Some Species Lists of Native Plants of the Auckland Region, by R.O. Gardner, P 169-176

Total Page:16

File Type:pdf, Size:1020Kb

Some Species Lists of Native Plants of the Auckland Region, by R.O. Gardner, P 169-176 TANE 27, 1981 SOME SPECIES LISTS OF NATIVE PLANTS OF THE AUCKLAND REGION by R.O. Gardner 118 Market Road, Epsom, Auckland, 3 SUMMARY The native vascular flora of 21 areas near Auckland (c. lat. 36°30' - 37 °S) has been listed in manuscript. An index map and a guide to the compilation of these lists are given and the areas are described briefly. INTRODUCTION This article presents the background information to a set of species lists made by the author during 1977-81 and now deposited in manuscript in the libraries of several institutions (Auckland Institute and Museum, Auckland Public Library, Botany Division DSIR, University of Auckland) where they may be consulted and copied. These lists are to help those who wish to learn the native flora and to record what is left of the natural (pre-European) distribution of these plants near Auckland. COMPILATION OF LISTS Typically each list contains species seen by me in the field and other species known from herbarium material, the latter being vouchered by the earliest collection known to me. Some of my more unusual findings have also been vouchered (specimens in the herbarium of the Auckland Institute and Museum). The lists for the Waitakere Ranges and Rangitoto Island are exceptions to this format; they are based on comprehensive earlier work (Mead 1972, Millener unpub.) and I have not seen either in the field or herbarium all the species these workers mention. Consequently my lists contain a "Dubious and Excluded Species" section as well as vouchered additions and additions based on the "dot" distribution maps and specimen lists of recent taxonomic publications. Several groups of native plants are known to need revision or a corrected nomenclature, e.g. Blechnum, Dichelachne, and the lists suffer because of this. Perhaps more disconcerting will be my use of a few botanical names not of the standard floras (Cheeseman 1925 [grasses only], Allan 1961, Moore and Edgar 1970, Healy and Edgar 1980). Some of my unfamiliar names appear as synonyms in the above 169 Fig. 1: Map of Auckland region showing location of study areas 1-21. 1 Grafton Gully, 2 Auckland Domain, 3 Mount Eden, 4 Purewa Creek, 5 Glendowie Sandspit, 6 Wakaaranga Creek, 7 Maungamaungaroa Creek, 8 Murphy's Bush, 9 Totara Park, 10 Maraetai Hills, 11 Western Springs, 12 Wattle Bay to Waikowhai and Wesley Bay, 13 Waitakere Range, 14 Smith's Bush, 15 Onepoto Basin, 16 Lake Pupuke, 17 Rangitoto Island, 18 Kaipatiki Creek, 19 Hellyer's Creek, 20 Flat Top Hill, 21 Mansell's farm. floras; others can be found in taxonomic articles in the New Zealand Journal of Botany or in the lists of Edgar (1971) and Connor and Edgar (1978). Name changes not to be found in any of these places are (earlier usage in brackets): Agropyron kirkii (A. multiflorum} Ipomoea cairica (I. palmata) Isachne globosa (I. australis) Lachnagrostris filiformis var. littoralis (Deyeuxia var. littoralis) Myriophyllum triphyllum (M. elatinoides) Plagianthus regius (P. betulinus) Pneumatopteris pennigera (Thelypteris pennigera) Poa triodioides (Festuca littoralis) Syzygium maire (Eugenia maire) The following plants have been excluded from my lists because it seems likely that they are not native to New Zealand: Athyrium australe, A. japonicum, Cotula australis, Geranium homeanum, Scirpus chlorostachyus, Solanum nodiflorum. Also excluded are three 170 weedy species in which the distinction between native and adventive forms is imperfectly understood at present: Calystegia sepium, Gnaphalium luteo-album, Oxalis corniculata agg. I have also tried to exclude from each list any plant which appears to have been introduced to the area by man or which has the aspect of a "natural" arrival from nearby cultivated material. Sometimes comment has been necessary. THE AREAS Figure 1 shows the location of the areas investigated (1-21 below). The size of each area is given only approximately. Map references below are to sheets of the NZMS 1 series. 1. Grafton Gully N42 282-4/594-6 Area: 1 hectare Scrub, young forest and a muddy stream. 60 species. 2. Auckland Domain N42 290-8/593-600 Area: 8 hectares Native species scattered among taller exotic vegetation. The Domain has had early plantings of native trees and for species such as karaka (Corynocarpus laevigatas) and totara (Podocarpus totara) it is impossible to know whether or not the individuals now present are descended from local stock. The pre-European cover of at least the upper slopes of the Domain was Leptospermum scrub. Platts (1971) cites John Logan Campbell: "I knew every spot of the Domain that was then [1847] accessible through the thick ti-tree scrub". See also a photograph (Anon. 1909 p.48) entitled "Manuka-trees, Auckland Domain". This shows a dense fairly tall cover of kanuka (Leptospermum ericoides) with a larger tree, probably a totara, in the background. 53 species. 3. Mount Eden (lower slopes) N42 290574 and 291579 Area: 1 hectare Remnants of the original mixed-broadleaf forest on broken basaltic rock. 36 species. 4. Purewa Creek (northern slopes) N42 342-50/587-92 Area: 15 hectares Coastal forest remnant and estuarine communities. 106 species. 5. Glendowie sandspit N42 398-406/580-6 Area: 2 hectares Estuarine and sand-dune communities. 19 species. 6. Wakaaranga Creek (northern bank), Tamaki N42 404-6/555-6 Area: 1 hectare Coastal scrub and estuarine communities. 48 species. 171 7. Maungamaungaroa Stream (western bank), Howick N42 455- 61/528-9 Area: 2 hectares Coastal forest and estuarine communities. 75 species. 8. Murphy's Bush, Otara N42 431-6/446-52 Area: 12 hectares Part of the largest stand of forest ("Flat Bush") to be found in the Manukau lowlands at the time of European settlement and now reserved; other parts of the bush he nearby on privately-owned land. The original composition of the bush has been greatly altered by logging and grazing over the last century, and very few pre-European trees exist here today. 68 species. 9. Totara Park, Manurewa N42 420-35/418-24 Area: 20 hectares Another of South Auckland's pre-European forest remnants ("Ligar's Bush"). Has a fair number of large podocarps. 118 species. 10. Maraetai Hills N42 510-N43 575/N42 440-570 Area: 3 000 hectares Forest and scrub on the greywacke hills lying between Maraetai and Clevedon. Mostly in private ownership. Has excellent stands of hard beech (Nothofagus truncata) in the upper reaches of the Ruatawhiti Stream. c. 228 species. 11. Western Springs N42 238-46/584-7 Area: 5 hectares Freshwater pond and swamp species and a few lava-flow plants. 51 species. 12. Wattle Bay to Waikowhai and Wesley Bay, Manukau Harbour N42 246-61/497-507 Area: 35 hectares Coastal forest (mostly secondary), scrub and a few shore plants. 106 species. 13. Waitakere Range Area 30 000 hectares The boundaries of this area were taken to be those used by Mead (1972) - thus Muriwai, Swanson, Waikumete, Glen Eden and French Bay all he outside the Range, c. 496 species. 14. Smith's Bush, Takapuna N42 269-73/675-9 Area: 5 hectares The only forest remnant on the North Shore that is dominated by pre-European trees. 84 species. 15. Onepoto Basin N42 266-71/653-8 Area: 8 hectares A few wetland species in the ponds and drains of this recently- reclaimed muddy crater. 13 species. 16. Lake Pupuke A few wetland species around the lake edge. 13 species. 172 17. Rangitoto Island Area: 2 300 hectares A radiocarbon date of 225 ±110 yrs BP for charcoal beneath lava (Law 1975) supports the assertion of Millener (1953) that the pohutukawa (Metrosideros excelsa) forest covering Rangitoto is little more than 200 years old. There is a curious contrast between the two earliest descriptions of the island, viz. Downie (unpub.) writing of 1821: "This island appears to be entirely comprised of lava which resembles cinders. The only vegetation on consists of a few shrubs", and Dumont D'Urville (1830, p.160) writing of 1827: " la vegetation tres-active ". c. 172 species. 18. Kaipatiki Creek, Glenfield N42 220-6/684-6 Area: 8 hectares Secondary coastal forest, scrub and estuarine communities. 101 species. 19. Hellyer's (Oruamo) Creek, Greenhithe N42 200-10/682-93 Area: 20 hectares As for 18, also a fair number of hard beech upslope. 167 species. 20. Flat Top Hill, Rodney County N37 076-8/917-20 Area: 3 hectares Mixed-broadleaf and totara stands on volcanic rock. 107 species. 21. Mansell's farm, Haruru Road, Rodney County N37 067-72/941-6 Area: 10 hectares Pre-European podocarp floodplain forest. 80 species. ACKNOWLEDGEMENTS To J.K. Bartlett, J.E. Braggins, E.K. Cameron and A.E. Esler for additions to several lists; to the curators of the herbaria of the Auckland Institute and Museum, Botany Division DSIR and the National Museum, Wellington for much information on their collections. REFERENCES Allan, H.H. 1961: "Flora of New Zealand". Vol. 1. Government Printer, Wellington. 1 085 p. Anon. 1909: Forestry in New Zealand. Appendices to the Journals of the House of Representatives Session 2 C-4. Cheeseman, T.F. 1925: "Manual of the New Zealand Flora". Ed. 2. Government Printer, Wellington. 1 163 p. Connor, H.E. & Edgar, E. 1978: Nomina Nova II, 1970-1976. New Zealand Journal of Botany 16:103-18. Dumont D'Urville, J.S.C. 1830: "Voyage de la corvette Astrolabe ". Vol. 2. Tastu, Paris. Edgar, E. 1971: Nomina Nova Plantarum Novae-Zealandiae 1960-1971 Gymnospermae, Angiospermae. New Zealand Journal of Botany 9:322-30. Healy, A.J. & Edgar, E. 1980: "Flora of New Zealand". Vol. 3. Government Printer, Wellington. 220 p. 173 Law, R.G. 1975: Radiocarbon dates for Rangitoto and Motutapu, a consideration of the dating accuracy.
Recommended publications
  • Breeding System Diversification and Evolution in American Poa Supersect. Homalopoa (Poaceae: Poeae: Poinae)
    Annals of Botany Page 1 of 23 doi:10.1093/aob/mcw108, available online at www.aob.oxfordjournals.org Breeding system diversification and evolution in American Poa supersect. Homalopoa (Poaceae: Poeae: Poinae) Liliana M. Giussani1,*, Lynn J. Gillespie2, M. Amalia Scataglini1,Marıa A. Negritto3, Ana M. Anton4 and Robert J. Soreng5 1Instituto de Botanica Darwinion, San Isidro, Buenos Aires, Argentina, 2Research and Collections Division, Canadian Museum of Nature, Ottawa, Ontario, Canada, 3Universidad de Magdalena, Santa Marta, Colombia, 4Instituto Multidisciplinario de Biologıa Vegetal (IMBIV), CONICET-UNC, Cordoba, Argentina and 5Department of Botany, Smithsonian Institution, Washington, DC, USA *For correspondence. E-mail [email protected] Received: 11 December 2015 Returned for revision: 18 February 2016 Accepted: 18 March 2016 Downloaded from Background and Aims Poa subgenus Poa supersect. Homalopoa has diversified extensively in the Americas. Over half of the species in the supersection are diclinous; most of these are from the New World, while a few are from South-East Asia. Diclinism in Homalopoa can be divided into three main types: gynomonoecism, gynodioe- cism and dioecism. Here the sampling of species of New World Homalopoa is expanded to date its origin and diver- sification in North and South America and examine the evolution and origin of the breeding system diversity. Methods A total of 124 specimens were included in the matrix, of which 89 are species of Poa supersect. http://aob.oxfordjournals.org/ Homalopoa sections Acutifoliae, Anthochloa, Brizoides, Dasypoa, Dioicopoa, Dissanthelium, Homalopoa sensu lato (s.l.), Madropoa and Tovarochloa, and the informal Punapoa group. Bayesian and parsimony analyses were conducted on the data sets based on four markers: the nuclear ribosomal internal tanscribed spacer (ITS) and exter- nal transcribed spacer (ETS), and plastid trnT-L and trnL-F.
    [Show full text]
  • Flora of New Zealand Mosses
    FLORA OF NEW ZEALAND MOSSES BRACHYTHECIACEAE A.J. FIFE Fascicle 46 – JUNE 2020 © Landcare Research New Zealand Limited 2020. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: "Source: Manaaki Whenua – Landcare Research" Attribution if making an adaptation or derivative work: "Sourced from Manaaki Whenua – Landcare Research" See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Fife, Allan J. (Allan James), 1951- Flora of New Zealand : mosses. Fascicle 46, Brachytheciaceae / Allan J. Fife. -- Lincoln, N.Z. : Manaaki Whenua Press, 2020. 1 online resource ISBN 978-0-947525-65-1 (pdf) ISBN 978-0-478-34747-0 (set) 1. Mosses -- New Zealand -- Identification. I. Title. II. Manaaki Whenua-Landcare Research New Zealand Ltd. UDC 582.345.16(931) DC 588.20993 DOI: 10.7931/w15y-gz43 This work should be cited as: Fife, A.J. 2020: Brachytheciaceae. In: Smissen, R.; Wilton, A.D. Flora of New Zealand – Mosses. Fascicle 46. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/w15y-gz43 Date submitted: 9 May 2019 ; Date accepted: 15 Aug 2019 Cover image: Eurhynchium asperipes, habit with capsule, moist. Drawn by Rebecca Wagstaff from A.J. Fife 6828, CHR 449024. Contents Introduction..............................................................................................................................................1 Typification...............................................................................................................................................1
    [Show full text]
  • Novel Habitats, Rare Plants and Root Traits
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Novel Habitats, Rare Plants and Roots Traits A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Applied Science at Lincoln University by Paula Ann Greer Lincoln University 2017 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Master of Applied Science. Abstract Novel habitats, rare plants and root traits. by Paula Ann Greer The loss of native plant species through habitat loss has been happening in NZ since the arrival of humans. This is especially true in Canterbury where less than 1% of the lowland plains are believed to be covered in remnant native vegetation. Rural land uses are changing and farm intensification is creating novel habitats, including farm irrigation earth dams. Dam engineers prefer not to have plants growing on dams. Earth dams are consented for 100 years, they could be used to support threatened native plants. Within the farm conversion of the present study dams have created an average of 1.7 hectares of ‘new land’ on their outside slope alone, which is the area of my research.
    [Show full text]
  • Early Tropical Crop Production in Marginal Subtropical and Temperate Polynesia
    Early tropical crop production in marginal subtropical and temperate Polynesia Matthew Prebblea,1, Atholl J. Andersona, Paul Augustinusb, Joshua Emmittc, Stewart J. Fallond, Louise L. Fureye, Simon J. Holdawayc, Alex Jorgensenc, Thegn N. Ladefogedc,f, Peter J. Matthewsg, Jean-Yves Meyerh, Rebecca Phillippsc, Rod Wallacec, and Nicholas Porchi aDepartment of Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, The Australian National University, Canberra, ACT 2601, Australia; bSchool of Environment, University of Auckland, Auckland 1142, New Zealand; cAnthropology, School of Social Sciences, University of Auckland, Auckland 1142, New Zealand; dResearch School of Earth Sciences, College of Physical and Mathematical Sciences, The Australian National University, Canberra, ACT 2601, Australia; eAuckland War Memorial Museum, Auckland 1142, New Zealand; fTe Punaha Matatini, Auckland 1011, New Zealand; gField Sciences Laboratory, Department of Cross-Field Research, National Museum of Ethnology, 565–8511 Osaka, Japan; hDélégation à la Recherche, Gouvernement de la Polynésie Française, Papeete 98713, French Polynesia; and iCentre for Integrated Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia Edited by Patrick V. Kirch, University of California, Berkeley, CA, and approved March 13, 2019 (received for review January 4, 2019) Polynesians introduced the tropical crop taro (Colocasia esculenta) then abandoned before European contact, proposed as a response to temperate New Zealand after 1280 CE, but evidence for its to the decline of formerly abundant wild resources (12, 13) (Fig. 1). cultivation is limited. This contrasts with the abundant evidence Fossil pollen and sedimentary charcoal from wetland deposits for big game hunting, raising longstanding questions of the initial show that, before Polynesian arrival, forests of varying canopy economic and ecological importance of crop production.
    [Show full text]
  • Flora of New Zealand Seed Plants
    FLORA OF NEW ZEALAND SEED PLANTS CENTROLEPIDACEAE K.A. FORD Fascicle 2 – JUNE 2014 © Landcare Research New Zealand Limited 2014. This copyright work is licensed under the Creative Commons Attribution 3.0 New Zealand license. Attribution if redistributing to the public without adaptation: “Source: Landcare Research” Attribution if making an adaptation or derivative work: “Sourced from Landcare Research” CATALOGUING IN PUBLICATION Ford, Kerry A. (Kerry Alison) Flora of New Zealand [electronic resource] : seed plants. Fascicle 2, Centrolepidaceae / K.A. Ford. -- Lincoln, N.Z. : Manaaki Whenua Press, 2014. 1 online resource ISBN 978-0-478-34764-7 (pdf) ISBN 978-0-478-34762-3 (set) 1.Phanerogams -- New Zealand - Identification. I. Title. II. Manaaki Whenua-Landcare Research New Zealand Ltd. DOI: 10.7931/J2H41PBX This work should be cited as: Ford, K.A. 2014: Centrolepidaceae. In: Breitwieser, I.; Brownsey, P.J.; Heenan, P.B.; Wilton, A.D. Flora of New Zealand - Seed Plants. Fascicle 2. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/J2H41PBX Cover image: Centrolepis ciliata, habit of cushion (near Lake Te Anau). Contents Introduction..............................................................................................................................................1 Taxa Centrolepidaceae Endl. ..................................................................................................................... 2 Centrolepis Labill. .............................................................................................................................
    [Show full text]
  • Flora of New Zealand Mosses
    FLORA OF NEW ZEALAND MOSSES DALTONIACEAE A.J. FIFE Fascicle 34 – JULY 2017 © Landcare Research New Zealand Limited 2017. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: “Source: Landcare Research” Attribution if making an adaptation or derivative work: “Sourced from Landcare Research” See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Fife, Allan J. (Allan James), 1951- Flora of New Zealand : mosses. Fascicle 34, Daltoniaceae / Allan J. Fife. -- Lincoln, N.Z. : Manaaki Whenua Press, 2017. 1 online resource ISBN 978-0-947525-14-9 (pdf) ISBN 978-0-478-34747-0 (set) 1.Mosses -- New Zealand -- Identification. I. Title. II. Manaaki Whenua-Landcare Research New Zealand Ltd. UDC 582.344.947(931) DC 588.20993 DOI: 10.7931/B1HS3R This work should be cited as: Fife, A.J. 2017: Daltoniaceae. In: Breitwieser, I.; Wilton, A.D. Flora of New Zealand - Mosses. Fascicle 34. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/B1HS3R Cover image: Calyptrochaeta cristata, habit with capsule, moist. Drawn by Rebecca Wagstaff from V.D. Zotov s.n., 27 Aug. 1933, CHR 6867. Contents Introduction..............................................................................................................................................1 Typification...............................................................................................................................................1
    [Show full text]
  • Ecology of the Naturalisation and Geographic Distribution of the Non-Indigenous Seed Plant Species Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lincoln University Research Archive Ecology of the naturalisation and geographic distribution of the non-indigenous seed plant species of New Zealand. A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Hazel A. W. Gatehouse Lincoln University 2008 ii iv Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Ph.D. Ecology of the naturalisation and geographic distribution of the non- indigenous seed plant species of New Zealand. by Hazel A. W. Gatehouse The naturalisation and subsequent spread of non-indigenous plant species (NIPS) is a major problem for most regions of the world. Managing plant invasions requires greater understanding of factors that determine initial naturalisation and distribution of wild NIPS. By the year 2000, 2252 NIPS were recorded as wild (1773 fully naturalised and 479 casual) in New Zealand. From published literature and electronic herbaria records, I recorded year of discovery of wild populations, and regional distribution of these wild NIPS. I also recorded species related attributes hypothesised to affect naturalisation and/or distribution, including global trade, human activities, native range and biological data; and regional attributes hypothesised to affect distribution, including human population densities, land use/cover, and environmental data. I used interval-censored time-to-event analyses to estimate year of naturalisation from discovery records, then analysed the importance of historical, human activity, biogeographical and biological attributes in determining patterns of naturalisation. Typically, NIPS that naturalised earlier were herbaceous, utilitarian species that were also accidentally introduced and/or distributed, with a wide native range that included Eurasia, naturalised elsewhere, with a native congener in New Zealand.
    [Show full text]
  • Phylogeny, Morphology and the Role of Hybridization As Driving Force Of
    bioRxiv preprint doi: https://doi.org/10.1101/707588; this version posted July 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Phylogeny, morphology and the role of hybridization as driving force of evolution in 2 grass tribes Aveneae and Poeae (Poaceae) 3 4 Natalia Tkach,1 Julia Schneider,1 Elke Döring,1 Alexandra Wölk,1 Anne Hochbach,1 Jana 5 Nissen,1 Grit Winterfeld,1 Solveig Meyer,1 Jennifer Gabriel,1,2 Matthias H. Hoffmann3 & 6 Martin Röser1 7 8 1 Martin Luther University Halle-Wittenberg, Institute of Biology, Geobotany and Botanical 9 Garden, Dept. of Systematic Botany, Neuwerk 21, 06108 Halle, Germany 10 2 Present address: German Centre for Integrative Biodiversity Research (iDiv), Deutscher 11 Platz 5e, 04103 Leipzig, Germany 12 3 Martin Luther University Halle-Wittenberg, Institute of Biology, Geobotany and Botanical 13 Garden, Am Kirchtor 3, 06108 Halle, Germany 14 15 Addresses for correspondence: Martin Röser, [email protected]; Natalia 16 Tkach, [email protected] 17 18 ABSTRACT 19 To investigate the evolutionary diversification and morphological evolution of grass 20 supertribe Poodae (subfam. Pooideae, Poaceae) we conducted a comprehensive molecular 21 phylogenetic analysis including representatives from most of their accepted genera. We 22 focused on generating a DNA sequence dataset of plastid matK gene–3'trnK exon and trnL– 23 trnF regions and nuclear ribosomal ITS1–5.8S gene–ITS2 and ETS that was taxonomically 24 overlapping as completely as possible (altogether 257 species).
    [Show full text]
  • A Selected Bibliography of Pohutukawa and Rata (1788-1999)
    [Type text] Preface Stephanie Smith, an experienced librarian and Rhodes Scholar with specialist skills in the development of bibliographies, was a wonderful partner for Project Crimson in the production of this comprehensive bibliography of pohutukawa and rata. Several years ago the Project Crimson Trust recognized the need to bring together the many and diverse references to these national icons for the benefit of researchers, conservationists, students, schools and the interested public. We never imagined the project would lead to such a work of scholarship, such a labour of love. Stephanie, like others who embrace the cause rather than the job, has invested time and intellect far beyond what was ever expected, and provided us with this outstanding resource. I urge all users to read the short introduction and gain some of the flavour of Stephanie’s enthusiasm. Project Crimson would also like to acknowledge the contribution of Forest Research library staff, in particular Megan Gee, for their help and support throughout the duration of this project. Gordon Hosking Trustee, Project Crimson February 2000 INTRODUCTION: THE LIVING LIBRARY [The] world around us is a repository of information which we have only begun to delve into. Like any library, once parts are missing, it is incomplete but, unlike a library, once our books (in this instance biological species) are lost they cannot be replaced. - Catherine Wilson and David Given, Threatened Plants of New Zealand. ...right at their feet they [Wellingtonians] have one of the most wide-ranging and fascinating living textbooks of botany in the country. Well - selected pages anyway. Many of the pages were ripped out by zealous colonisers, and there are now some big gaps.
    [Show full text]
  • On the Flora of Australia
    L'IBRARY'OF THE GRAY HERBARIUM HARVARD UNIVERSITY. BOUGHT. THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEING AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. r^/f'ORElGN&ENGLISH' <^ . 1859. i^\BOOKSELLERS^.- PR 2G 1.912 Gray Herbarium Harvard University ON THE FLORA OF AUSTRALIA ITS ORIGIN, AFFINITIES, AND DISTRIBUTION. I I / ON THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEIKG AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. Reprinted from the JJotany of the Antarctic Expedition, Part III., Flora of Tasmania, Vol. I. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. 1859. PRINTED BY JOHN EDWARD TAYLOR, LITTLE QUEEN STREET, LINCOLN'S INN FIELDS. CONTENTS OF THE INTRODUCTORY ESSAY. § i. Preliminary Remarks. PAGE Sources of Information, published and unpublished, materials, collections, etc i Object of arranging them to discuss the Origin, Peculiarities, and Distribution of the Vegetation of Australia, and to regard them in relation to the views of Darwin and others, on the Creation of Species .... iii^ § 2. On the General Phenomena of Variation in the Vegetable Kingdom. All plants more or less variable ; rate, extent, and nature of variability ; differences of amount and degree in different natural groups of plants v Parallelism of features of variability in different groups of individuals (varieties, species, genera, etc.), and in wild and cultivated plants vii Variation a centrifugal force ; the tendency in the progeny of varieties being to depart further from their original types, not to revert to them viii Effects of cross-impregnation and hybridization ultimately favourable to permanence of specific character x Darwin's Theory of Natural Selection ; — its effects on variable organisms under varying conditions is to give a temporary stability to races, species, genera, etc xi § 3.
    [Show full text]
  • Ecological Restoration of New Zealand Islands
    CONTENTS Introduction D.R. Towns, I.A.E. Atkinson, and C.H. Daugherty .... ... .. .... .. .... ... .... ... .... .... iii SECTION I: RESOURCES AND MANAGEMENT New Zealand as an archipelago: An international perspective Jared M. Diamond . 3 The significance of the biological resources of New Zealand islands for ecological restoration C.H. Daugherty, D.R. Towns, I.A.E. Atkinson, G.W. Gibbs . 9 The significance of island reserves for ecological restoration of marine communities W.J.Ballantine. 22 Reconstructing the ambiguous: Can island ecosystems be restored? Daniel Simberloff. 37 How representative can restored islands really be? An analysis of climo-edaphic environments in New Zealand Colin D. Meurk and Paul M. Blaschke . 52 Ecological restoration on islands: Prerequisites for success I.A.E Atkinson . 73 The potential for ecological restoration in the Mercury Islands D.R. Towns, I.A.E. Atkinson, C.H. Daugherty . 91 Motuhora: A whale of an island S. Smale and K. Owen . ... ... .. ... .... .. ... .. ... ... ... ... ... .... ... .... ..... 109 Mana Island revegetation: Data from late Holocene pollen analysis P.I. Chester and J.I. Raine ... ... ... .... .... ... .. ... .. .... ... .... .. .... ..... 113 The silent majority: A plea for the consideration of invertebrates in New Zealand island management - George W. Gibbs .. ... .. ... .. .... ... .. .... ... .. ... ... ... ... .... ... ..... ..... 123 Community effects of biological introductions and their implications for restoration Daniel Simberloff . 128 Eradication of introduced animals from the islands of New Zealand C.R. Veitch and Brian D. Bell . 137 Mapara: Island management "mainland" style Alan Saunders . 147 Key archaeological features of the offshore islands of New Zealand Janet Davidson . .. ... ... ... .. ... ... .. .... ... .. ... .. .... .. ..... .. .... ...... 150 Potential for ecological restoration of islands for indigenous fauna and flora John L. Craig .. .. ... .. ... ... ... .... .. ... ... .. ... .. .... ... ... .... .... ..... .. 156 Public involvement in island restoration Mark Bellingham .
    [Show full text]
  • Flora of New Zealand Mosses
    FLORA OF NEW ZEALAND MOSSES SEMATOPHYLLACEAE A.J. FIFE Fascicle 28 JUNE 2016 © Landcare Research New Zealand Limited 2016. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International license Attribution if redistributing to the public without adaptation: “Source: Landcare Research” Attribution if making an adaptation or derivative work: “Sourced from Landcare Research” See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Fife, Allan J. (Allan James), 1951- Flora of New Zealand [electronic resource] : mosses. Fascicle 28, Sematophyllaceae / Allan J. Fife. -- Lincoln, N.Z. : Manaaki Whenua Press, 2016. 1 online resource ISBN 978-0-478-34798-2 (pdf) ISBN 978-0-478-34747-0 (set) 1.Mosses -- New Zealand -- Identification. I. Title. II. Manaaki Whenua-Landcare Research New Zealand Ltd. UDC 582.345.183(931) DC 588.20993 DOI: 10.7931/B12011 This work should be cited as: Fife, A.J. 2016: Sematophyllaceae. In: Heenan, P.B.; Breitwieser, I.; Wilton, A.D. Flora of New Zealand - Mosses. Fascicle 28. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/B12011 Cover image: Wijkia extenuata var. extenuata, habit with capsules. Drawn by Rebecca Wagstaff from B.H. Macmillan 95/42, CHR 506658, and D. Glenny s.n., 25 Nov. 1985, CHR 438413. Contents Introduction.............................................................................................................................................. 1 Typification..............................................................................................................................................
    [Show full text]