Abbott's Flatland, 61 Accidental Symmetry, 26 Acetanilide, 62Ff
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mass Spectrometric Research of Hydrogenated Molecules of Carbon As Products of Pyrolysis of Benzene and Pyridine Vapours
Chemical and Materials Engineering 1(4): 122-131, 2013 http://www.hrpub.org DOI: 10.13189/cme.2013.010404 Mass Spectrometric Research of Hydrogenated Molecules of Carbon as Products of Pyrolysis of Benzene and Pyridine Vapours Alexey Kharlamov1, Marina Bondarenko1,*, Ganna Kharlamova2 1Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev, Ukraine 2Taras Shevchenko National University of Kiev, Volodymyrs'ka St. 64, 01601 Kiev, Ukraine *Corresponding Author: [email protected] Copyright © 2013 Horizon Research Publishing All rights reserved. Abstract Hydrogenated carbon molecules are to speak about creation on the basis of system of convertible synthesized by a method which essentially is distinct from reactions already known methods of preparation of fulleranes as this C60+30H2 C60H60 (1) method a preliminary stage of synthesis of carbon molecules accumulator of hydrogen with so huge (7.7mass. %) contents is excluded completely. Fulleranes and quasi-fulleranes as ⇌ of hydrogen. Though here it is necessary to note, that in nanodimentional particles were in common deposited by dodecahedrane С Н , which was synthesized by Paquette ethanol from benzene-xylene extracts from products of 20 20 [4] three years prior to opening of fullerene С (and 8 years pyrolysis of vapours of benzene and pyridine. The 60 prior to obtaining of first fullerane C H ), the ratio Н/C is dehydrogenation of the synthesized samples of fulleranes 60 36 the same (1/12) as in fullerene С Н . However of so and quasi-fulleranes is started at 30-50 °C and the evacuation 60 60 steadfast interest of the researchers this controllable of hydrogen proceeds up to 700 °C. -
Functionalized Aromatics Aligned with the Three Cartesian Axes: Extension of Centropolyindane Chemistry*
Pure Appl. Chem., Vol. 78, No. 4, pp. 749–775, 2006. doi:10.1351/pac200678040749 © 2006 IUPAC Functionalized aromatics aligned with the three Cartesian axes: Extension of centropolyindane chemistry* Dietmar Kuck‡ Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany Abstract: The unique geometrical features and structural potential of the centropolyindanes, a complete family of novel, 3D polycyclic aromatic hydrocarbons, are discussed with respect to the inherent orthogonality of their arene units. Thus, the largest member of the family, centrohexaindane, a topologically nonplanar hydrocarbon, is presented as a “Cartesian hexa- benzene”, because each of its six benzene units is stretched into one of the six directions of the Cartesian space. This feature is discussed on the basis of the X-ray crystal structures of centrohexaindane and two lower members of the centropolyindane family, viz. the parent tribenzotriquinacenes. Recent progress in multiple functionalization and extension of the in- dane wings of selected centropolyindanes is reported, including several highly efficient six- and eight-fold C–C cross-coupling reactions. Some particular centropolyindane derivatives are presented, such as the first twelve-fold functionalized centrohexaindane and a tribenzo- triquinacene bearing three mutually orthogonal phenanthroline groupings at its molecular pe- riphery. Challenges to further extend the arene peripheries of the tribenzotriquinacenes and fenestrindanes to give, eventually, graphite cuttings bearing a central bowl- or saddle-shaped center are outlined, as is the hypothetical generation of a “giant” nanocube consisting of eight covalently bound tribenzotriquinacene units. Along these lines, our recent discovery of a re- lated, solid-state supramolecular cube, containing eight molecules of a particular tri- bromotrinitrotribenzotriquinacene of the same absolute configuration, is presented for the first time. -
The Synthesis of Hindered Aliphatic Ketones for the Future Production of Spiro [4.5] Decane Sesquiterpenes
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1986 The Synthesis of Hindered Aliphatic Ketones for the Future Production of Spiro [4.5] Decane Sesquiterpenes Stephen Lee Hodges College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Organic Chemistry Commons Recommended Citation Hodges, Stephen Lee, "The Synthesis of Hindered Aliphatic Ketones for the Future Production of Spiro [4.5] Decane Sesquiterpenes" (1986). Dissertations, Theses, and Masters Projects. Paper 1539625343. https://dx.doi.org/doi:10.21220/s2-jkzs-gq54 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. THE SYNTHESIS OF HINDERED ALIPHATIC KETONES FOR THE FUTURE PRODUCTION OF SPIRO[4.5] DECANE SESQUITERPENES A Thesis Presented to The Faculty of the Department of Chemistry The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Arts t>y Stephen Lee Hodges 1986 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts Author Approved, February 1986 David W. Thompson, Ph.D \\ j j D Trevor B. Hill, Ph.D. andolph A. Coleman, Ph.D. TABLE OF CONTENTS Page ABSTRACT................... vi INTRODUCTION........................................ 2 DISCUSSION............................................. 21 EXPERIMENTAL...........................................31 Spiro[4.5]dec-6-ene-lf 8-trione . .......... 31 2 -Isopropyl-l, 3-cyclopentanedione.............. -
WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK). -
New Perspectives on Polyhedral Molecules and Their Crystal Structures Santiago Alvarez, Jorge Echeverria
New Perspectives on Polyhedral Molecules and their Crystal Structures Santiago Alvarez, Jorge Echeverria To cite this version: Santiago Alvarez, Jorge Echeverria. New Perspectives on Polyhedral Molecules and their Crystal Structures. Journal of Physical Organic Chemistry, Wiley, 2010, 23 (11), pp.1080. 10.1002/poc.1735. hal-00589441 HAL Id: hal-00589441 https://hal.archives-ouvertes.fr/hal-00589441 Submitted on 29 Apr 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Physical Organic Chemistry New Perspectives on Polyhedral Molecules and their Crystal Structures For Peer Review Journal: Journal of Physical Organic Chemistry Manuscript ID: POC-09-0305.R1 Wiley - Manuscript type: Research Article Date Submitted by the 06-Apr-2010 Author: Complete List of Authors: Alvarez, Santiago; Universitat de Barcelona, Departament de Quimica Inorganica Echeverria, Jorge; Universitat de Barcelona, Departament de Quimica Inorganica continuous shape measures, stereochemistry, shape maps, Keywords: polyhedranes http://mc.manuscriptcentral.com/poc Page 1 of 20 Journal of Physical Organic Chemistry 1 2 3 4 5 6 7 8 9 10 New Perspectives on Polyhedral Molecules and their Crystal Structures 11 12 Santiago Alvarez, Jorge Echeverría 13 14 15 Departament de Química Inorgànica and Institut de Química Teòrica i Computacional, 16 Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain). -
Redalyc.On the Heats of Formation of Alkanes
Journal of the Mexican Chemical Society ISSN: 1870-249X [email protected] Sociedad Química de México México Lii, Jenn-Huei; Allinger, Norman L. On the Heats of Formation of Alkanes Journal of the Mexican Chemical Society, vol. 53, núm. 3, julio-septiembre, 2009, pp. 96-107 Sociedad Química de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=47512154004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative J. Mex. Chem. Soc. 2009, 53(3), 96-107 Article © 2009, Sociedad Química de México ISSN 1870-249X On the Heats of Formation of Alkanes¹ Jenn-Huei Lii and Norman L. Allinger* Department of Chemistry, Chemistry Annex, University of Georgia, Athens, Georgia 30602 We would like to dedicate this paper to the memory of the good friend and long term colleague of the senior author, Professor Ernest L. Eliel Received April 21, 2009; accepted August 11, 2009 Abstract: A broad diverse test set of alkanes and cycloalkanes previ- Resumen: Se describen los cálculos de calores de formación de ously studied with MM4 calculations has had the heats of formation un conjunto amplio y diverso de alcanos y cicloalcanos que habían calculated by several different quantum mechanical methods: Hartree- sido estudiados previamente por el método MM4. En este trabajo Fock, MP2, and MP4, and also by B3LYP and B3LYP + dispersion se emplean diversos métodos de mecánica cuántica, entre ellos se energy. -
Aeronautics and Space Report of the President
Aeronautics and Space Report of the President 1 9 75 Activities NOTE TO READERS: ALL PRINTED PAGES ARE INCLUDED, UNNUMBERED BLANK PAGES DURING SCANNING AND QUALITY CONTROL CHECK HAVE BEEN DELETED Aeronautics and Space Report of the President I975 Activities National Aeronautics and Space Administration Washington, D.C. 20546 President’s Message of Transmittal To the Congress of the United States: We continued to probe the unknown in space. Pioneer 10 will be the first Inan-made object to I am pleased to transmit this report on the Nation‘s venture beyond our solar system. Pioneer 11 will progress in space and aeronautics during 1975. This make the first flyby of Saturn in 1979. In passing report is provided in accordance with Section 206 of Jupiter these vehicles sent back pictures that added the National Aeronautics and Space Act of 1958 as greatly to our knowledge of the largest planet. Last amended (42 U.S.C. 2476). August and September we launched two Viking was another year of continued progress in 1975 spacecraft toward Mars. They will arrive at the the Nation’s space and aeronautics activities. It height of our Bicentennial celebration and may marked significant accomplishments in many areas. provide information on the existence of life in some Earth-orbiting satellites continued to bring new form on our neighboring planet. and increased benefits in a variety of applications. In aeronautics, research focused on the technologies Two additional international communications satel- needed to reduce fuel requirements, noise, and pollu- lites were launched, expanding the already impressive tion. Also emphasized was improved reliability, international satellite communications capability. -
Cyclopentane Synthesis
Cyclopentane Synthesis Dan O’Malley Baran Group Meeting Cyclopentane Synthesis Group Meeting O'Malley 2/9/2005 This presentation is broken down into the following catagories. Some reactions either fit more than one Students of organic chemistry are taught a number of reactions for the synthesis of category or do not fit easily into any of them. Efforts have been made to place all such reactions in the cyclohexanes at a very early stage of their careers. Techniques for the creation of cyclopentanes, most appropriate category. however, are generally taught at a much later stage and are rarely given the same detailed treatment. This may be the result of the fact that there are no equivalents of reactions such as the Diels-Alder and I. General Information Robinson Annulation in terms of generality, extent of use, and historical importance. This may, in turn, II. Ionic Reactions be caused by the fact that the cyclopentane is an inherintly "umpoled" functionality, as illustrated below. III. Metal Mediated Reactions IV. Radical Reactions FG V. Pericyclic and Pseudo-pericyclic Reactions VI. Ring Expansion and Contraction Reactions I. General Information This situation is further exacerbated by the general lack of cheaply available cyclopentane compounds Baldwin's rules in the chiral pool; wheras a number of cyclohexane terpenes are readily available for elaboration, there Baldwin has divided ring closure reactions into those that are "favored" and those that are "disfavored". are no analogous cylcopentane natural products. Cyclopentanes are however, present in many Those that are disfavored are not always impossible, but are frequently much more difficult to effect. -
University Microfilms International 300 N
8100108 Ba l o g h , D o u g l a s W a y n e THE SYNTHESIS OF SECODODECAHEDRANE AS A POTENTIAL PRECURSOR TO THE PENTAGONAL DODECAHEDRANE The Ohio State University PH.D. 1980 University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106 THE SYNTHESIS OF SECODODECAHEDRANE AS A POTENTIAL PRECURSOR TO THE PENTAGONAL DODECAHEDRANE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Douglas Wayne Balo'gh, M. S. ***** The Ohio State University 1980 Reading Committee: Approved By Dr. P h ilip D. Magnus Dr. David J. Hart ________ A dviser' Dr. Leo A. Paquette Department of Chemistry ACKNOWLEDGMENTS The author gratefully acknowledges the fbllowing individuals who have contributed in varying degrees to the project: Dr. William Begley, Dr. Martin Banwell, Dr. David Bremner, and Dr. Robert Blanken ship. Appreciation is also expressed for the careful, concise work reported in the dissertation of the project*s initiator, Dr. Matthew J. Wyvratt, which provided a solid foundation for the work reported h ere. A special word of gratitude must be expressed to Dr. Leo A. Paquette, whose overwhelming enthusiasm and continuous interest in the project proved quite contagious. His knowledge and experience provided a lim itless wealth of ideas from which to draw. The author wishes, finally, to express appreciation to his wife and family for their encouragement, particularly to Deborah Balogh who has offered understanding and unending support throughout this work while completing her own dissertation. i i VITA May 22, 1952 ........................... -
Centrohexaindan, the First Hydrocarbon with Topologically
presence of only three signals in the 'H-NMR spectrum ser, H.-P. Krimmer, S. Fischer, M. C. Bohm, H. J. Lindner, Angew. and of six signals in the I3C-NMR spectrum (Table 1) is Chem. 98 (1986) 646; Angew. Chem. Int. Ed. Engl. 25 (1986) 630; E. consistent with a molecular structure with DZhsymmetry Heilbronner, Z.-Z. Yang, ibid. 99 (1987) 369 and 26 (1987) 360; J. D. Dunitz, C. Kriiger, H. Irngartinger, E. F. Maverick, Y. Wang, M. Nix- dorf, ibid. I00 (1988) 415 and 27 (1988) 387. 131 A. Toyota, Bull. Chem. Soc. Jpn. 48 (1975) 1152. Table I. Spectroscopic data of 4, 9, and 10. 'H-NMR (CDCI,, 300 MHz), [4] K. Hafner, G. F. Thiele, Tetrahedron Lett. 26 (1985) 2567. "C-NMR (CDCI,, 75.47 MHz), UV (n-hexane). 151 All the compounds gave correct elemental analyses. 161 R. Y. Levina, N. N. Mezentsova, 0. V. Lebeda, Zh. Obshch. Khim. 29 4: 'H-NMR: 6=1.14-1.28 (m,ISH, tBu), 2.48-3.02 (m, 8H, CHI), 5.75-6.26 (1955) 1079; B. F. Hallam, P. L. Pauson, J. Chem. SOC.1958, 646; K. (m, 4H, olefin-H); UV: A,,,,,(lg&)=253 nm (3.83) Alder, H.-J. Ache, F. H. Flock, Chem. Ber. 93 (1960) 1888; C. F. Wilcox, 9: 'H-NMR: 6=1.16 (s, ISH, tBu), 2.39, 2.86 (2 br. s, 4H, CH2), 5.65 (d, Jr., R. R Craig, J. Am. Chem. SOC.83 (1961) 3866; H. L. Lentzner, W. E. J=2.2 Hz, 2H, 1/8-H), 6.15 (s, 2H, 3/6-H), 6.52 (s, 2H, 9/10-H); UV: Watts, Tetrahedron 27 (1971) 4343. -
The Platonic Solids and Hydrocarbon Chemistry
MuchMuch AdoAdo AboutAbout Nothing:Nothing: TheThe PlatonicPlatonic SolidsSolids andand HydrocarbonHydrocarbon ChemistryChemistry Chris Galliford 20th January 2004 IntroductionIntroduction -- TheThe PlatonicPlatonic SolidsSolids •According to Plato, the matter surrounding us and out of which we are made is composed of four elements: fire, earth, water and air. •A fifth element also exists, not part of the physical world, but provides the basis for the construction of the ”heavenly matter”, or ”ether”, and is responsible for the ”beautiful order” of the universe. •These five elements are assigned characteristic regular polyhedra - the tetrahedron (fire), the cube (earth), the octahedron (water), the icosahedron (air) and the pentagonal dodecahedron (ether). •These platonic solids are both pleasing aesthetically, and when considered as a hydrocarbon framework, provide interesting synthetic challenges. www.sbu.ac.uk/water/ platonic.html TetrahedraneTetrahedrane •Tetrahedrane is the only platonic hydrocarbon which has not yet been prepared in unsubstituted form. •126-140 kcal/mol calculated strain energy, kinetically and thermodynamically highly unstable. Tetra-Tetra-terttert-Butyl-Butyl TetrahedraneTetrahedrane t-Bu SiR3 t-Bu t-Bu t-Bu t-Bu t-Bu t-Bu •The stability of tetra-tert-butyltetrahedrane compared to tetrahedrane is attributed to the ”corset effect”. •Intramolecular repulsion between the four tert-butyl groups is at a minimum when their mutual distance is at a maximum. This condition is satisfied by the symmetry of a tetrahedron G. Maier & S. Pfriem Angew. Chem. Int. Ed. Engl. (1978), 17, 520 CubaneCubane Cubane, C8H8 was first synthesized by Eaton and Cole in 1964. Octa- and other polynitrocubane derivatives Have attracted considerable military interest, The non-shock sensitive ONC is reported to be 30% more explosive than it’s nearest non- nuclear alternative! P.E. -
Acoustic Vibrations of Au Nano-Bipyramids and Their
Acoustic Vibrations of Au Nano-Bipyramids and their Modification under Ag Deposition: a Perspective for the Development of Nanobalances Benoît Dacosta Fernandes, Miguel Spuch-Calvar, Hatim Baida, Mona Tréguer-Delapierre, Jean Oberlé, Pierre Langot, Julien Burgin To cite this version: Benoît Dacosta Fernandes, Miguel Spuch-Calvar, Hatim Baida, Mona Tréguer-Delapierre, Jean Oberlé, et al.. Acoustic Vibrations of Au Nano-Bipyramids and their Modification under Ag Depo- sition: a Perspective for the Development of Nanobalances. ACS Nano, American Chemical Society, 2013, 7 (9), pp.7630-7639. 10.1021/nn402076m. hal-00874407 HAL Id: hal-00874407 https://hal.archives-ouvertes.fr/hal-00874407 Submitted on 1 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Acoustic Vibrations of Au Nano- Bipyramids and their Modification under Ag Deposition: a Perspective for the Development of Nanobalances Benoıˆt Dacosta Fernandes,† Miguel Spuch-Calvar,‡ Hatim Baida,† Mona Tre´guer-Delapierre,‡ Jean Oberle´,† Pierre Langot,† and Julien Burgin†,* †Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence, France and ‡CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France ABSTRACT We investigated the acoustic vibrations of gold nanobipyramids and bimetallic gold silver core shell bipyramids, synthesized by wet chemistry techniques, using a high-sensitivity pump probe femtosecond setup.