had the fewest fungal diseases. Pyrenophora chaetomioides was present in 63% and Cochliobolus sativus in 25% of the oat fields studied. Key-words: Plant disease, leaf spot disease, emergence, cereal, barley, wheat, oat Introduction nbrock and McDonald 2009). Changes in cropping systems and in climate are likely to maintain the plant-pathogen interactions (Gregory et al.
    [Show full text]
  • Agricultural and Food Science, Vol. 20 (2011): 117 S
    AGRICULTURAL AND FOOD A gricultural A N D F O O D S ci ence Vol. 20, No. 1, 2011 Contents Hyvönen, T. 1 Preface Agricultural anD food science Hakala, K., Hannukkala, A., Huusela-Veistola, E., Jalli, M. and Peltonen-Sainio, P. 3 Pests and diseases in a changing climate: a major challenge for Finnish crop production Heikkilä, J. 15 A review of risk prioritisation schemes of pathogens, pests and weeds: principles and practices Lemmetty, A., Laamanen J., Soukainen, M. and Tegel, J. 29 SC Emerging virus and viroid pathogen species identified for the first time in horticultural plants in Finland in IENCE 1997–2010 V o l . 2 0 , N o . 1 , 2 0 1 1 Hannukkala, A.O. 42 Examples of alien pathogens in Finnish potato production – their introduction, establishment and conse- quences Special Issue Jalli, M., Laitinen, P. and Latvala, S. 62 The emergence of cereal fungal diseases and the incidence of leaf spot diseases in Finland Alien pest species in agriculture and Lilja, A., Rytkönen, A., Hantula, J., Müller, M., Parikka, P. and Kurkela, T. 74 horticulture in Finland Introduced pathogens found on ornamentals, strawberry and trees in Finland over the past 20 years Hyvönen, T. and Jalli, H. 86 Alien species in the Finnish weed flora Vänninen, I., Worner, S., Huusela-Veistola, E., Tuovinen, T., Nissinen, A. and Saikkonen, K. 96 Recorded and potential alien invertebrate pests in Finnish agriculture and horticulture Saxe, A. 115 Letter to Editor. Third sector organizations in rural development: – A Comment. Valentinov, V. 117 Letter to Editor. Third sector organizations in rural development: – Reply.
    [Show full text]
  • Comparative Genomics to Explore Phylogenetic Relationship, Cryptic
    Penselin et al. BMC Genomics (2016) 17:953 DOI 10.1186/s12864-016-3299-5 RESEARCHARTICLE Open Access Comparative genomics to explore phylogenetic relationship, cryptic sexual potential and host specificity of Rhynchosporium species on grasses Daniel Penselin1, Martin Münsterkötter2, Susanne Kirsten1, Marius Felder3, Stefan Taudien3, Matthias Platzer3, Kevin Ashelford4, Konrad H. Paskiewicz5, Richard J. Harrison6, David J. Hughes7, Thomas Wolf8, Ekaterina Shelest8, Jenny Graap1, Jan Hoffmann1, Claudia Wenzel1,13, Nadine Wöltje1, Kevin M. King9, Bruce D. L. Fitt10, Ulrich Güldener11, Anna Avrova12 and Wolfgang Knogge1* Abstract Background: The Rhynchosporium species complex consists of hemibiotrophic fungal pathogens specialized to different sweet grass species including the cereal crops barley and rye. A sexual stage has not been described, but several lines of evidence suggest the occurrence of sexual reproduction. Therefore, a comparative genomics approach was carried out to disclose the evolutionary relationship of the species and to identify genes demonstrating the potential for a sexual cycle. Furthermore, due to the evolutionary very young age of the five species currently known, this genus appears to be well-suited to address the question at the molecular level of how pathogenic fungi adapt to their hosts. Results: The genomes of the different Rhynchosporium species were sequenced, assembled and annotated using ab initio gene predictors trained on several fungal genomes as well as on Rhynchosporium expressed sequence tags. Structures of the rDNA regions and genome-wide single nucleotide polymorphisms provided a hypothesis for intra-genus evolution. Homology screening detected core meiotic genes along with most genes crucial for sexual recombination in ascomycete fungi. In addition, a large number of cell wall-degrading enzymes that is characteristic for hemibiotrophic and necrotrophic fungi infecting monocotyledonous hosts were found.
    [Show full text]
  • Molecular Phylogeny of Phoma and Allied Anamorph Genera: Towards a Reclassification of the Phoma Complex
    mycological research 113 (2009) 508–519 journal homepage: www.elsevier.com/locate/mycres Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclassification of the Phoma complex Johannes DE GRUYTERa,b,*, Maikel M. AVESKAMPa, Joyce H. C. WOUDENBERGa, Gerard J. M. VERKLEYa, Johannes Z. GROENEWALDa, Pedro W. CROUSa aCBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands bPlant Protection Service, P.O. Box 9102, 6700 HC Wageningen, The Netherlands article info abstract Article history: The present generic concept of Phoma is broadly defined, with nine sections being recog- Received 2 July 2008 nised based on morphological characters. Teleomorph states of Phoma have been described Received in revised form in the genera Didymella, Leptosphaeria, Pleospora and Mycosphaerella, indicating that Phoma 19 December 2008 anamorphs represent a polyphyletic group. In an attempt to delineate generic boundaries, Accepted 8 January 2009 representative strains of the various Phoma sections and allied coelomycetous genera were Published online 18 January 2009 included for study. Sequence data of the 18S nrDNA (SSU) and the 28S nrDNA (LSU) regions Corresponding Editor: of 18 Phoma strains included were compared with those of representative strains of 39 al- David L. Hawksworth lied anamorph genera, including Ascochyta, Coniothyrium, Deuterophoma, Microsphaeropsis, Pleurophoma, Pyrenochaeta, and 11 teleomorph genera. The type species of the Phoma sec- Keywords: tions Phoma, Phyllostictoides, Sclerophomella, Macrospora and Peyronellaea grouped in a sub- Ascochyta clade in the Pleosporales with the type species of Ascochyta and Microsphaeropsis. The new Coelomycetes family Didymellaceae is proposed to accommodate these Phoma sections and related ana- Coniothyrium morph genera.
    [Show full text]
  • Ohio Plant Disease Index
    Special Circular 128 December 1989 Ohio Plant Disease Index The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio This page intentionally blank. Special Circular 128 December 1989 Ohio Plant Disease Index C. Wayne Ellett Department of Plant Pathology The Ohio State University Columbus, Ohio T · H · E OHIO ISJATE ! UNIVERSITY OARilL Kirklyn M. Kerr Director The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio All publications of the Ohio Agricultural Research and Development Center are available to all potential dientele on a nondiscriminatory basis without regard to race, color, creed, religion, sexual orientation, national origin, sex, age, handicap, or Vietnam-era veteran status. 12-89-750 This page intentionally blank. Foreword The Ohio Plant Disease Index is the first step in develop­ Prof. Ellett has had considerable experience in the ing an authoritative and comprehensive compilation of plant diagnosis of Ohio plant diseases, and his scholarly approach diseases known to occur in the state of Ohia Prof. C. Wayne in preparing the index received the acclaim and support .of Ellett had worked diligently on the preparation of the first the plant pathology faculty at The Ohio State University. edition of the Ohio Plant Disease Index since his retirement This first edition stands as a remarkable ad substantial con­ as Professor Emeritus in 1981. The magnitude of the task tribution by Prof. Ellett. The index will serve us well as the is illustrated by the cataloguing of more than 3,600 entries complete reference for Ohio for many years to come. of recorded diseases on approximately 1,230 host or plant species in 124 families.
    [Show full text]
  • A Polyphasic Approach to Characterise Phoma and Related Pleosporalean Genera
    available online at www.studiesinmycology.org StudieS in Mycology 65: 1–60. 2010. doi:10.3114/sim.2010.65.01 Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera M.M. Aveskamp1, 3*#, J. de Gruyter1, 2, J.H.C. Woudenberg1, G.J.M. Verkley1 and P.W. Crous1, 3 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Dutch Plant Protection Service (PD), Geertjesweg 15, 6706 EA Wageningen, The Netherlands; 3Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands *Correspondence: Maikel M. Aveskamp, [email protected] #Current address: Mycolim BV, Veld Oostenrijk 13, 5961 NV Horst, The Netherlands Abstract: Fungal taxonomists routinely encounter problems when dealing with asexual fungal species due to poly- and paraphyletic generic phylogenies, and unclear species boundaries. These problems are aptly illustrated in the genus Phoma. This phytopathologically significant fungal genus is currently subdivided into nine sections which are mainly based on a single or just a few morphological characters. However, this subdivision is ambiguous as several of the section-specific characters can occur within a single species. In addition, many teleomorph genera have been linked to Phoma, three of which are recognised here. In this study it is attempted to delineate generic boundaries, and to come to a generic circumscription which is more correct from an evolutionary point of view by means of multilocus sequence typing. Therefore, multiple analyses were conducted utilising sequences obtained from 28S nrDNA (Large Subunit - LSU), 18S nrDNA (Small Subunit - SSU), the Internal Transcribed Spacer regions 1 & 2 and 5.8S nrDNA (ITS), and part of the β-tubulin (TUB) gene region.
    [Show full text]
  • Microplastics Accumulate Fungal Pathogens in Terrestrial Ecosystems
    www.nature.com/scientificreports OPEN Microplastics accumulate fungal pathogens in terrestrial ecosystems Gerasimos Gkoutselis1,5, Stephan Rohrbach2,5, Janno Harjes1, Martin Obst3, Andreas Brachmann4, Marcus A. Horn2* & Gerhard Rambold1* Microplastic (MP) is a pervasive pollutant in nature that is colonised by diverse groups of microbes, including potentially pathogenic species. Fungi have been largely neglected in this context, despite their afnity for plastics and their impact as pathogens. To unravel the role of MP as a carrier of fungal pathogens in terrestrial ecosystems and the immediate human environment, epiplastic mycobiomes from municipal plastic waste from Kenya were deciphered using ITS metabarcoding as well as a comprehensive meta-analysis, and visualised via scanning electron as well as confocal laser scanning microscopy. Metagenomic and microscopic fndings provided complementary evidence that the terrestrial plastisphere is a suitable ecological niche for a variety of fungal organisms, including important animal and plant pathogens, which formed the plastisphere core mycobiome. We show that MPs serve as selective artifcial microhabitats that not only attract distinct fungal communities, but also accumulate certain opportunistic human pathogens, such as cryptococcal and Phoma-like species. Therefore, MP must be regarded a persistent reservoir and potential vector for fungal pathogens in soil environments. Given the increasing amount of plastic waste in terrestrial ecosystems worldwide, this interrelation may have severe consequences for the trans-kingdom and multi-organismal epidemiology of fungal infections on a global scale. Plastic waste, an inevitable and inadvertent marker of the Anthropocene, has become a ubiquitous pollutant in nature1. Plastics can therefore exert negative efects on biota in both, aquatic and terrestrial ecosystems.
    [Show full text]
  • Ascochyta Blight of Broad Beans-Didymella Fabae-Ascochyta Fabae Ascochyta Blight Is the Most Severe Disease of Cool-Season Pulses (Davidson and Kimber, 2007)
    U.S. Department of Agriculture, Agricultural Research Service Systematic Mycology and Microbiology Laboratory - Invasive Fungi Fact Sheets Ascochyta blight of broad beans-Didymella fabae-Ascochyta fabae Ascochyta blight is the most severe disease of cool-season pulses (Davidson and Kimber, 2007). The species Didymella fabae (anamorph Ascochyta fabae) that attacks Vicia faba can survive and reproduce in and spread from crop debris or be transported in infected seed. Introduction on infected seed occurred in Australia and Canada in the 1970s, and was probably the means for the pathogens original spread to countries outside of southwestern Asia. Ascospores are disseminated by wind from the debris as primary inoculum and secondary cycles are initiated by conidia spread by rain splash from plant lesions. The fungus is host-specific in causing disease but may be able to survive in non-host plants and reproduce on their debris. It is not treated as a phytosanitary risk or listed as an invasive pathogen by major organizations. Seed certification is the primary means of preventing its spread to new areas and the importation of new genotypes of the fungus to areas already infested. Didymella fabae G.J. Jellis & Punith. 1991 (Ascomycetes, Pleosporales) Colonies of Ascochyta fabae on PDA white to ash-white with sparse to abundant pycnidia; reverse cream to light brown. Colonies more yellow on oat agar. Mycelium abundant, velvety, composed of hyaline to yellowish, smooth, branched, septate hyphae. Pycnidia separate partially immersed, yellow to brown, subglobose to globose, 200-250 µm with usually one papillate ostiole. Conidogenous cells hyaline, short subglobose to cylindrical, arising from innermost layer of cells surrounding pycnidial cavity.
    [Show full text]