國立政治大學資訊科學系 February 2018

Total Page:16

File Type:pdf, Size:1020Kb

國立政治大學資訊科學系 February 2018 國國國ËËË???»»»'''xxxÇÇÇ訊訊訊科科科xxxûûû Department of Computer Science National Chengchi University ©ë論文 Master’s Thesis 治 政 大 立 學 以使(者音樂國 F}記錄¼音樂L®¨¦K研 v ‧ ‧ N a y Learning User Music Listening Logst for Music t i i s o r Playlistn Recommendatione a i v l C n hengchi U 研 v 生:J淳/ 指導Y授:!銘峰 -華民國 一~零七 t 二 月 February 2018 107 © ë 論 文 以 使 ( 者 音 樂 F } 記 政 治 錄 大 ¼ 音 立 樂 學 L ® 國 ¨ ¦ ‧ K ‧ 研 N v a y t t i i s o r n e a v l i Ch Un ? engchi » ' x Ç 訊 科 x û J 淳 / 以使(者音樂F}記錄¼音樂L®¨¦K研v Learning User Music Listening Logs for Music Playlist Recommendation 研 v 生:J淳/ Student:Chun-Yao Yang 指導Y授:!銘峰 Advisor:Ming-Feng Tsai 國國國ËËË???»»»'''xxx ÇÇÇ訊訊訊科科科xxxûûû 治 政©ë論文 大 立 學 國 A Thesis ‧ submitted‧ to Department of Computer Science N aNational Chengchi University y t t i in partiali fulfillment of the Requirementss o r n e a for the degree of i v l C n heMasterngchi U in Computer Science -華民國 一~零七 t 二 月 February 2018 治 政 大 立 學 國 ‧ ‧ N a y t t i i s o r n e a i v l C n hengchi U 2 致致致謝謝謝 很®x(?'1x期間能跟¨銘峰老+2L研v, (與老+x 習的N程-=能感受0老+(xS研v上的±ñ,以Ê(對OL、 0節上的9NU理K¦, 能有這個_會從Áx習&(hË研v上¥ 受指導,M有我Ê)這,的研v成果。 d外,能(老+的¨¦下與 KKBOX 研v團隊合\,對我政而言/個治A³的¯定。 向志明xw一同 研vx習的N程-,讓我對音樂"m有更ñe大的­ã,&從-r取了 將_hx習應((¨¦立領域á的經W。 從mL、xS不同角r上»é 視ãz¦法,這#的觀點切換經Wk©我(思考上更學H'且實際。 最 後F_同#Í要且讓º開Ã的/,(與銘峰老+、釧9老+、志明x w和致¤的q同ª力國 下,我們的研v順)0( 2016 t¼ ACM RecSys 上和'¶分«。 感謝這一切得來不易的_會,讓這些從*想Ï的事 ‧ Å,一個個美}的發生(生;á。 能有這#的經‧ w,感謝6Í(背後h力的/持我@Z的z定,讓我 N (?'的\謐環境下,更加Ã!Á騖0»x習。 _謝謝實W¤*秀的 a y %4們,嘉P、至I、致¤、²文一同(研v上n%和St #,讓這條 t i dh的路p的更加i 暖Ã。 (d要<外感謝²文和Á惠,s d了(研v上 o r 的ø互%*外,(ún北的生;x}有³們的指引,使e我(外0Bx的 N程更加順B。 而研va 最後階段的ñ文撰ë上,謝謝v Jay 和 Peter 從Á l i f予Ð點,k©我最後能TC成這#的嘗f與挑0n, ddK外,我_很 h U «受與`們¤A的N程, 因ºe背on上g的c不h同i ,讓我x習從ê«領域的 觀點-½ú,Í覆省思&嘗f(不同的¹式»ãËêñ的研v, _感 謝`們尊Í、耐Ã0F},&從各ê的專m領域-f予這Ç研v寶´ 的看法。 謝謝(º工zg領域n%的同Á們@S下的ú石, 讓我能(_h x習的研v-, 透N直º0^比思考»激|不同的x習想法,&從- ~尋有意思的¹式»研vOL, x習(ê«的經w»尋思êñ/透N 怎#的!式和外(環境¥ø,而外L的訊o:激È/如U9變êñ的 LºVe, 我喜a透N這#的切«經w»ø^Á通。 最後期1êñ能 精2x習,K(ûq、科x´9的角¦»ãËê6L-多變的#貌, »­ã這世L, &將@領e的Ã得應((>會上&分«這份喜悅f« Á和喜}的º。 JJJ淳淳淳/// 國Ë?»'xÇ訊科xû February 2018 3 以使(者音樂F}記錄¼音樂L®¨¦K研v ---文文文XXX要要要 音樂L®/1一D多首不同C 、¨<的音樂@D成的,它包+ 了è/者的個ºÁs以Ê因應;L、目的'"生而成。 我們可以透N 樂曲的律動、節O、L曲的;L精^,2而è/一個ø應Q合的û列 L曲。 vÊ的音樂6}市4;要/(²路2As台上2L¨B、¨0 的F},;要的s台有 Spotify、Apple Music 以Ê KKBOX。 各¶m者 不®ê/Ð供使(者L曲的搜"、®曲的F},更Ð供訂±專mL® è/者的L®訂±服務,甚至/讓一,的使(者Ã與L®ê訂è/的 N程。 6而如U(有P的B間g針對使(者的F}習c»Ë9s台上 P富的音樂Ç源/個很'的挑0。 上述的N程我們1Kº¨¦,而v M的音樂¨¦研v'多/(對使(者2治Lø關L曲的¨¦,®少能2 一e(更½ad!上的L®上政2L¨¦。 這邊大我們1d一¨¦應(Ð 供Le式向Ïh:法x立習!型,(有W使(者、L曲、L®的pê' >¤²路上,對使(者2LL®的¨¦。 º了能有H的x習úL®¨ ¦的!型,我們更將使(者、L®和L曲的pê'圖學bÍD成二分圖 (bipartite graph),國 &(d圖b的邊上賦予不I的權Í,d一權Í/ ú¼使(者±式ÍKr得的。 ¥W再透N¨_+e(random walk), 9據邊上的權<2L路徑的½#x取,最後再將路徑上‧ 經N的節點2 LLe式向Ïh:法的x習。 我們使(P~里·距離計算各節點h ‧ :法的0近關ÂN ,再將與使(者較ºø關的L®¨¦f使(者。 實W I的è 我a 蒐 t 的Ç料2L 訓y 練 2L W 分, 們 Æ KKBOX i 份 !型 t & ¨ ¦,&將¨¦的Pt 果與使(者@喜愛的L®2L準º¦i (Precision) io s U0, P果I實@得n0的¨¦H果較一,±門L®的¨r ¦來的},且 更 化的L ¦ e º w個º ®¨a 。 i v l C n hengchi U 4 Learning User Music Listening Logs for Music Playlist Recommendation Abstract Music playlist is crafted with a series of songs, in which the playlist cre- ator has controlled over the vibe, tempo, theme, and all the ebbs and flows that come within the playlist. To provide a personalization service to users and discover suitable playlists among lots of data, we need an effective way to achieve this goal. In this paper, we modify a representation learning method for learning the representation of a playlist of songs, and then use the repre- sentation for recommending playlists政 to users.治 While there have been some well-known methods that can model the preference大 between users and songs, little has been done in立 the literature to recommend music playlists. In light of this, we apply DeepWalk, LINE and HPE to a user-song-playlist學 network. To better encode the國 network structure, we separate user, song, and playlist nodes into two different sets, which are grouped by the user and playlist set ‧ and song as the other one. In the bipartite graph, the user and playlist node ‧ are connected toN their joint songs. By adopting random walks on the con- a y structed graph, we can embed users and playlists via the commont informa- t i tion between each other.io Therefore, users can discover their favorites playlists n r through the learned representations.a After the embeddinge process, we then l i v use the learned representations C to perform playlist recommendationn task. Ex- h U periments conducted on a real-worlden datasetgch showedi that these embedding methods have a better performance than the popularity baseline. In addition, the embedding method learns the informative representations and brings out the personal recommendation results. 5 治 政 大 立 學 國 ‧ ‧ N a y t t i i s o r n e a i v l C n hengchi U 6 Contents 致致致謝謝謝 3 ---文文文XXX要要要 4 Abstract 5 治 1 Introduction政 大 1 2 Related Work立 5 2.1 Word Embedding . .學 . .5 2.2 Social Network Representation . .6 2.3 Preserving Network國 Structure . .6 ‧ 3 Methodology 9 3.1 Music Dataset‧ and Creating the Bipartite Graph . .9 3.2 DeepWalk .N . 11 a y 3.3 Large-Scale Information Network Embedding . .t . 12 t i 3.4 Heterogeneous Preferencei Embedding . .s . 13 o r n e 4 Experimental Resultsa v 17 l i 4.1 Experimental Settings .C . .h . .U .n . 17 4.1.1 Dataset and Ground Trutheng . .c .h .i . 17 4.1.2 Similarity Calculation . 18 4.1.3 Evaluation Metrics . 19 4.2 Experimental Results . 20 4.2.1 DeepWalk . 20 4.2.2 LINE . 21 4.2.3 HPE . 22 4.3 Case Study . 23 5 Conclusions 29 Bibliography 31 7 治 政 大 立 學 國 ‧ ‧ N a y t t i i s o r n e a i v l C n hengchi U 8 List of Figures 3.1 Music social network . 10 3.2 The bipartite graph for preference embedding . 11 3.3 Extract a random walk from social network with the specified window size and walking steps . .治 . 12 3.4 An example of first-order and政 second-order proximity大 . 13 3.5 Neural network for learning立 social network representations . 14 3.6 Neural network architecture . .學 . 15 4.1 Playlist: A collection國 of songs . 18 4.2 Comparison between DeepWalk, LINE and HPE on precision‧ rate . 22 4.3 UserA listening‧ behavior . 24 N 4.4 UserB listening behavior . 26 a y t t i i s o r n e a i v l C n hengchi U 9 治 政 大 立 學 國 ‧ ‧ N a y t t i i s o r n e a i v l C n hengchi U 10 List of Tables 4.1 Dataset statistics . 17 4.2 Genre statistics . 17 4.3 DeepWalk parameters definition . 20 4.4 Precision at 20 of DeepWalk with different治 parameter settings . 20 4.5 Precision at 20 of LINE with政 different parameter大 settings . 21 4.6 Precision at 20 of HPE立 with different parameters . 23 4.7 MAP at 20 with different embedding methods . .學 . 23 4.8 User listening statistic國 . 24 4.9 UserA label reference . 25 ‧ 4.10 Playlist: Recommendation playlist . 25 ‧ 4.11 UserB label referenceN . 26 a y 4.12 User performance . .t . 27 t i i s o r n e a i v l C n hengchi U 11 治 政 大 立 學 國 ‧ ‧ N a y t t i i s o r n e a i v l C n hengchi U 12 Chapter 1 Introduction Music streaming services provide various ways治 for users to explore music they like, such as through creating and sharing music政 playlists. To deliver大 songs to users more efficiently, lots of music platforms deploy立 the recommender system to achieve this goal. For music recommendations, the explicit method for recording users’ tastes學 is to let users input their preferences, such as through國 liked or disliked songs. Afterwards, we can apply well known recommendation techniques like content-based filtering or collaborative filtering ‧ [1, 7] approach to predict what a user may enjoy. In current literature, much has been stud- ‧ ied about how to modelN the preference of users and songs for an effective recommender a y system [6, 13, 14]. However, little has been studied how to recommendt a combined set t i of items (i.e., playlists) basedio on user preference logs on individuals items (i.e., songs). n r Therefore, when we want toa recommend playlists to the usere without any pre-existing l i v user preference toward playlist, the C above conventional methodsn obviously become inad- h U equate. In light of this, we proposed to useen Heterogeneousgchi Preference Embedding (HPE) approach [3] based on their past listening songs and construct a user-song-playlist bipar- tite graph to recommend music playlists.
Recommended publications
  • Songliste Koreanisch (Juli 2018) Sortiert Nach Interpreten
    Songliste Koreanisch (Juli 2018) Sortiert nach Interpreten SONGCODETITEL Interpret 534916 그저 널 바라본것 뿐 1730 534541 널 바라본것 뿐 1730 533552 MY WAY - 533564 기도 - 534823 사과배 따는 처녀 - 533613 사랑 - 533630 안녕 - 533554 애모 - 533928 그의 비밀 015B 534619 수필과 자동차 015B 534622 신인류의 사랑 015B 533643 연인 015B 975331 나 같은 놈 100% 533674 착각 11월 975481 LOVE IS OVER 1AGAIN 980998 WHAT TO DO 1N1 974208 LOVE IS OVER 1SAGAIN 970863기억을 지워주는 병원2 1SAGAIN/FATDOO 979496 HEY YOU 24K 972702 I WONDER IF YOU HURT LIKE ME 2AM 975815 ONE SPRING DAY 2AM 575030 죽어도 못 보내 2AM 974209 24 HOUR 2BIC 97530224소시간 2BIC 970865 2LOVE 2BORAM 980594 COME BACK HOME 2NE1 980780 DO YOU LOVE ME 2NE1 975116 DON'T STOP THE MUSIC 2NE1 575031 FIRE 2NE1 980915 HAPPY 2NE1 980593 HELLO BITCHES 2NE1 575032 I DON'T CARE 2NE1 973123 I LOVE YOU 2NE1 975236 I LOVE YOU 2NE1 980779 MISSING YOU 2NE1 976267 UGLY 2NE1 575632 날 따라 해봐요 2NE1 972369 AGAIN & AGAIN 2PM Seite 1 von 58 SONGCODETITEL Interpret 972191 GIVE IT TO ME 2PM 970151 HANDS UP 2PM 575395 HEARTBEAT 2PM 972192 HOT 2PM 972193 I'LL BE BACK 2PM 972194 MY COLOR 2PM 972368 NORI FOR U 2PM 972364 TAKE OFF 2PM 972366 THANK YOU 2PM 980781 WINTER GAMES 2PM 972365 CABI SONG 2PM/GIRLS GENERATION 972367 CANDIES NEAR MY EAR 2PM/백지영 980782 24 7 2YOON 970868 LOVE TONIGHT 4MEN 980913 YOU'R MY HOME 4MEN 975105 너의 웃음 고마워 4MEN 974215 안녕 나야 4MEN 970867 그 남자 그 여자 4MEN/MI 980342 COLD RAIN 4MINUTE 980341 CRAZY 4MINUTE 981005 HATE 4MINUTE 970870 HEART TO HEART 4MINUTE 977178 IS IT POPPIN 4MINUTE 975346 LOVE TENSION 4MINUTE 575399 MUZIK 4MINUTE 972705 VOLUME UP 4MINUTE 975332 WELCOME
    [Show full text]
  • Entertainment&Media
    ENTERTAINMENT&MEDIA CJ E&M CJ CGV CJ HELLOVISION 1 CJ E&M is Asia’s No.1 integrated contents company, offering a variety of contents and platform services, including media, movies, live entertainment, and games. CJ E&M leverages synergies by converging a myriad of contents to lead the global Hallyu with new contents developed for one source for multi-use. 25 Korea’s first Multiplex Theater CGV boasts the largest number of cinemas in Korea and the greatest brand power. CGV has continued to develop a unique cinema experience so that the audience can watch a movie within the optimal environment. Cultureplex offers a new paradigm in movie theaters and is just one of the many innovations that CJ has brought to the movie industry. 41 CJ HelloVision is a leader in the smart platform market, delivering valuable contents and information to customers. CJ HelloVision provides you with advanced services fit for the new media environment. Its products include smart cable TV ‘hello tv Smart,’ digital cable TV ‘hello tv,’ fast speed internet ‘hello net,’ internet home telephone ‘hello fone,’ Korea’s No.1 budget phone service ‘hello mobile’ and the N screen service ‘tving.’ CJ E&M CJ CGV CJ HELLOVISION 2 3 BUSINESS OVERVIEW FINANCIAL HIGHLIGHTS CJ E&M Weight of each business Sales by year (Unit: billion won) CJ E&M Center, 66, Sangamsan-ro, Mapo-gu, Seoul as % of sales www.cjenm.com (As of 2013) 2013 1,716.1 2012 1,394.6 29% Asia’s No.1 Total Contents Company CJ E&M, 2011 1,279.2 45% creating a culture and a trend 12% Media Sales Profit by Year (Unit: billion won) Game 14% CJ E&M is the No.1 total contents company creating culture and trends.
    [Show full text]
  • Digitális Bölcsészet, 2
    2 (2019) <DIGITÁLIS BÖLCSÉSZET> 2 (2019) </DIGITÁLIS BÖLCSÉSZET> Digitális Bölcsészet 2019., második szám <DIGITÁLIS BÖLCSÉSZET> 2 (2019) Felelős szerkesztő: Maróthy Szilvia Szerkesztőség: Fodor János, Kokas Károly, Parádi Andrea Rovatvezetők: Tanulmányok: Kiss Margit Műhely: Péter Róbert Kritika: Almási Zsolt Tanácsadó testület: Bartók István, Fazekas István, Golden Dániel, Horváth Iván, Palkó Gábor, Pap Balázs, Sass Bálint, Seláf Levente Korábbi munkatársaink: Bartók Zsófia Ágnes: szerkesztő, rovatvezető ✝Labádi Gergely: szerkesztő, rovatvezető ✝Orlovszky Géza: tanácsadó testület ISSN 2630-9696 DOI 10.31400/dh-hun.2019.2 Kiadja az ELTE BTK Régi Magyar Irodalom Tanszéke (1088 Budapest, Múzeum krt. 4/A) és a Bakonyi Géza Alapítvány. Felelős kiadó az ELTE BTK Régi Magyar Irodalom Tanszék vezetője. Megjelenik az Open Journal Systems (OJS) v. 3. platformon, melynek működtetését az ELTE Egyetemi Könyvtár- és Levéltár biztosítja. Ez a mű a Creative Commons Nevezd meg! – Ne add el! – Így add tovább! 2.5 Magyaror- szág Licenc (http:==creativecommons.org=licenses=by−nc−sa=2.5=hu=) feltételei- nek megfelelően felhasználható. Honlap: http:==ojs.elte.hu=index.php=digitalisbolcseszet Email cím: [email protected] Tördelés: Hegedüs Béla Grafika: Hegyi Gábor <TANULMÁNYOK> Digitális Bölcsészet 2 (2019) Tóth Tünde Hankuk Egyetem, Dél-Korea [email protected] Életünk a Kínai Szobában* I. Odi et amo Míg a múlt század végén az információtechnológiai kutatások lényegében op- timista, építő munkát jelentettek, és az úttörő kutatók számára egy alapvetően pozitív cyberjövő képe sejlett fel, ahol a technológia elsősorban az információ- és tudáshozzáférést segíti, addig a 21. század embere számára Searle „Kínai Szoba” argumentuma lassan oly módon lesz a mindennapok valósága, hogy a bennünket körülvevő cybervilágban elveszítjük a kontrollt a bemenet és/vagy a kimenet vagy az információ, a tartalom, sőt, néha éppen a saját privát szféránk felett.
    [Show full text]
  • Spring 2019 Millini
    The Millini— June 2019 Millini— Spring 2019 Volume 2019, Issue 1 The MILLINI A publication from University of Illinois at Urbana-Champaign Department of Military Science The Millini— June 2019 Millini— Spring 2019 Volume 2019, Issue 1 THE STORE Fighting Illini Battalion Hoodie: $37 Battalion Polo Unisex/Ladies Cut: $35 Ranger Buddy Hoodie: $35 The Fighting Illini Battalion store has been updated with some of the cadet designs from the past year. If interested in purchasing any of these items, fill out an order form at the following website: https://stores.inksoft.com/army_rotc/shop/home. You will pay and receive your order straight from the vendor. Also, we often have alumni that see in the MILLINI shirts the cadets are wearing for training and ask to purchase one of these shirts. Some of these are available for a “donation” to the program (see page 31). If you have questions about any of these items, please contact Eric Ashworth at [email protected]. 2 The Millini— June 2019 Millini— Spring 2019 Volume 2019, Issue 1 TABLE OF CONTENTS Inside this issue: Fighting Illini Battalion Store 2 Message from the Professor of Military Science 4 Message from the Senior Military instructor 5 Message from the new Professor of Military Science 6 MS-I Class Update 7 MS-II Class Update 8-9 MS-III Class Update 10-11 MS-IV Class Update 12 Where Are They Now?: An Alumni Update 13 Cadet Spotlights/Club Updates 14-17 Battalion Training Events 18-27 Illini Legacy: Remembering the Past 28-29 Fighting Illini Hall of Fame Information 30 Keeping in Touch with the Fighting Illini Battalion 31 MS-III cadets pose for a picture after a successful lab! The Fighting Illini Army ROTC Battalion Forging Strong Leaders Since 1868 Army ROTC: (217) 244-1407 [email protected] Armory, Room 113 3 The Millini— June 2019 Millini— Spring 2019 Volume 2019, Issue 1 Message from the Professor of Military Science by LTC Randall Smith This is my final time to address you as the Professor of Military Science for the Fighting Illini Army ROTC Battalion.
    [Show full text]
  • Roy Kim Becomes Eighth Victim in a Year of Suicides
    DECEMBER 2018 www.taxiliverytimes.com Vol.19 No. 12 Lea los artículos en & español. An Insider’s Look at Both NYC TLC Regulated Industries ROY KIM BECOMES EIGHTH VICTIM IN A YEAR OF SUICIDES ROY KIM SE CONVIERTE EN LA OCTAVA VÍCTIMA EN UN AÑO DE SUICIDIOS Cop Drags Sick Livery Driver Protect Your Do Women Pay Driver Out of Car Shot in Packages and Car “Pink Tax” for After Crash Brooklyn During Holidays NYC Rides? TAXI & LIVERY TIMES 2 • • DECEMBER 2018 TLC DRIVER SERVICES, INC. TLC DRIVER SCHOOL All TLC Summonses TLC DRIVER SCHOOL DMV Traffic Tickets Offering AALLLL Required TLC Driver Classes The TLC Driving Institute was founded by industry experts to provide the highest level of education A dedicated team of lawyers for Black Car / For-Hire Vehicle (FHV), SHL and providing the necessary Taxi Drivers. It is also our mission to deliver the expertise, knowledge and experience to effectively most convenient and accommodating classes represent all licensees – and programs in NYC. including drivers, vehicle owners & base owners – in the transportation industry. New TLC Base Applications 718-729-4700 It’s about time that you defend yourself 3 Convenient Locations and protect your Long 3Island1-00 47th City, Avenue NY 11101 DMV & TLC License! (Inside the TLC Building-1st floor) 60-19 Woodside,Roosevelt Avenue NY 11377 - 2nd floor 7 Train to Woodside-61st St Stop Gregory Gallo Bronx,135 Lincoln NY 10454 Ave., Attorney at Law 6 Train to 138th Street Station 718-255-9500 We handle all 2244 HOURHOUR CLASSESCLASSES TLC and DMV DAYDAY && NIGHTNIGHT CLASSESCLASSES matters! CUSTOMIZABLECUSTOMIZABLE SCHEDULESSCHEDULES FINALFINAL EXAMEXAM TESTINGTESTING Our goal is to give you the best legal WHEELCHAIRWHEELCHAIR (WAV)(WAV) CLASSCLASS defense available and to keep your license protected at all times.
    [Show full text]
  • El K-Pop Y La Interacción Parasocial En España
    TESIS DOCTORAL 2020 - UNIVERSIDAD DE MÁLAGA EL K-POP Y LA INTERACCIÓN PARASOCIAL EN ESPAÑA: EL FENÓMENO FAN EN INSTAGRAM JULIA RODRÍGUEZ CASTILLO DIRECTORA: ANA ALMANSA MARTÍNEZ Doctorado Interuniversitario en Comunicación de las universidades de Málaga, Cádiz, Huelva y Sevilla en la línea de Publicidad y Relaciones Públicas AUTOR: Julia Rodríguez Castillo https://orcid.org/0000-0003-4379-9820 EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial- SinObraDerivada 4.0 Internacional: http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode Cualquier parte de esta obra se puede reproducir sin autorización pero con el reconocimiento y atribución de los autores. No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer obras derivadas. Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de Málaga (RIUMA): riuma.uma.es UNIVERSIDAD DE MÁLAGA, ESPAÑA Facultad de Ciencias de la Comunicación 2017-2020 Tesis Doctoral EL K-POP Y LA INTERACCIÓN PARASOCIAL EN ESPAÑA: EL FENÓMENO FAN EN INSTAGRAM Programa de Doctorado: Doctorado Interuniversitario en Comunicación de las universidades de Málaga, Cádiz, Huelva y Sevilla en la línea de Publicidad y Relaciones Públicas DOCTORANDA: JULIA RODRÍGUEZ CASTILLO DIRECTORA: ANA ALMANSA MARTÍNEZ Dra. Dña. Ana Almansa Martínez, Profesora Titular de Universidad, adscrita al Departamento de Comunicación Audiovisual y Publicidad, de la Universidad de Málaga, como tutora y directora de esta tesis doctoral, realizada por Dña. Julia Rodríguez Castillo, INFORMA QUE: Una vez finalizada la investigación y conforme a la normativa vigente, AUTORIZA la presentación y defensa de la tesis, por considerar que reúne los requisitos formales, científicos y de originalidad necesarios para ser defendida ante el Tribunal constituido al efecto, para la obtención del Grado de Doctor.
    [Show full text]
  • Download (1MB)
    2.1 Pusat Seni dan Budaya 2.1.1 Pengertian Pusat Kata “pusat” memiliki arti sebagai suatu tempat yang letaknya ada di tengah-tengah, pokok pangkal, atau yang menjadi pumpunan (KBBI)20. 2.1.2 Pengertian Seni Seni diartikan sebagai kehalian membuat karya yang bermutu, karya yang dihasilkan dengan kehalian yang luar biasa. (KBBI)21. Potensi yang dimiliki setiap orang berbeda antara satu dengan yang lain. Di dalam seni, perbedaan potensi memunculkan jenis-jenis seni yang berbeda sesuai dengan bakat seseorang yang melakukan seni (seniman). Masing-masing jenis seni memiliki ciri khas dan wujud dari seni tersebut, berikut penjelasan beberapa jenis seni secara umum : 2.1.2.1 Jenis dan Wujud Seni a. Senni Musik Menurut Suhastarja dari Institut Seni Indonesia (ISI, Yogyakara), seni musik atau seni suara merupakan seni yang dapat dinikmati melalui indera pendengaran dalam bentuk rangkaian nada atau bunyi dengan ritme dan harmoni serta mempunyai suatu bentuk dalam ruang dan waktu yang dikenal oleh diri sendiri dan orang lain dalam lingkungan hidupnya22. Seni musik ini dibagi lagi menjadi musik vokal dan musik instrumental. Musik vokal adalah musik yang mengandalkan suara manusia, sedangkan musik instrumental adalah musik yang diperoleh dari hasil memainkan alat musik. (9EMK=K9J9@9K9&F<GF=KA9GFDAF= !@>-? @LLH C::A O=: A< HMK9L<A9CK=KH9<90=HL=E:=J 4& !=H9JL=E=F-=F<A<AC9F+9KAGGF9D 1?-7-:!1=?-9-05>5& '9C9JL99D9A-MKL9C9@DE 4MD9FK9JA /9E9<@9FA #1:50-:-.-:3-.-:3:D- @LLH J9E9<@9FAOMD9FK9JA :DG?KHGL ;GE K=FA H=F?=JLA9FB=FAK<DD @LED <A9CK==KH9<90=HL=E:=J
    [Show full text]
  • Nostalgia and Hapa Haole Music in Early
    , (y u'\'iA!ILlBK"""j UNIVERSIITY -- - ,. I'LL REMEMBER YOU: NOSTALGIA AND HAPA HAOLE MUSIC IN EARLY TWENTY-FIRST CENTURY HAWAI'I A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HA WAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS IN MUSIC AUGUST 2007 by Masaya Shishikura Thesis Committee: Ricardo D. Trimillos, Chairperson Frederick Lau Christine R. Yano , ii, We certify that we have read this thesis and that, in our opinion, it is satisfactory in scope and quality as a thesis for the degree of Master of Arts in Music THESIS COMMITTEE ~~~'~ Chairperson + HAWN CB5 .H3 no. 3~2~ , III Copyright by Masaya Shishikura 2007 All Rights Reserved IV DEDICATION This is dedicated to my parents Makoto and Hiroko Shishikura v ACKNOWLEDGMENTS After passing this thesis defense and coming back to Japan, within a month, Hawai'i and its people became nostalgic to me. I miss the large plate lunch, the gentle rain showers and the people, who collaborated and supported this thesis. I would like to acknowledge them briefly below. First, I thank my thesis committee members: Drs. Ricardo D. Trimillos, Frederick Lau and Christine R. Yano. They patiently kept on encouraging and advising me in the course of writing. Also, my gratitude extends to Dr. Ty P. Kawika Tengan, who acted as a proxy of Dr. Yano in the defense. All of them gave me insightful comments and suggestions, which are included in this thesis. All the classes at the University of Hawai'i at Manoa helped me to establish scholarship as an ethnomusicologist.
    [Show full text]
  • CJ ENM (035760 KQ ) Strong and Flexible Content Leader
    CJ ENM (035760 KQ ) Strong and flexible content leader Media Initiate coverage with Buy and TP of W310,000 Company Report We initiate our coverage on CJ ENM with a Buy rating and target price of W310,000. In order to derive our target price, we applied the sum-of-the-parts (SOTP) method by April 3, 2019 summing up the values of the media (W1.9tr; CJ E&M previously), and commerce (W1.1tr; CJ O Shopping previously) businesses, as well as equity holdings (W3.75tr). In our view, shares of CJ ENM, which was created via the merger CJ E&M and CJ O (Initiate) Buy Shopping in July 2018, have entered a recovery phase. We believe that year 2019 will mark the begin ning of operating profit contribution of the media business (broadcasting, film, music) exceeding 50% (versus 38.6% in 2018), which is highly likely to drive a Target Price (12M, W) 310,000 valuation rerating going forward. It is also encouraging that CJ ENM is now positioned to finance its content investments - which will likely show a steady increase to support Share Price (04/03/19, W) 236,500 strong revenue and operating profit growth (an estimated CAGR of 9.8% and 20.9% over the next two years) - with increased cash flows (pre-merger CJ O Shopping). Expected Return 31% Strong content player remains resilient in face of platform changes Changes in content platforms and competition among different platforms will continue OP (19F, Wbn) 385 going forward; technological advances usher in the evolution of content distribution Consensus OP (19F, Wbn) 377 platform, leading to constant ch anges in content delivery channels and business models.
    [Show full text]
  • CJ ENM Bloomberg: 035760 KS, Reuters: 035760.KS
    Regional Company Focus CJ ENM Bloomberg: 035760 KS, Reuters: 035760.KS Refer to important disclosures at the end of this report DBS Group Research . Equity 9 Nov 2018 BUY, KRW219,000 KOSDAQ: 693.7 Strength in content business (Closing price as of 08/11/18) underpins earnings Price Target 12-mth: KRW300,000 • If not for IPTV commission hike, 3Q18 earnings would Reason for Report: 3Q18 earnings review have been a positive surprise Potential catalyst: Synergies between its digital channels and • To continue outperforming the market in terms of TV ad commerce business revenue growth Where we differ: We are more optimistic than the market for FY18F, but more conservative for FY19/20F • Commerce margins to recover in near term Analyst • Retain BUY, keep our TP of KRW300,000 Regional Research Team [email protected] Media: Stronger than expected TV and digital ad revenue. CJ ENM’s media division posted its highest-ever quarterly OP of KRW37.2bn (+305% y-o-y) in 3Q18. With the airing of premium content such as Price Relative ‘Boyfriend’ and ‘Memories of the Alhambra’ and several other 350,000 130 popular shows in 4Q18, CJ ENM’s TV ad revenue outperformance 300,000 120 250,000 110 and digital ad revenue growth should persist. Sales to Chinese and 100 200,000 global over-the-top (OTT) service providers also seem likely. 90 150,000 80 Commerce: Temporary dent to margins. Gross merchandise sales 100,000 70 50,000 60 were solid at KRW935.9bn (+5% y-o-y) with KRW80.2bn from T 0 50 commerce (+36% y-o-y) and KRW267.5bn from mobile commerce Nov-14 Jun-15 Jan-16 Aug-16 Mar-17 Oct-17 May-18 Stock price(LHS,KRW) Rel.
    [Show full text]
  • 2HEART Tell Me Why 2NE1 Falling in Love 2NE1 Clap Your Hands
    K-Pop # 2HEART Tell Me Why 2NE1 Falling In Love 2NE1 Clap Your Hands 2NE1 Come Back Home 2NE1 Crush 2NE1 Gotta Be You 2NE1 If I Were You 2NE1 Missing You 2PM Game Over 2PM Go Crazy 2Yoon 24:7 4K Rocking Girl 4MEN Erase 4MEN Propose Song 4MINUTE Hate 4MINUTE Is It Poppin' 4Minute Volumen Up 4MINUTE Whatcha Doin' Today 4MINUTE What's Your Name 9MUSES GUN 100% Guy Like Me 100% Want U Back A AA Call After School Flashback After School First Love Ailee Heaven Ailee I Will Show You Ailee Scandal Ailee U&I A-JAX 2MYX A-JAX HOT GAME Akdong Musician 200% Akdong Musician Eyes, Nose, Lips Akdong Musician Give Love Akdong Musician Melted Ali Don't Act Countrified Ali Eraser Ali I'll Be Damned AOA Confused AOA Elvis AOA BLACK MOYA A-PINK Fairytale Love A-PINK Hush A-PINK I Dont know A-PINK Mr Chu A-PINK My My A-PINK NoNoNo A-PINK Remember April Dream Candy Ateez Illusion B B.A.P. 1004 B.A.P. BADMAN B.A.P. Coffee Shop B.A.P. COMA B.A.P. Crash B.A.P. Hurricane K-Pop 1 / 10 B.A.P. NO MERCY B.A.P. One Shot B.A.P. POWER B.A.P. PUNCH B.A.P. Rain Sound B.A.P. Stop It B.A.P. Unbreakable B.A.P. Warrior B1A4 Baby I'm Sorry B1A4 Beautiful Target B1A4 O.K. B1A4 Solo Day B1A4 Sweet Girl B1A4 What's Happening BabySoul No Better Than Strangers Baekhyun Bambi Baekhyun Like Rain, Like Music Bang Yong Gook I Remember Bang Yong Guk & ZELO Never Give Up BB.
    [Show full text]
  • 2019-2020 (Pdf)
    The Faculty of Science congratulates the following students who have earned a place on the Dean’s List. To be on the Dean’s Honor List for that academic year, a student must have earned an A average, with no failures. Shehryar Ahsan Ali Aamir Juhi Bora Hanxuan Cui Andrew Gan Jessica Jagiello Sydney Paige LaPierre Megan Patricia Marshall Daniella Rachel Ostrovsky Aisha Safdar Romina Tabesh Julia Diana Wilson Natasha Temiloluwa Abayomi Matthew Borinsky Christina Irene Cuicani Xueying Gan Nuzhat Tasneem Jahin Phillip-Samuel Aseda Afriyie Larbi Hannah Paige Martin Shiya Ou Parmida Safdari Nusaibah Tahsin Mikaela Lara Wilson Lipika Abbareddy Kathleen Isabelle Ada Bornais Celeste Patricia Culp Siddharth Gandhi Rachel Emma Jairam Stephanie Mary Hope Larmer Julia Teresa Martin Kassie Lynne Ouellette Sanaa Sagar Kudrat Takhar Kirk-Waldo Wenceslaus Wilson Deena Abbas Jessica Leanne Bosso Scott Zachary Culver Radhika K Gandhi Nilram Jalilian Andrew Latobesi Jacobo Martinez Acevedo Faye Ounkham Mhd Taisir Sahlol Rangana Hansamali Talpe Guruge Paul Winiarz Jonathan Michael Abbruzzese Camryn Mackenzie Boston Megan Nicole Cunerty Sree Jinesh Gandhi Owen Robert James Justine Lau Anthony Michael Marzanek Charlotte Anita Owen Kuljit Kaur Sahota Jishnu Pathak Talukdar Sydney Lauren Wisener Omer Abdalla Alexandra Lee Bouchard Rachel Margherita Cupoli Yiyang Gao Charlette Nadine James Ethan Edward Lau Dana Muhammad Masaal Carolyn Owen Avneet Avi Sahota Suveda Talwar Lynda Jiayi Wo Hassan Faisal Abdallah Wendy Pamela Boucher Dana Cristiana Curca Ming Gao Christian
    [Show full text]