Aeronautics and Space Report of the President

Total Page:16

File Type:pdf, Size:1020Kb

Aeronautics and Space Report of the President Aeronautics and Space Report of the President 1 9 75 Activities NOTE TO READERS: ALL PRINTED PAGES ARE INCLUDED, UNNUMBERED BLANK PAGES DURING SCANNING AND QUALITY CONTROL CHECK HAVE BEEN DELETED Aeronautics and Space Report of the President I975 Activities National Aeronautics and Space Administration Washington, D.C. 20546 President’s Message of Transmittal To the Congress of the United States: We continued to probe the unknown in space. Pioneer 10 will be the first Inan-made object to I am pleased to transmit this report on the Nation‘s venture beyond our solar system. Pioneer 11 will progress in space and aeronautics during 1975. This make the first flyby of Saturn in 1979. In passing report is provided in accordance with Section 206 of Jupiter these vehicles sent back pictures that added the National Aeronautics and Space Act of 1958 as greatly to our knowledge of the largest planet. Last amended (42 U.S.C. 2476). August and September we launched two Viking was another year of continued progress in 1975 spacecraft toward Mars. They will arrive at the the Nation’s space and aeronautics activities. It height of our Bicentennial celebration and may marked significant accomplishments in many areas. provide information on the existence of life in some Earth-orbiting satellites continued to bring new form on our neighboring planet. and increased benefits in a variety of applications. In aeronautics, research focused on the technologies Two additional international communications satel- needed to reduce fuel requirements, noise, and pollu- lites were launched, expanding the already impressive tion. Also emphasized was improved reliability, international satellite communications capability. A performance, and safety. Military aircraft develop- second domestic commercial communications satellite ment featured the first supersonic flight of the B-1, was put into operation. Military satellite communica- the operational deployment of the F-14 and F-15, tions were enhanced. In addition, a new system of and the selection of the F-16 and F-18 as future satellites for global weather reporting was initiated. fighter aircraft. providing reports every thirty minutes on weather The fruits of our research continued to be enjoyed across half the globe. by the transfer of space and aeronautics technology Landsat 2 was orbited to join Landsat 1 to provide to many beneficial uses in our society, including additional Earth sensing data to explore potential energy research. medical care, transportation, and uses in a wide range of activities, including crop new techniques and iiiaterials for manufacturing. forecasting, pollution monitoring, forestry and land Our Nation’s activities in aeronautics and space use studies, and in mineral exploration. continue to be a major contribution to our quality I had the pleasure and thrill of talking to our of life and economic growth. astronauts and the Soviet cosmonauts when they We can all take pride in our commitment to linked up in space at the culmination of the historic advancement in space and aeronautics as reflected in U.S.-U.S.S.R. Apollo Soyuz Test Project. the accomplishments aexribed in this report. Major milestones were met in the development of the Space Shuttle, the Nation’s current major space 1’HE 14’131~~HOUSE, project. Canada agreed to develop the remote June 1976 manipulator system for the Shuttle, a major. and welcome contribution. GERALDR. FORD Development of Spacelab, a key systeiii to take advantage of the capability of the Space Shuttle and being built and funded by the European Space Agency, continued on schedule. iii Table of Contents Page Page I. Summary of U.S. Aeronautics and Space Ac- X. National Academy of Sciences, National Acad- tivities. .. in. 1975 ____________________----1 emy Of Engineering, National Research Introduction __________-______________ 1 Council ____________________-----------65 Space ______________________________ 1 Introduction ______________________---65 Aeronautics _ ____ _______ ___ _ ________ _ 5 Aerospace Science _____-----_-------- 65 11. National Aeronautics and Space Administration 7 Space Applications __-___-____________ 67 Introduction _ ___ - ________-__ ________ _ 7 Aerospace Engineering _________-_____ 68 Study of the Universe and the Sun-Earth Education ___________ ________________ 69 Relationship .____ ___________________________. 7 XI. Office of Telecommunications Policy _______- 70 Explor?tion of the Planets and the Moon 10 Introduction ___--_________-_____-----70 Life Sciences _____-__________________ 11 AEROSAT __________________-_______ 71 Study of the Earth’s Atmosphere ___---_ 12 INMARSAT __________2 _________-_-_ 71 Applications to Earth _-______________ 12 Proposed Amendmrnts to the Communi- NASA Energy Program __________-____ 16 cations Satellite Act of 1962 __--____ 71 Space Flight _________________________ 17 Direct Broadcast Satellites ____________- 72 72 Space Flight Transportation ___________ 17 Frequency Management___--______-___ Tracking and Data Acquisition _________ 19 High Power Satellites ________________ 73 International Affairs -_ . ______________ 21 XII. Federal Communications Commission ____-- 75 University Affairs .................... 23 Introduction _______ ______________ - -- - 75 Space and Nuclear Research and Tech- Communications Satellites _____________ 75 nology __--_________-_--_----------23 Specialized Satellite Services ___________ 76 Aeronautics Research and Technology __ 24 International Telecommunications Union Disseminating Trchnology and Benefits __ 26 (ITU) ___________________________ 77 Frequency Allocation and Coordination _ 77 111. Department of Defense --_-_________-__-___ 27 78 Introduction _________________________ 27 XIII. Department of State _-____________--______ Space Activities ...................... Introduction _______________-_________ 78 28 Activities within the United Nations -___ 78 Space Ground Support __--__-_---_--_ 30 Space Research and Technology _______ 31 International Cooperation -____--______ 79 .. Satellite Services ..................... 80 .4eronautical Activities _-_-------_-___- 32 81 Relationship with NASA Support of Federal Agencies _________-_ ______________ 36 XIV. Arms Control and Disarmament Agency ____- 82 IV. Department of Commerce -_-_________-----_ 38 Introduction _____-___________________ 82 Introduction ________------_-_---_____ 38 Demilitarization _______ 82 Satellites in Environmental Monitoring __ _ ____________ Crisis Management and Verification _--- 82 and Prediction .................... 38 Space Technology .................... 82 Other Satellite and Space Applications -- 41 XV. Department of Transportation _____________ 83 Space Support Activities 43 _____________ Introduction __________ ____-_ - ___ _____ 83 Space and Atmospheric Physics Research 44 Office of the Secretary (OST) Programs 83 Data Programs ____--__-_____________ 45 FAA Research and Development: Avia- Aeronautical Programs _______________ 46 tion Safety ________________________ 84 V. Energy, Research and Development Adminis- Air Traffic Control and Navigation _____ 85 tration --_-___ ______ - -- - - __- -_- - __- - -_ - 47 XVI. The Smithsonian Institution ___--_________ 88 Introduction _______ - __ _ __ ___- __ ___ _ __ 47 Introduction __ _______________ ______ __ 88 Viking Mars Lander _-_-_____________ 47 Smithsonian Astrophysical Observatory _ 88 Lincoln Experimental Satellite (LES) __ 47 National Air and Space Museum _______ 89 Mariner Jupiter/Saturn _---__--_------ 48 XVII. United States Information Agency __________ 91 Generator Technology ________________ 48 Introduction _________________________ 91 VI. Department of the Interior ------__--__-__-_ 49 Radio ______________________________ 91 Introduction _-___-___________________ 49 Press and Publications ______________ 91 Space __---___-____-_--_-------------49 Films and Television _________________ 92 Aeronautics ________-----__-__-______ 53 Information Centers and Exhibits ______ 93 International Activities ____-__________ 55 VII. Department of Agriculture _--------__--____ 56 Appendixes Introduction __________-_-__----______ 56 Remote Sensing Activity 56 A- 1 U.S. Spacecraft Record .................... 94 VIII. National Science Foundation _________--____ 58 A-2 World Record of Spare Launchings Successful Introduction _---_-_____________--_-_- 58 in Attaining Earth Orbit or Beyond __-_-__ 94 Astronomy _____--_________----______ 58 A-3 Successful U.S. Launchings-1975 _____---__ 95 Atmospheric Sciences __________-__--__ 59 +. B- 1 U.S. Applications Satellites, 1971-1975 _____-- 104 Polar.. Research Programs -----------_- 59 B- 2 US.-Launched Scientific Payloads, 197 1-1975 106 Engineering - _ ___ _ ___- ---_ -- - -_ _ --_ - - 60 B-3 US.-Launched Space Probes, 1971-1975 _---- 107 Materials Research _---__-_---___--_- 60 C History of .United States and Soviet Manned Education Activities _-__-__-----__---_ 60 Space Flights ___________________________ 108 IX. Environmental Protection Agency __________ 61 D US. Space Launch Vehicles _____-_-_-_--__ 110 Introduction _________________________ 61 E- 1 Space Activities of the U.S. Government --_-- 111 Energy-Related Environmental Research US. Space Budget-Budget Authority _--_-- 111 and Development __________--_-_--_ 61 E-2 Space Activities Budget .................... 112 Advanced Monitoring Programs ---_____ 63 Aeronautics Budget 112 V New Tools for Space Research An increasing array of Earth-based and spacecraft- borne instruments and sensors is joining together to study the planets of
Recommended publications
  • Abbott's Flatland, 61 Accidental Symmetry, 26 Acetanilide, 62Ff
    Index Abbott's Flatland, 61 Antisymmetry (cont.) Accidental symmetry, 26 operations, 190ff Acetanilide, 62ff Archimedean/semiregular polyhedra, 87ff Acetic acid, 96 Architecture, 41, 42, 60, 87, 106, 373 Acetylene, 130 Aromaticity, 322 Adamantane, 129, 131 Artistic expressions, 16, 18, 27, 30, 31, 34, Adamantanes, joint, 131 35, 37, 42, 44, 65, 66, 67, 69, 83, 87, Aesthetic appeal/Beauty/Harmony/Perfection, 90, 99, 150, 191, 194, 240, 324, 349, 1, 13, 16 355,356, 369, 382, 384, 405,457 Alkali halide crystals, 423 Asparagine, 75 Alkali sulfate molecules, 136-137 Asymmetry, 70 Alkanes, 356 Atomic sizes, 420ff Aluminum trichloride, 441ff Aulonia hexagona, 5 Aluminosilicates, 89 Aurelia insulinda, 35 Amino acids, 65, 67, 72ff Average structures, 151-152 Ammonia, 143, 254ff Avogadro's law, 3, 4 Ammonia-aluminum trichloride, 117 Amorphous materials, 456 Bach, J. S., 65 Analogies, 5, 7-8, 60, 67, 74-75, 98-99, Bader, R. E W., 289, 301 114, 139ff, 150, 240, 326, 344, 348, Bands 360ff, 428 one-sided, 342ff Animals, 22ff, 33, 72, 106, 357, 358 scheme to establish the symmetry of, 345 double-headed, 31 seven symmetry classes of, 343 Anisole, 429-430 two-sided bands, 346ff Antarafacial approach, 312, 322 Barlow, W., 405, 422 Antimirror symmetry, 189ff Bart6k, B., 1, 25, 29 Antiprisms, 89, 91, 128 Basic laws of crystals, 385ff Antisymmetry, 70, 189ff, 204 Basis for a representation, 176, 205, 210 elements, 190ff Belousov, B. P, 355 463 464 Index Belousov-Zhabotinsky reactions, 355-356 Character (cont.) Belov, N. V., 81 tables (cont.) Bentley, W. A., 46, 50, 53 C2~, 201,211,249 Benzene, 260ff C3, 259 Benzene derivatives 63, ll5ff, 443 C3v, 186, 202,256 Bernal, J.
    [Show full text]
  • Acoustic Vibrations of Au Nano-Bipyramids and Their
    Acoustic Vibrations of Au Nano-Bipyramids and their Modification under Ag Deposition: a Perspective for the Development of Nanobalances Benoît Dacosta Fernandes, Miguel Spuch-Calvar, Hatim Baida, Mona Tréguer-Delapierre, Jean Oberlé, Pierre Langot, Julien Burgin To cite this version: Benoît Dacosta Fernandes, Miguel Spuch-Calvar, Hatim Baida, Mona Tréguer-Delapierre, Jean Oberlé, et al.. Acoustic Vibrations of Au Nano-Bipyramids and their Modification under Ag Depo- sition: a Perspective for the Development of Nanobalances. ACS Nano, American Chemical Society, 2013, 7 (9), pp.7630-7639. 10.1021/nn402076m. hal-00874407 HAL Id: hal-00874407 https://hal.archives-ouvertes.fr/hal-00874407 Submitted on 1 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Acoustic Vibrations of Au Nano- Bipyramids and their Modification under Ag Deposition: a Perspective for the Development of Nanobalances Benoıˆt Dacosta Fernandes,† Miguel Spuch-Calvar,‡ Hatim Baida,† Mona Tre´guer-Delapierre,‡ Jean Oberle´,† Pierre Langot,† and Julien Burgin†,* †Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence, France and ‡CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France ABSTRACT We investigated the acoustic vibrations of gold nanobipyramids and bimetallic gold silver core shell bipyramids, synthesized by wet chemistry techniques, using a high-sensitivity pump probe femtosecond setup.
    [Show full text]
  • Biomimetics Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106
    Biomimetics Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106 Biomedical Science, Engineering, and Technology The book series seeks to compile all the aspects of biomedi- cal science, engineering and technology from fundamental principles to current advances in translational medicine. It covers a wide range of the most important topics including, but not limited to, biomedical materials, biodevices and biosys- tems, bioengineering, micro and nanotechnology, biotechnology, biomolecules, bioimaging, cell technology, stem cell engineering and biology, gene therapy, drug delivery, tissue engineering and regeneration, and clinical medicine. Series Editor: Murugan Ramalingam, Centre for Stem Cell Research Christian Medical College Bagayam Campus Vellore-632002, Tamilnadu, India E-mail: [email protected] Publishers at Scrivener Martin Scrivener ([email protected]) Phillip Carmical ([email protected]) Biomimetics Advancing Nanobiomaterials and Tissue Engineering Edited by Murugan Ramalingam, Xiumei Wang, Guoping Chen, Peter Ma, and Fu-Zhai Cui Copyright © 2013 by Scrivener Publishing LLC. All rights reserved. Co-published by John Wiley & Sons, Inc. Hoboken, New Jersey, and Scrivener Publishing LLC, Salem, Massachusetts. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or other - wise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com.
    [Show full text]
  • Quaternionic Kleinian Modular Groups and Arithmetic Hyperbolic Orbifolds Over the Quaternions
    Università degli Studi di Trieste ar Ts Archivio della ricerca – postprint Quaternionic Kleinian modular groups and arithmetic hyperbolic orbifolds over the quaternions 1 1 Juan Pablo Díaz · Alberto Verjovsky · 2 Fabio Vlacci Abstract Using the rings of Lipschitz and Hurwitz integers H(Z) and Hur(Z) in the quater- nion division algebra H, we define several Kleinian discrete subgroups of PSL(2, H).We define first a Kleinian subgroup PSL(2, L) of PSL(2, H(Z)). This group is a general- ization of the modular group PSL(2, Z). Next we define a discrete subgroup PSL(2, H) of PSL(2, H) which is obtained by using Hurwitz integers. It contains as a subgroup PSL(2, L). In analogy with the classical modular case, these groups act properly and discontinuously on the hyperbolic quaternionic half space. We exhibit fundamental domains of the actions of these groups and determine the isotropy groups of the fixed points and 1 1 describe the orb-ifold quotients HH/PSL(2, L) and HH/PSL(2, H) which are quaternionic versions of the classical modular orbifold and they are of finite volume. Finally we give a thorough study of their descriptions by Lorentz transformations in the Lorentz–Minkowski model of hyperbolic 4-space. Keywords Modular groups · Arithmetic hyperbolic 4-manifolds · 4-Orbifolds · Quaternionic hyperbolic geometry Mathematics Subject Classification (2000) Primary 20H10 · 57S30 · 11F06; Secondary 30G35 · 30F45 Dedicated to Bill Goldman on occasion of his 60th birthday. B Alberto Verjovsky [email protected] Juan Pablo Díaz [email protected] Fabio Vlacci [email protected]fi.it 1 Instituto de Matemáticas, Unidad Cuernavaca, Universidad Nacional Autónoma de México, Av.
    [Show full text]
  • An Interesting Optimization Problem Family
    ZOLTÁN MAJOR AN INTERESTING OPTIMIZATION PROBLEM FAMILY Isoperimetric problems PROBLEMS - SOLUTIONS PREFACE This book is primarily addressed to high school students and their teachers. It could be interesting also for university students studying mathematics and recommended to all those who have mathematical interest beyond the school curriculum. The main goal of this book is to improve the problem-solving skills through the use of inequalities. The book consists of 4 Chapters. Chapter I - Theory A brief overview of the classical isoperimetric problem, one of the earliest problems in geometry, that aroused the interest of lots of great mathematicians: Archimedes, Euler, Descartes, Lagrange, Minkowski, Weierstrass, Steiner and many others ... Chapter II - Examples The solved examples prepare the next chapters. You will find some typical wrong solutions in the notes which will help you avoid similar mistakes. Chapter III - Problems This chapter contains 237 specific isoperimetric and related problems in the 2- and 3- dimensional Euclidean space. Chapter IV - Solutions This chapter contains the solution of each 237 problems from the previous chapter. The preferred method is the use of inequality where possible. The most interesting results can be found in the Tables, at the end of the book. The books collected in the Literature section are just a small selection of the rich mathematical bibliography of this topic. i In the Internet links section you can find some interesting web pages on classical isoperimetric problems. I would recommend some further research on the Internet with use of the keyword “isoperimetric” to make sure that you are aware of the most up to date information on this topic.
    [Show full text]
  • Dewdrop Beaded Bead. Beadwork: ON12, 24-26 Bead Four: Treasure Trove Beaded Bead
    Beadwork Index through April/May 2017 Issue abbreviations: D/J =December/January FM = February/March AM = April/May JJ = June/July AS=August/September ON=October/November This index covers Beadwork magazine, and special issues of Super Beadwork. To find an article, translate the issue/year/page abbreviations (for example, “Royal duchess cuff. D10/J11, 56-58” as Beadwork, December 2011/January 2012 issue, pages 56-58.) Website = www.interweave.com or beadingdaily.com Names: the index is being corrected over time to include first names instead of initials. These corrections will happen gradually as more records are corrected. Corrections often appear in later issues of Beadwork magazine, and the index indicates these. Many corrections, including the most up-to-date ones, are also found on the website. 15th Anniversary Beaded Bead Contest Bead five: dewdrop beaded bead. Beadwork: ON12, 24-26 Bead four: treasure trove beaded bead. Beadwork: AS12, 22-24 Bead one: seeing stars. Beadwork: FM12, 18-19 Bead three: stargazer beaded bead. Beadwork: JJ12, 20-22 Bead two: cluster beaded bead. Beadwork: AM12, 20-23 Beaded bead contest winners. Beadwork: FM13, 23-25 1800s-era jewelry Georgian jewels necklace. Beadwork: D14/J15, 80-81 1900s-era jewelry Bramble necklace. Beadwork: AS13, 24-27 Royal duchess cuff. Beadwork: D10/J11, 56-58 1920s-era jewelry Art Deco bracelet. Beadwork: D13/J14, 34-37 Modern flapper necklace. Beadwork: AS16, 70-72 1950s-era jewelry Aurelia necklace. Beadwork: D10/J11, 44-47 2-hole beads. See two-hole beads 21st century designs 21st century jewelry: the best of the 500 series.
    [Show full text]
  • Abstract Shape Synthesis from Linear Combinations of Clelia Curves
    The 8th ACM/EG Expressive Symposium EXPRESSIVE 2019 C. Kaplan, A. Forbes, and S. DiVerdi (Editors) Abstract Shape Synthesis From Linear Combinations of Clelia Curves L. Putnam, S. Todd and W. Latham Computing, Goldsmiths, University of London, United Kingdom Abstract This article outlines several families of shapes that can be produced from a linear combination of Clelia curves. We present parameters required to generate a single curve that traces out a large variety of shapes with controllable axial symmetries. Several families of shapes emerge from the equation that provide a productive means by which to explore the parameter space. The mathematics involves only arithmetic and trigonometry making it accessible to those with only the most basic mathematical background. We outline formulas for producing basic shapes, such as cones, cylinders, and tori, as well as more complex fami- lies of shapes having non-trivial symmetries. This work is of interest to computational artists and designers as the curves can be constrained to exhibit specific types of shape motifs while still permitting a liberal amount of room for exploring variations on those shapes. CCS Concepts • Computing methodologies ! Parametric curve and surface models; • Applied computing ! Media arts; 1. Introduction curves [Cha15, Gai05] edge closer to balancing constraint and freedom. There is a large repertoire of mathematical systems and algorithms capable of generating rich and complex non-figurative graphics We draw inspiration from specific artistic works such as Ernst [Whi80,
    [Show full text]
  • Symmetry Through the Eyes of a Chemist Second Edition Symmetry Through the Eyes of a Chemist Second Edition
    Symmetry through the Eyes of a Chemist Second Edition Symmetry through the Eyes of a Chemist Second Edition Istv~.n Hargittai Budapest Technical University and Hungarian Academy of Sciences Budapest, Hungary Magdolna Hargittai Hungarian Academy of Sciences Budapest, Hungary Plenum Press • New York and London Library oF Congress Cataloging-In-Publication Data Harg~ttal, Istv~n. Symmetry through the eyes oF a chemist / Istv~n Harglttai, Magdolna Harglttai. -- 2nd ed. p. cm. Includes bibliographical references and Indexes. ISBN 0-306-44851-3 (hc>, -- ISBN 0-306-44852-1 (pbk.) 1. Molecular theory. 2. Symmetry (Physics) I. Hargtttalo Magdo|na. II, Title. QD461,H268 1995 541.2'2--dc20 95-30533 CIP ISBN 0-306-44851-3 (Hardbound) ISBN 0-306-44852-1 (Paperback) © 1995 Plenum Press, New York A Division of Plenum Publishing Corporation 233 Spring Street, New York, N. Y. 10013 10987654321 All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or othenNise, without written permission from the Publisher The first edition of this book was published by VCH, Weinheim, Germany, 1986 Printed in the United States of America Preface to the Second Edition We have been gratified by the warm reception of our book, by reviewers, colleagues, and students alike. Our interest in the subject matter of this book has not decreased since its first appearance; on the contrary. The first and second editions envelop eight other symmetry-related books in the creation of which we have participated: I.
    [Show full text]
  • BUCHANAN-THESIS.Pdf
    A STUDY OF APERIODIC (RANDOM) ARRAYS OF VARIOUS GEOMETRIES A Thesis by KRISTOPHER RYAN BUCHANAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2011 Major Subject: Electrical Engineering A Study of Aperiodic (Random) Arrays of Various Geometries Copyright 2011 Kristopher Ryan Buchanan A STUDY OF APERIODIC (RANDOM) ARRAYS OF VARIOUS GEOMETRIES A Thesis by KRISTOPHER RYAN BUCHANAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Gregory Huff Committee Members, Robert Nevels Helen Reed Jean-Francois Chamberland-Tremblay Head of Department, Costas Georghiades May 2011 Major Subject: Electrical Engineering iii ABSTRACT A Study of Aperiodic (Random) Arrays of Various Geometries. (May 2011) Kristopher Ryan Buchanan, B.S., University of Nevada Las Vegas Chair of Advisory Committee: Dr. Gregory Huff The use of wireless communication techniques and network centric topologies for portable communication networks and platforms makes it important to investigate new distributed beamforming techniques. Platforms such as micro air vehicles (MAVs), unattended ground sensors (UGSs), and unpiloted aerial vehicles (UAVs) can all benefit from advances in this area by enabling advantages in stealth, enhanced survivability, and maximum maneuverability. Collaborative beamforming is an example of a new technique to utilize these systems which uses a randomly distributed antenna array with a fitting phase coefficient for the elements. In this example, the radiated signal power of each element is coherently added in the far-field region of a specified target direction with net destructive interference occurring in all other regions to suppress sidelobe behavior.
    [Show full text]