Flora of New Zealand Mosses

Total Page:16

File Type:pdf, Size:1020Kb

Flora of New Zealand Mosses FLORA OF NEW ZEALAND MOSSES DALTONIACEAE A.J. FIFE Fascicle 34 – JULY 2017 © Landcare Research New Zealand Limited 2017. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: “Source: Landcare Research” Attribution if making an adaptation or derivative work: “Sourced from Landcare Research” See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Fife, Allan J. (Allan James), 1951- Flora of New Zealand : mosses. Fascicle 34, Daltoniaceae / Allan J. Fife. -- Lincoln, N.Z. : Manaaki Whenua Press, 2017. 1 online resource ISBN 978-0-947525-14-9 (pdf) ISBN 978-0-478-34747-0 (set) 1.Mosses -- New Zealand -- Identification. I. Title. II. Manaaki Whenua-Landcare Research New Zealand Ltd. UDC 582.344.947(931) DC 588.20993 DOI: 10.7931/B1HS3R This work should be cited as: Fife, A.J. 2017: Daltoniaceae. In: Breitwieser, I.; Wilton, A.D. Flora of New Zealand - Mosses. Fascicle 34. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/B1HS3R Cover image: Calyptrochaeta cristata, habit with capsule, moist. Drawn by Rebecca Wagstaff from V.D. Zotov s.n., 27 Aug. 1933, CHR 6867. Contents Introduction..............................................................................................................................................1 Typification...............................................................................................................................................1 Taxa Daltoniaceae .....................................................................................................................................2 Achrophyllum Vitt & Crosby ...............................................................................................................3 Achrophyllum dentatum (Hook.f. & Wilson) Vitt & Crosby .................................................................4 Achrophyllum quadrifarium (Sm.) Vitt & Crosby ................................................................................ 7 Beeveria Fife ..................................................................................................................................... 8 Beeveria distichophylloides (Broth. & Dixon) Fife ..............................................................................8 Calyptrochaeta Desv. ...................................................................................................................... 10 Calyptrochaeta apiculata (Hook.f. & Wilson) Vitt ............................................................................. 11 Calyptrochaeta brownii (Dixon) J.K.Bartlett .....................................................................................12 Calyptrochaeta cristata (Hedw.) Desv. ............................................................................................ 13 Calyptrochaeta flexicollis (Mitt.) Vitt .................................................................................................15 Crosbya Vitt ..................................................................................................................................... 16 Crosbya nervosa (Hook.f. & Wilson) Vitt ......................................................................................... 17 Crosbya straminea (Beckett) Vitt .....................................................................................................18 Daltonia Hook. & Taylor ................................................................................................................... 20 Daltonia splachnoides (Sm.) Hook. & Taylor ................................................................................... 20 Distichophyllum Dozy & Molk. ......................................................................................................... 22 Distichophyllum crispulum (Hook.f. & Wilson) Mitt. ......................................................................... 23 Distichophyllum crispulum var. adnatum (Hook.f. & Wilson) Dixon ................................................. 24 Distichophyllum crispulum (Hook.f. & Wilson) Mitt. var. crispulum .................................................. 25 Distichophyllum microcarpum (Hedw.) Mitt. .................................................................................... 26 Distichophyllum pulchellum (Hampe) Mitt. ...................................................................................... 28 Distichophyllum rotundifolium (Hook.f. & Wilson) Müll.Hal. & Broth. ...............................................30 Ephemeropsis K.I.Goebel ................................................................................................................32 Ephemeropsis trentepohlioides (Renner) Sainsbury ....................................................................... 33 References ........................................................................................................................................... 35 Conventions ..........................................................................................................................................39 Acknowledgements ...............................................................................................................................41 Plates ....................................................................................................................................................42 Maps .....................................................................................................................................................54 Index .....................................................................................................................................................56 Image Information .................................................................................................................................58 Introduction The Daltoniaceae are a moderately large family of elegant mosses occurring mostly at higher elevations in the tropics and in cooler parts of the southern hemisphere. The family is allied to the Hookeriaceae, and many of the genera have traditionally been placed in that broadly defined family. The genus Daltonia is widespread throughout tropical regions worldwide. The largest genus, Distichophyllum, is mainly distributed in tropical Asia, the islands of the Pacific, and austral regions, including New Zealand. The extraordinarily tiny Ephemeropsis consists largely of a persistent protonema giving rise to campanulate capsules; it occurs on twigs and leaves and is distributed only in N.Z., Tasmania, and Java and its surrounding islands. Several genera of Daltoniaceae are predominantly Australasian in distribution with some species and some small genera endemic to N.Z. Seven genera, 15 species and 1 variety are accepted in the N.Z. flora. Some of the most striking and characteristic mosses in the N.Z. flora belong here and some of them are often confused with hepatics. The family is recognised in part by having mostly erect or inclined doubly peristomate capsules in which the exostome teeth usually have a distinct median ‘furrow’ on their outer surface. The exothecial cell walls are usually collenchymatous and the elongate setae are often scabrous or even spiny. The calyptrae are mitrate, fringed at their base, and usually cover only the apex of the developing capsule. The vegetative leaves are mostly singly costate and often bordered by several rows of elongate and thick-walled cells. Typification The following typifications are designated in accordance with the International Code of Nomenclature for Plants, Algae and Fungi. Distichophyllum microcarpum var. homodictyon Sainsbury, Rev. Bryol. Lichénol. n.s. 18: 113 (1949) Lectotype (designated here): N.Z.: “Otupae [Station], Taihape”, E.A. Hodgson 717, March 1934 (“Sainsbury 9113”), WELT M005802! Hookeria adnata Hook.f. & Wilson, Bot. Antarct. Voy. II (Fl. Nov.-Zel.) Part II: 123, pl. 93, f. 4 (1854) Lectotype (designated here): N.Z., Bay of Islands, on Trichomanes elongatum, 1841, J.D. Hooker, (“Wilson 378”), BM-Wilson! Hookeria flexicollis Mitt. in Hook.f., Handb. New Zealand Fl. 496 (1867) Lectotype (designated here): N.Z., Otago, Dunedin, wet rocks, Hector, October 1862, NY-Mitt.! Isolectotypes (designated here): BM-K!, NY! Hookeria luteovirens Colenso, Trans. & Proc. New Zealand Inst. 17: 260 (1885) Lectotype (designated here): N.Z., “Seventy-mile Bush, County of Waipawa”; 1883–84: W. Colenso 4030 (350), BM-K! Hookeria macroneura Colenso, Trans. & Proc. New Zealand Inst. 18: 283 (1886) Lectotype (designated here): N.Z, on “swamp-mud; fine”, W. Colenso 3152 [765], BM! Hookeria maculata Colenso, Trans. & Proc. New Zealand Inst. 18: 284 (1886) Lectotype (designated here): N.Z., Colenso 3042 (632), BM! Hookeria sciadophila Colenso, Trans. & Proc. New Zealand Inst. 17: 259 (1885) Lectotype (designated here): N.Z., Colenso 3395, BM! Isolectotype (designated here): WELT M000301! 1 Daltoniaceae The following family description draws from Buck (1988). Plants small to medium-sized, mostly glossy, erect or prostrate, rarely layering, pale green to gold- or red-green, forming turves or mats, rarely reduced to a persistent protonema. Stems in cross-section lacking a central strand and mostly with cells similar throughout. Leaves differentiated (dimorphic) or not, and if so the lateral ones larger, often complanate, lanceolate to broadly spathulate, plane at margins, usually
Recommended publications
  • Egunyomi and Oyesiku: Observations on Distichophyllum Procumbens Occurring Scanty Only at the Base of the Stem
    https://dx.doi.org/10.4314/ijs.v19i1.5 Ife Journal of Science vol. 19, no. 1 (2017) 35 OBSERVATIONS ON DISTICHOPHYLLUM PROCUMBENS MITT. A PLEUROCARPOUS AND SECONDARILY-AQUATIC MOSS NEW TO NIGERIA 1Egunyomi A. and 2*Oyesiku O.O. 1Department of Botany, University of Ibadan, Ibadan. Email:[email protected] 2*Department of Plant Science, Olabisi Onabanjo University,Ago-Iwoye *Correspondence author: [email protected] (Received: 24th March, 2017; Accepted: 30th May, 2017) ABSTRACT A pleurocarpous moss found to be anchored and thriving on rock in an aquatic habitat at Ago-Iwoye in Ogun State, Nigeria, was identified as Distichophyllum procumbens Mitt. and described. As the moss had been reported to be corticolous and terricolous in Ghana and Cameroon, this is the first report of its occurrence in Nigeria and of its aquatic nature in Africa. Based on field study and microscopic examination of the morphological features of the moss, observations were made on its structural adaptations to an aquatic habitat. The rheophilous adaptations include, shoots turning reddish brown when exposed in the dry season, “stem leaf ” having border and strong costa, aperistomate capsule splitting into valves for spore discharge, and the presence of rhizoids only at the base of the stem without any tomentum. Key words: Aperistomate, aquatic, Distichophyllum procumbens, moss, rheophilous INTRODUCTION aquatic moss had been reported in the literature While on a bryological forays in Ago-Iwoye, Ogun from Nigeria, could the present finding be a new State, Nigeria, a large population of a moss record? After rigorous microscopic examination anchored and thriving on rock under a fast flowing of the plant material with sporophytes and with water current was encountered and samples the aid of texts as well as monographs on mosses collected, although the majority of bryophytes are (Buck and Goffinet 2000, Ingold 1959, Matteri humid-loving, essentially terrestrial plants, few are 1975, Miller 1971, O'Shea 2006, Richards and true aquatic plants.
    [Show full text]
  • Fossil Mosses: What Do They Tell Us About Moss Evolution?
    Bry. Div. Evo. 043 (1): 072–097 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.7 Fossil mosses: What do they tell us about moss evolution? MicHAEL S. IGNATOV1,2 & ELENA V. MASLOVA3 1 Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Moscow, Russia 2 Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 3 Belgorod State University, Pobedy Square, 85, Belgorod, 308015 Russia �[email protected], https://orcid.org/0000-0003-1520-042X * author for correspondence: �[email protected], https://orcid.org/0000-0001-6096-6315 Abstract The moss fossil records from the Paleozoic age to the Eocene epoch are reviewed and their putative relationships to extant moss groups discussed. The incomplete preservation and lack of key characters that could define the position of an ancient moss in modern classification remain the problem. Carboniferous records are still impossible to refer to any of the modern moss taxa. Numerous Permian protosphagnalean mosses possess traits that are absent in any extant group and they are therefore treated here as an extinct lineage, whose descendants, if any remain, cannot be recognized among contemporary taxa. Non-protosphagnalean Permian mosses were also fairly diverse, representing morphotypes comparable with Dicranidae and acrocarpous Bryidae, although unequivocal representatives of these subclasses are known only since Cretaceous and Jurassic. Even though Sphagnales is one of two oldest lineages separated from the main trunk of moss phylogenetic tree, it appears in fossil state regularly only since Late Cretaceous, ca.
    [Show full text]
  • Some Species Lists of Native Plants of the Auckland Region, by R.O. Gardner, P 169-176
    TANE 27, 1981 SOME SPECIES LISTS OF NATIVE PLANTS OF THE AUCKLAND REGION by R.O. Gardner 118 Market Road, Epsom, Auckland, 3 SUMMARY The native vascular flora of 21 areas near Auckland (c. lat. 36°30' - 37 °S) has been listed in manuscript. An index map and a guide to the compilation of these lists are given and the areas are described briefly. INTRODUCTION This article presents the background information to a set of species lists made by the author during 1977-81 and now deposited in manuscript in the libraries of several institutions (Auckland Institute and Museum, Auckland Public Library, Botany Division DSIR, University of Auckland) where they may be consulted and copied. These lists are to help those who wish to learn the native flora and to record what is left of the natural (pre-European) distribution of these plants near Auckland. COMPILATION OF LISTS Typically each list contains species seen by me in the field and other species known from herbarium material, the latter being vouchered by the earliest collection known to me. Some of my more unusual findings have also been vouchered (specimens in the herbarium of the Auckland Institute and Museum). The lists for the Waitakere Ranges and Rangitoto Island are exceptions to this format; they are based on comprehensive earlier work (Mead 1972, Millener unpub.) and I have not seen either in the field or herbarium all the species these workers mention. Consequently my lists contain a "Dubious and Excluded Species" section as well as vouchered additions and additions based on the "dot" distribution maps and specimen lists of recent taxonomic publications.
    [Show full text]
  • Breeding System Diversification and Evolution in American Poa Supersect. Homalopoa (Poaceae: Poeae: Poinae)
    Annals of Botany Page 1 of 23 doi:10.1093/aob/mcw108, available online at www.aob.oxfordjournals.org Breeding system diversification and evolution in American Poa supersect. Homalopoa (Poaceae: Poeae: Poinae) Liliana M. Giussani1,*, Lynn J. Gillespie2, M. Amalia Scataglini1,Marıa A. Negritto3, Ana M. Anton4 and Robert J. Soreng5 1Instituto de Botanica Darwinion, San Isidro, Buenos Aires, Argentina, 2Research and Collections Division, Canadian Museum of Nature, Ottawa, Ontario, Canada, 3Universidad de Magdalena, Santa Marta, Colombia, 4Instituto Multidisciplinario de Biologıa Vegetal (IMBIV), CONICET-UNC, Cordoba, Argentina and 5Department of Botany, Smithsonian Institution, Washington, DC, USA *For correspondence. E-mail [email protected] Received: 11 December 2015 Returned for revision: 18 February 2016 Accepted: 18 March 2016 Downloaded from Background and Aims Poa subgenus Poa supersect. Homalopoa has diversified extensively in the Americas. Over half of the species in the supersection are diclinous; most of these are from the New World, while a few are from South-East Asia. Diclinism in Homalopoa can be divided into three main types: gynomonoecism, gynodioe- cism and dioecism. Here the sampling of species of New World Homalopoa is expanded to date its origin and diver- sification in North and South America and examine the evolution and origin of the breeding system diversity. Methods A total of 124 specimens were included in the matrix, of which 89 are species of Poa supersect. http://aob.oxfordjournals.org/ Homalopoa sections Acutifoliae, Anthochloa, Brizoides, Dasypoa, Dioicopoa, Dissanthelium, Homalopoa sensu lato (s.l.), Madropoa and Tovarochloa, and the informal Punapoa group. Bayesian and parsimony analyses were conducted on the data sets based on four markers: the nuclear ribosomal internal tanscribed spacer (ITS) and exter- nal transcribed spacer (ETS), and plastid trnT-L and trnL-F.
    [Show full text]
  • Flora of New Zealand Mosses
    FLORA OF NEW ZEALAND MOSSES BRACHYTHECIACEAE A.J. FIFE Fascicle 46 – JUNE 2020 © Landcare Research New Zealand Limited 2020. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: "Source: Manaaki Whenua – Landcare Research" Attribution if making an adaptation or derivative work: "Sourced from Manaaki Whenua – Landcare Research" See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Fife, Allan J. (Allan James), 1951- Flora of New Zealand : mosses. Fascicle 46, Brachytheciaceae / Allan J. Fife. -- Lincoln, N.Z. : Manaaki Whenua Press, 2020. 1 online resource ISBN 978-0-947525-65-1 (pdf) ISBN 978-0-478-34747-0 (set) 1. Mosses -- New Zealand -- Identification. I. Title. II. Manaaki Whenua-Landcare Research New Zealand Ltd. UDC 582.345.16(931) DC 588.20993 DOI: 10.7931/w15y-gz43 This work should be cited as: Fife, A.J. 2020: Brachytheciaceae. In: Smissen, R.; Wilton, A.D. Flora of New Zealand – Mosses. Fascicle 46. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/w15y-gz43 Date submitted: 9 May 2019 ; Date accepted: 15 Aug 2019 Cover image: Eurhynchium asperipes, habit with capsule, moist. Drawn by Rebecca Wagstaff from A.J. Fife 6828, CHR 449024. Contents Introduction..............................................................................................................................................1 Typification...............................................................................................................................................1
    [Show full text]
  • Molecular Phylogeny of Chinese Thuidiaceae with Emphasis on Thuidium and Pelekium
    Molecular Phylogeny of Chinese Thuidiaceae with emphasis on Thuidium and Pelekium QI-YING, CAI1, 2, BI-CAI, GUAN2, GANG, GE2, YAN-MING, FANG 1 1 College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China. 2 College of Life Science, Nanchang University, 330031 Nanchang, China. E-mail: [email protected] Abstract We present molecular phylogenetic investigation of Thuidiaceae, especially on Thudium and Pelekium. Three chloroplast sequences (trnL-F, rps4, and atpB-rbcL) and one nuclear sequence (ITS) were analyzed. Data partitions were analyzed separately and in combination by employing MP (maximum parsimony) and Bayesian methods. The influence of data conflict in combined analyses was further explored by two methods: the incongruence length difference (ILD) test and the partition addition bootstrap alteration approach (PABA). Based on the results, ITS 1& 2 had crucial effect in phylogenetic reconstruction in this study, and more chloroplast sequences should be combinated into the analyses since their stability for reconstructing within genus of pleurocarpous mosses. We supported that Helodiaceae including Actinothuidium, Bryochenea, and Helodium still attributed to Thuidiaceae, and the monophyletic Thuidiaceae s. lat. should also include several genera (or species) from Leskeaceae such as Haplocladium and Leskea. In the Thuidiaceae, Thuidium and Pelekium were resolved as two monophyletic groups separately. The results from molecular phylogeny were supported by the crucial morphological characters in Thuidiaceae s. lat., Thuidium and Pelekium. Key words: Thuidiaceae, Thuidium, Pelekium, molecular phylogeny, cpDNA, ITS, PABA approach Introduction Pleurocarpous mosses consist of around 5000 species that are defined by the presence of lateral perichaetia along the gametophyte stems. Monophyletic pleurocarpous mosses were resolved as three orders: Ptychomniales, Hypnales, and Hookeriales (Shaw et al.
    [Show full text]
  • Short Communication DISTICHOPHYLLUM SCHMIDTII BROTH. (HOOKERIACEAE) – a NEW REPORT from BANGLADESH
    Bangladesh J. Bot. 34(1): 45-47, 2005 (June) Short communication DISTICHOPHYLLUM SCHMIDTII BROTH. (HOOKERIACEAE) – A NEW REPORT FROM BANGLADESH 1 KHURSHIDA BANU-FATTAH Department of Botany, Eden Girls’ College, Dhaka-1205, Bangladesh Key words: Distichophyllum schmidtii, Pleurocarpous moss, Hookeriaceae, Bangladesh Abstract Distichophyllum schmidtii Broth., a Pleurocarpous moss of the family Hookeriaceae under the order Hookeriales, is reported for the first time from Bangladesh. Detailed description and illustration are given. While working on the mosses of Bangladesh, the author came across with a beautiful moss which was thought to be an Acrocarpous moss by its first appearance. There were only a few plants mixed with an unidentified species of Jungermanniales which after a thorough study found to be a Pleurocarpous moss. It was identified as Distichophyllum schmidtii Broth. of the family Hookeriaceae under the order Hookeriales. This moss is a rare one and was only collected by Sinclair (1955) from Kelatuli, Cox’s Bazar, on dripping wet shady side of a ravine. This moss was later collected from St. Martin’s Island, Cox’s Bazar by a student of Jagannath College which could not be collected any more. This moss is a South-east Asian species. It was not found in Eastern India but was reported from Thailand (Gangulee 1977). In Checklists of Pleurocarpous mosses of Bangladesh Khatun and Hadiuzzaman (1994, 1995) reported two species of the family Symphyodontaceae of the order Hookeriales but none from the family Hookeriaceae. Tixier while collecting plants from different forest reserves of Chittagong zone, along with the beach of Cox’s Bazar and hill of Sitakund collected and reported the species Chaetomitrium philippinense Mont.
    [Show full text]
  • Novel Habitats, Rare Plants and Root Traits
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Novel Habitats, Rare Plants and Roots Traits A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Applied Science at Lincoln University by Paula Ann Greer Lincoln University 2017 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Master of Applied Science. Abstract Novel habitats, rare plants and root traits. by Paula Ann Greer The loss of native plant species through habitat loss has been happening in NZ since the arrival of humans. This is especially true in Canterbury where less than 1% of the lowland plains are believed to be covered in remnant native vegetation. Rural land uses are changing and farm intensification is creating novel habitats, including farm irrigation earth dams. Dam engineers prefer not to have plants growing on dams. Earth dams are consented for 100 years, they could be used to support threatened native plants. Within the farm conversion of the present study dams have created an average of 1.7 hectares of ‘new land’ on their outside slope alone, which is the area of my research.
    [Show full text]
  • Hypopterygiaceae
    HYPOPTERYGIACEAE Hans (J.D.) Kruijer1 Hypopterygiaceae Mitt., J. Proc. Linn. Soc., Bot., Suppl. 1: 147 (1859). Type: Hypopterygium Brid. Dioicous or monoicous, unisexual or partly bisexual. Plants forming loose to dense groups of dendroids or fans, occasionally forming mats, pleurocarpous. Rhizome creeping, sympodially branched, tomentose. Stems horizontal (rarely creeping), ascending or erect, simple or branched and differentiated into stipe and rachis; branches usually lateral, rarely ventral, distant or closely set. Foliation complanate and anisophyllous or partly non-complanate and isophyllous. Leaves in 3, 8 or 11 (rarely more) ranks, but arranged in 2 lateral rows of asymmetrical leaves and a ventral row of smaller symmetrical leaves (amphigastria) in the distal part of the stem or frond, distant or closely set, symmetrical or asymmetrical; apex usually acuminate. Gemmae absent or filiform. Gametoecia usually lateral, occasionally dorsal or ventral. Calyptra cucullate or mitrate. Capsules subglobose to ovoid-oblong; operculum rostrate. Peristome diplolepideous; exostome teeth 16 (absent from Catharomnion); endostome with 16 processes, ciliate or not. Spores subglobose to broadly ellipsoidal, scabrous. The family consists of seven genera and 21 species with a predominantly Gondwanan distribution. It occurs mainly in humid forests of warm-temperate to tropical areas of the world, and it is most diverse in Indo-Malaysia. Three genera and six species are known with certainty from Australia. The Hypopterygiaceae have been regarded as comprising two subfamilies: Hypopterygioideae (Canalohypopterygium, Catharomnion, Dendrocyathophorum, Dendrohypopterygium, Hypo- pterygium and Lopidium) and Cyathophoroideae (Kindb.) Broth. (Cyathophorum and Cyathophorella). The former is characterised by gametophytes with branched stems differentiated into a stipe and rachis and by horizontal, ascending or vertical sporophytes.
    [Show full text]
  • Early Tropical Crop Production in Marginal Subtropical and Temperate Polynesia
    Early tropical crop production in marginal subtropical and temperate Polynesia Matthew Prebblea,1, Atholl J. Andersona, Paul Augustinusb, Joshua Emmittc, Stewart J. Fallond, Louise L. Fureye, Simon J. Holdawayc, Alex Jorgensenc, Thegn N. Ladefogedc,f, Peter J. Matthewsg, Jean-Yves Meyerh, Rebecca Phillippsc, Rod Wallacec, and Nicholas Porchi aDepartment of Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, The Australian National University, Canberra, ACT 2601, Australia; bSchool of Environment, University of Auckland, Auckland 1142, New Zealand; cAnthropology, School of Social Sciences, University of Auckland, Auckland 1142, New Zealand; dResearch School of Earth Sciences, College of Physical and Mathematical Sciences, The Australian National University, Canberra, ACT 2601, Australia; eAuckland War Memorial Museum, Auckland 1142, New Zealand; fTe Punaha Matatini, Auckland 1011, New Zealand; gField Sciences Laboratory, Department of Cross-Field Research, National Museum of Ethnology, 565–8511 Osaka, Japan; hDélégation à la Recherche, Gouvernement de la Polynésie Française, Papeete 98713, French Polynesia; and iCentre for Integrated Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia Edited by Patrick V. Kirch, University of California, Berkeley, CA, and approved March 13, 2019 (received for review January 4, 2019) Polynesians introduced the tropical crop taro (Colocasia esculenta) then abandoned before European contact, proposed as a response to temperate New Zealand after 1280 CE, but evidence for its to the decline of formerly abundant wild resources (12, 13) (Fig. 1). cultivation is limited. This contrasts with the abundant evidence Fossil pollen and sedimentary charcoal from wetland deposits for big game hunting, raising longstanding questions of the initial show that, before Polynesian arrival, forests of varying canopy economic and ecological importance of crop production.
    [Show full text]
  • A Taxonomic Revision of the Moss Families Hookeriaceae and Hypopterygiaceae in Malaya
    SMITHSONIAN CONTRIBUTIONS TO BOTANY NUMBER 80 A Taxonomic Revision of the Moss Families Hookeriaceae and Hypopterygiaceae in Malaya Haji Mohamed and Harold Robinson SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1991 ABSTRACT Mohamed, Haji, and Harold Robinson. A Taxonomic Revision of the Moss Families Hookeriaceae and Hypopterygiaceae in Malaya. Smithsonian Contributions to Botany, number 80,44 pages, 168 figures, 1 map, 1991.-Keys, descriptions, and some figures are provided for the 9 genera and 28 species of Hookeriaceae (including Chaetomitriopsis and Chaetomitrium) and the 3 genera and 7 species of Hypopterygiaceae recognised in Malaya. Eight species are reported as new to Malaya: Actinodontium rhaphidostegum, Daltonia angustijolia, D. armata, Distichophyllum brevicuspes, D. jungermannioides, D. maibarae, Cyathophorella hookeriana, and C.spinosa. Chaetomitrium perakense Brotherus ex Dixon and Distichophyllum ulukaliense Damanhuri & Mohamed are reduced to the synonymy of C. orthorrhynchum and D. jungermannioides respectively. OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. SERIES COVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllum japonicum Siebold and Zuccarini. Library of Congress Cataloging-in-PublicationData Mohamed, Haji A taxonomic revision of the moss families Hookeriaceaeand Hypopterygiaceae in Malaya / Haji Mohamed and Harold Robinson. p. cm. - (Smithsonian contributions to botany : no. 80) Includes bibliographic references and index. 1. Hookeriaceae-Malaysia-Malaya-Classification. 2. Hypopterygiaceae-Malaysia-Malaya-Classification. I. Robinson, HaroldEmesk 1932- . 11. Title. 111. Series. QKlS2747 no. 80 [QK539.H64] 581 s-dc20 [588’.2] 91-4223 @ The paper used in this publication meets the minimum requirements of the American National Standard for Permanence of Paper for Printed Library Materials 239.48-1984.
    [Show full text]
  • Genus Calyptrochaeta (Daltoniaceae, Bryophyta) in Thailand
    THAI FOREST BULL., BOT. 44(2): 108–115. 2016. DOI: 10.20531/TFB.2016.44.2.04 Genus Calyptrochaeta (Daltoniaceae, Bryophyta) in Thailand WANWISA JUENGPRAYOON1, BOON-CHUAN HO2 & SAHUT CHANTANAORRAPINT1,* ABSTRACT A review of the genus Calyptrochaeta Desv. in Thailand is presented, based on herbarium specimens and field surveys. Two species are recognized, namely C. remotifolia (Müll. Hal.) Z. Iwats. et al. and C. spinosa (Nog.) Ninh. A key to species, descriptions, and illustrations for the species of Calyptrochaeta occurring in Thailand are provided. In addition, lectotype for the names Eriopus spinosus Nog. (= C. spinosa) are also designated in here. KEYWORDS: Bryophyta, Calyptrochaeta, Daltoniaceae, lectotypification, moss, Thailand. Published online: 8 December 2016 INTRODUCTION 1990; Lin & Tan, 1995; Mohamed & Robinson, 1991; Ho & Kruijer, 2007), there are few reports of The genus Calyptrochaeta, a member of the this genus from Thailand. The first report of family Daltoniaceae, was first established by Calyptrochaeta in Thailand was published by Touw Desvaux in 1825 based on Calyptrochaeta cristata (1968), who reported C. remotifolia (Müll.Hal.) (Hedw.) Desv. It comprises approximately 30 species Z.Iwats. et al. (as Eriopus remotifolius Müll.Hal.) (Streimann, 2000; Frey & Stech, 2009), which are from Nakhorn Si Thammarat Province. Later, usually found growing on humus, decaying wood Akiyama et al. (2011) reported C. ramosa (M.Fleisch.) and tree bases in montane forest, and is distributed B.C.Tan & H.Rob. subsp. spinosa (Nog.) P.J.Lin & mainly in tropical regions of the world (Ho & B.C.Tan (= C. spinosa (Nog.) Ninh) from Doi Kruijer, 2007). Calyptrochaeta is easily recognized Inthanon National Park, Chiang Mai Province.
    [Show full text]