Ecology of the Naturalisation and Geographic Distribution of the Non-Indigenous Seed Plant Species Of

Total Page:16

File Type:pdf, Size:1020Kb

Ecology of the Naturalisation and Geographic Distribution of the Non-Indigenous Seed Plant Species Of View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lincoln University Research Archive Ecology of the naturalisation and geographic distribution of the non-indigenous seed plant species of New Zealand. A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Hazel A. W. Gatehouse Lincoln University 2008 ii iv Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Ph.D. Ecology of the naturalisation and geographic distribution of the non- indigenous seed plant species of New Zealand. by Hazel A. W. Gatehouse The naturalisation and subsequent spread of non-indigenous plant species (NIPS) is a major problem for most regions of the world. Managing plant invasions requires greater understanding of factors that determine initial naturalisation and distribution of wild NIPS. By the year 2000, 2252 NIPS were recorded as wild (1773 fully naturalised and 479 casual) in New Zealand. From published literature and electronic herbaria records, I recorded year of discovery of wild populations, and regional distribution of these wild NIPS. I also recorded species related attributes hypothesised to affect naturalisation and/or distribution, including global trade, human activities, native range and biological data; and regional attributes hypothesised to affect distribution, including human population densities, land use/cover, and environmental data. I used interval-censored time-to-event analyses to estimate year of naturalisation from discovery records, then analysed the importance of historical, human activity, biogeographical and biological attributes in determining patterns of naturalisation. Typically, NIPS that naturalised earlier were herbaceous, utilitarian species that were also accidentally introduced and/or distributed, with a wide native range that included Eurasia, naturalised elsewhere, with a native congener in New Zealand. In the year 2000, 28% of wild NIPS occupied only one region, 18% occupied two regions, decreasing incrementally to 2.5 % for nine regions, but with 13.5% occupying all ten regions. I used generalised linear models (GLMs) with binomial distribution to determine predictors of whether a wild NIPS occupied ten regions or not, and GLMs with Poisson distribution for wild NIPS occupying 0 – 9 regions. As expected, the dominant effect was that species discovered earlier occupied more v regions. Utilitarian wild NIPS that were also accidentally introduced and/or distributed, and wild NIPS with a native congener tended to be more widely distributed, but results for other attributes varied between datasets. Although numbers of wild NIPS recorded in regions of New Zealand were sometimes similar, composition of wild NIPS was often very different. I used nonmetric multidimensional scaling (NMDS) to determine dissimilarity in composition between regions. Then, after reducing correlation between predictor variables using principal components analyses (PCAs), I tested the importance of regional variables in determining the regional composition of wild NIPS using metaMDS. The density of human populations best explained the dissimilarity in composition, but temperature gradients and water availability gradients were also important. In the year 2000 more than 1100 (60%) of the 1773 fully naturalised NIPS in mainland New Zealand had each been recorded in Northland/Auckland and Canterbury, and at the other end of the scale, Southland and Westland each had fewer than 500 (30%). I used GLMs to analyse the importance of people and environment in determining the numbers of wild NIPS in each region. Because I conducted multiple tests on the same dataset I used sequential Bonferroni procedures to adjust the critical P-value. Only human population density was important in explaining the numbers of NIPS in the regions. Overall, humans were the dominant drivers in determining the patterns of naturalisation and spread, although environment helps determine the composition of NIPS in regions. Incorporating human associated factors into studies of wild NIPS helps improve the understanding of the stages in the naturalisation and spread process. Keywords: invasion ecology, climate, plant naturalization, weed risk assessment, biosecurity, exotic, alien, invasive, weeds, spread, human input, introduction effort, minimum residence time vi Chapter 1: Introduction Chapter 1: Introduction 1 1. Background 1 2. Thesis objectives 4 3. Thesis structure 5 Chapter 2: Natural history of the wild non-indigenous seed plant species of New Zealand. 6 1. Abstract 6 2. Introduction 6 2.1. Plant introductions to New Zealand 8 2.2. Botanical records 9 3. NIPS list 11 3.1. Issues with the data 12 3.2. Numbers of NIPS 14 4. Year of discovery 19 5. Native range – number and specific region/s 23 6. Growth form and plasticity 25 7. Introduction and distribution 27 8. Additional biological attributes 29 8.1.1. Mode of dispersal 31 8.1.2. Dispersule mass 31 8.1.3. Vegetative reproduction 31 8.1.4. Start of flowering 31 8.1.5. Flowering duration 31 8.1.6. Life strategy 32 8.1.7. Plant height 32 9. Conclusion 32 Chapter 3: Estimating the year of naturalisation of the wild non-indigenous seed plant species of New Zealand using interval-censored time- to-event analysis. 35 1. Introduction 35 2. Methods 38 2.1. Database of the wild NIPS 38 2.2. Statistical analyses 38 2.2.1. Interval-censored estimation of year of naturalisation 38 2.2.2. Fitting the model 40 2.3. NIPS attributes 42 2.3.1. Native range – number and specific regions 42 2.3.2. Growth form and plasticity 44 2.3.3. Introduction and distribution 44 2.3.4. Taxonomy 45 2.3.5. Additional biological attributes 46 2.3.6. Imports 48 3. Results 50 3.1. Records of discoveries 50 3.2. Estimation of year of naturalisation 51 3.3. Significant predictors 52 3.3.1. Predictors tested individually 52 3.3.2. Summary of multivariate analyses 53 vii Chapter 1: Introduction 3.3.3. All wild NIPS 53 3.3.4. Subset of wild NIPS 56 3.4. Imports 58 4. Discussion 59 4.1. Human activities and biogeography 59 4.2. Taxonomy 62 4.3. Biology 63 5. Conclusion 64 Appendix 3.1 65 Chapter 4: Why are some non-indigenous plant species more widely distributed in New Zealand? 68 1. Introduction 68 2. Methods 70 2.1. New Zealand and its regions 70 2.2. NIPS list, status and regional presence 71 2.3. Statistical analysis 72 2.4. NIPS attributes 75 2.4.1. Year of discovery 75 2.4.2. Native range – number and specific regions 75 2.4.3. Growth form and plasticity 76 2.4.4. Introduction and distribution 77 2.4.5. Taxonomy 78 2.4.6. Additional biological attributes 79 3. Results 82 3.1. Summary of all models 83 3.2. Wild NIPS recorded or not recorded in all 10 regions 84 3.2.1. All fully naturalised NIPS 84 3.2.2. Environmental weeds 88 3.2.3. Subset with additional biological predictors 89 3.3. NIPS recorded in 1-9 regions 91 3.3.1. All fully naturalised NIPS 91 3.3.2. Environmental weeds 92 3.3.3. Subset with additional biological predictors 94 4. Discussion 95 4.1. History 96 4.2. Introduction and distribution 97 4.3. Biogeography 98 4.4. Taxonomy 100 4.5. Biology 101 4.6. Issues with the data 103 5. Conclusion 103 Appendix 4.1 105 Appendix 4.2 107 Chapter 5: Why do some regions have more wild non- indigenous plant species? 109 1. Introduction 109 2. Methods 112 2.1. New Zealand, its regions and its NIPS 112 viii Chapter 1: Introduction 2.2. Regional attributes 113 2.2.1. People 113 2.2.2. Land use/cover and environmental groups 114 2.2.3. Environmental variables 115 2.3. Analyses 117 2.3.1. Principal components analysis 117 2.3.2. Correlation between predictor variables 117 2.3.3. Dissimilarity in composition between regions 117 2.3.4. Wild NIPS Richness 118 3. Results 119 3.1. Variables 119 3.1.1. Principal Components Analysis 119 3.1.2. Correlation between predictor variables 119 3.2. Wild NIPS distributions within regions 121 3.2.1. Nonmetric Multidimensional Scaling 121 3.3. NIPS richness 124 4. Discussion 127 4.1. Human population and Land cover/use 127 4.2. Climate effects 129 4.3. Time 131 4.4. Data 131 5. Conclusion 131 Synthesis 133 5.1. Forecast: weeds 133 5.2. Predicting the invasion 134 5.3. Future directions 137 5.4. Final thoughts 137 Table 1 The number of fully naturalised and casual wild NIPS per family discovered by the year 2000, shown in decreasing order. Also shown is the % of the total wild NIPS from each family and whether or not a family is native to New Zealand. 16 Table 2: The number of wild NIPS, native species, % of total regional flora consisting of wild NIPS, the area, number of wild NIPS per log10 of the area (as used by Vitousek et al., 1996; Weber, 1997), population density and source of the information for a range of islands and countries or regions in the world, in order of decreasing numbers of wild NIPS. 18 Table 3: The 19 regions of the world according to the Kew scheme (Hollis & Brummitt, 1992) and my larger regions used in the analyses. 23 Table 4: Native region(s) of the wild NIPS of New Zealand. If a NIPS is native to more than one region it is considered a representative of each of the regions. 24 ix Chapter 1: Introduction Table 5 Number of Kew and grouped regions that the wild NIPS of New Zealand are native to. 24 Table 6 Wild NIPS classified according to growth form.
Recommended publications
  • Partial Flora Survey Rottnest Island Golf Course
    PARTIAL FLORA SURVEY ROTTNEST ISLAND GOLF COURSE Prepared by Marion Timms Commencing 1 st Fairway travelling to 2 nd – 11 th left hand side Family Botanical Name Common Name Mimosaceae Acacia rostellifera Summer scented wattle Dasypogonaceae Acanthocarpus preissii Prickle lily Apocynaceae Alyxia Buxifolia Dysentry bush Casuarinacea Casuarina obesa Swamp sheoak Cupressaceae Callitris preissii Rottnest Is. Pine Chenopodiaceae Halosarcia indica supsp. Bidens Chenopodiaceae Sarcocornia blackiana Samphire Chenopodiaceae Threlkeldia diffusa Coast bonefruit Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Suada australis Seablite Chenopodiaceae Atriplex isatidea Coast saltbush Poaceae Sporabolis virginicus Marine couch Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Pittosporaceae Pittosporum phylliraeoides Weeping pittosporum Poaceae Stipa flavescens Tussock grass 2nd – 11 th Fairway Family Botanical Name Common Name Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Atriplex isatidea Coast saltbush Cyperaceae Gahnia trifida Coast sword sedge Pittosporaceae Pittosporum phyliraeoides Weeping pittosporum Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Chenopodiaceae Sarcocornia blackiana Samphire Central drainage wetland commencing at Vietnam sign Family Botanical Name Common Name Chenopodiaceae Halosarcia halecnomoides Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Sarcocornia blackiana Samphire Poaceae Sporobolis virginicus Cyperaceae Gahnia Trifida Coast sword sedge
    [Show full text]
  • Notes on Epilobium (Onagraceae) from the Western Mediterranean
    NOTES ON EPILOBIUM (ONAGRACEAE) FROM THE WESTERN MEDITERRANEAN by GONZALO NETO FELINER* Resumen NIETO FELINER, G. (1996). Notas sobre los Epilobium (Onagraceae) del Mediterráneo occidental. Anales Jard. Bot. Madrid 54: 255-264 (en inglés). Aportaciones taxonómicas sobre el género Epilobium que son consecuencia de la revisión lle- vada a cabo para producir una síntesis genérica destinada a Flora iberica. En particular, se acla- ran nombres tales como E. mutabile Boiss. & Reut., E. carpetanum Willk., E. psilotum Maire & Samuelsson o E. salcedoi Vicioso, así como varios creados por Sennen (E. barcinonense, E. gredillae, E. losae, E. rigatum, E. barnadesianum, E. debile, E. costeanum) y por Merino (£. maciae, E. simulans, E. tudense y E. lucense). Asimismo, se discute en detalle el problema de E. lamyi F.W. Schultz; en especial, se aclara el uso de dicho nombre por parte de botánicos que han trabajado en España y Portugal, y se rechazan las citas peninsulares del mismo. Se explican algunos problemas taxonómicos derivados de la variabilidad morfológica que exhiben E. duriaei, E. montanum, E. lanceolatum, E. collinum, E. tetragonum subsp. tournefortii y E. obscurum. De este último, adicionalmente, se aportan algunos datos de interés corológico. Palabras clave: Spermatophyta, Epilobium, Onagraceae, taxonomía, corología, Mediterráneo occidental. Abstract NIETO FELINER, G. (1996). Notes on Epilobium (Onagraceae) from the western Mediterranean. Anales Jard. Bot. Madrid 54: 255-264. The present taxonomic notes are part of the results of a revisión of Epilobium carried out for the "Flora iberica" project. The identity of diverse ñames is clarified, including E. mutabile Boiss. & Reut., E. carpetanum Willk., E. psilotum Maire & Samuelsson, E.
    [Show full text]
  • ED45E Rare and Scarce Species Hierarchy.Pdf
    104 Species 55 Mollusc 8 Mollusc 334 Species 181 Mollusc 28 Mollusc 44 Species 23 Vascular Plant 14 Flowering Plant 45 Species 23 Vascular Plant 14 Flowering Plant 269 Species 149 Vascular Plant 84 Flowering Plant 13 Species 7 Mollusc 1 Mollusc 42 Species 21 Mollusc 2 Mollusc 43 Species 22 Mollusc 3 Mollusc 59 Species 30 Mollusc 4 Mollusc 59 Species 31 Mollusc 5 Mollusc 68 Species 36 Mollusc 6 Mollusc 81 Species 43 Mollusc 7 Mollusc 105 Species 56 Mollusc 9 Mollusc 117 Species 63 Mollusc 10 Mollusc 118 Species 64 Mollusc 11 Mollusc 119 Species 65 Mollusc 12 Mollusc 124 Species 68 Mollusc 13 Mollusc 125 Species 69 Mollusc 14 Mollusc 145 Species 81 Mollusc 15 Mollusc 150 Species 84 Mollusc 16 Mollusc 151 Species 85 Mollusc 17 Mollusc 152 Species 86 Mollusc 18 Mollusc 158 Species 90 Mollusc 19 Mollusc 184 Species 105 Mollusc 20 Mollusc 185 Species 106 Mollusc 21 Mollusc 186 Species 107 Mollusc 22 Mollusc 191 Species 110 Mollusc 23 Mollusc 245 Species 136 Mollusc 24 Mollusc 267 Species 148 Mollusc 25 Mollusc 270 Species 150 Mollusc 26 Mollusc 333 Species 180 Mollusc 27 Mollusc 347 Species 189 Mollusc 29 Mollusc 349 Species 191 Mollusc 30 Mollusc 365 Species 196 Mollusc 31 Mollusc 376 Species 203 Mollusc 32 Mollusc 377 Species 204 Mollusc 33 Mollusc 378 Species 205 Mollusc 34 Mollusc 379 Species 206 Mollusc 35 Mollusc 404 Species 221 Mollusc 36 Mollusc 414 Species 228 Mollusc 37 Mollusc 415 Species 229 Mollusc 38 Mollusc 416 Species 230 Mollusc 39 Mollusc 417 Species 231 Mollusc 40 Mollusc 418 Species 232 Mollusc 41 Mollusc 419 Species 233
    [Show full text]
  • Invasive Asteraceae Copy.Indd
    Family Asteraceae Family: Asteraceae Spotted Knapweed Centaurea biebersteinii DC. Synonyms Acosta maculosa auct. non Holub, Centaurea maculosa auct. non Lam. Related Species Russian Knapweed Acroptilon repens (L.) DC. Description Spotted knapweed is a biennial to short-lived perennial plant. Seedling cotyledons are ovate, with the first leaves lance-shaped, undivided, and hairless. (Young seedlings can appear grass-like.) Stems grow 1 to 4 feet tall, and are many-branched, with a single flower at the end of each branch. Rosette leaves are indented or divided Old XID Services photo by Richard about half-way to the midrib. Stem leaves are alternate, pinnately divided, Spotted knapweed flower. and get increasingly smaller toward the tip of each branch. Flower heads are urn-shaped, up to 1 inch wide, and composed of pink, purple, or sometimes white disk flowers. A key characteristic of spotted knap- weed is the dark comb-like fringe on the tips of the bracts, found just below the flower petals. These dark-tipped bracts give this plant its “spotted” appearance. Russian knapweed is a creeping perennial plant that is extensively branched, with solitary urn-shaped pink or purple flower heads at the end of each branch. Similar in appearance to spotted knapweed, Russian knapweed can be distinguished by its slightly smaller flower heads, flower head bracts covered in light hairs, with papery tips, and scaly dark brown or black rhizomes, which have a burnt appearance. Family: Asteraceae Spotted Knapweed Leaves and stems of both spotted and Russian knapweeds are covered in fine hairs, giving the plants a grayish cast.
    [Show full text]
  • Some Species Lists of Native Plants of the Auckland Region, by R.O. Gardner, P 169-176
    TANE 27, 1981 SOME SPECIES LISTS OF NATIVE PLANTS OF THE AUCKLAND REGION by R.O. Gardner 118 Market Road, Epsom, Auckland, 3 SUMMARY The native vascular flora of 21 areas near Auckland (c. lat. 36°30' - 37 °S) has been listed in manuscript. An index map and a guide to the compilation of these lists are given and the areas are described briefly. INTRODUCTION This article presents the background information to a set of species lists made by the author during 1977-81 and now deposited in manuscript in the libraries of several institutions (Auckland Institute and Museum, Auckland Public Library, Botany Division DSIR, University of Auckland) where they may be consulted and copied. These lists are to help those who wish to learn the native flora and to record what is left of the natural (pre-European) distribution of these plants near Auckland. COMPILATION OF LISTS Typically each list contains species seen by me in the field and other species known from herbarium material, the latter being vouchered by the earliest collection known to me. Some of my more unusual findings have also been vouchered (specimens in the herbarium of the Auckland Institute and Museum). The lists for the Waitakere Ranges and Rangitoto Island are exceptions to this format; they are based on comprehensive earlier work (Mead 1972, Millener unpub.) and I have not seen either in the field or herbarium all the species these workers mention. Consequently my lists contain a "Dubious and Excluded Species" section as well as vouchered additions and additions based on the "dot" distribution maps and specimen lists of recent taxonomic publications.
    [Show full text]
  • Breeding System Diversification and Evolution in American Poa Supersect. Homalopoa (Poaceae: Poeae: Poinae)
    Annals of Botany Page 1 of 23 doi:10.1093/aob/mcw108, available online at www.aob.oxfordjournals.org Breeding system diversification and evolution in American Poa supersect. Homalopoa (Poaceae: Poeae: Poinae) Liliana M. Giussani1,*, Lynn J. Gillespie2, M. Amalia Scataglini1,Marıa A. Negritto3, Ana M. Anton4 and Robert J. Soreng5 1Instituto de Botanica Darwinion, San Isidro, Buenos Aires, Argentina, 2Research and Collections Division, Canadian Museum of Nature, Ottawa, Ontario, Canada, 3Universidad de Magdalena, Santa Marta, Colombia, 4Instituto Multidisciplinario de Biologıa Vegetal (IMBIV), CONICET-UNC, Cordoba, Argentina and 5Department of Botany, Smithsonian Institution, Washington, DC, USA *For correspondence. E-mail [email protected] Received: 11 December 2015 Returned for revision: 18 February 2016 Accepted: 18 March 2016 Downloaded from Background and Aims Poa subgenus Poa supersect. Homalopoa has diversified extensively in the Americas. Over half of the species in the supersection are diclinous; most of these are from the New World, while a few are from South-East Asia. Diclinism in Homalopoa can be divided into three main types: gynomonoecism, gynodioe- cism and dioecism. Here the sampling of species of New World Homalopoa is expanded to date its origin and diver- sification in North and South America and examine the evolution and origin of the breeding system diversity. Methods A total of 124 specimens were included in the matrix, of which 89 are species of Poa supersect. http://aob.oxfordjournals.org/ Homalopoa sections Acutifoliae, Anthochloa, Brizoides, Dasypoa, Dioicopoa, Dissanthelium, Homalopoa sensu lato (s.l.), Madropoa and Tovarochloa, and the informal Punapoa group. Bayesian and parsimony analyses were conducted on the data sets based on four markers: the nuclear ribosomal internal tanscribed spacer (ITS) and exter- nal transcribed spacer (ETS), and plastid trnT-L and trnL-F.
    [Show full text]
  • Download (592Kb)
    This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/134581/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Raye, Lee 2020. The wild plants of Scotia Illustrata (1684). British & Irish Botany 2 (3) , pp. 240- 258. 10.33928/bib.2020.02.240 file Publishers page: http://dx.doi.org/10.33928/bib.2020.02.240 <http://dx.doi.org/10.33928/bib.2020.02.240> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders. British & Irish Botany 2(3): 240-258, 2020 The wild plants of Scotia Illustrata (1684) Lee Raye Cardiff University, Wales, UK Corresponding author: Lee Raye: [email protected] This pdf constitutes the Version of Record published on 31st August 2020 Abstract Scotia Illustrata was published in 1684 and contains a section (II:1) describing 662 ‘naturally occurring plants of Scotland’. This paper sets out to identify and discuss the species in the text. It was possible to identify 652 species from the text and 396 could be securely identified.
    [Show full text]
  • Flora of New Zealand Mosses
    FLORA OF NEW ZEALAND MOSSES BRACHYTHECIACEAE A.J. FIFE Fascicle 46 – JUNE 2020 © Landcare Research New Zealand Limited 2020. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: "Source: Manaaki Whenua – Landcare Research" Attribution if making an adaptation or derivative work: "Sourced from Manaaki Whenua – Landcare Research" See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Fife, Allan J. (Allan James), 1951- Flora of New Zealand : mosses. Fascicle 46, Brachytheciaceae / Allan J. Fife. -- Lincoln, N.Z. : Manaaki Whenua Press, 2020. 1 online resource ISBN 978-0-947525-65-1 (pdf) ISBN 978-0-478-34747-0 (set) 1. Mosses -- New Zealand -- Identification. I. Title. II. Manaaki Whenua-Landcare Research New Zealand Ltd. UDC 582.345.16(931) DC 588.20993 DOI: 10.7931/w15y-gz43 This work should be cited as: Fife, A.J. 2020: Brachytheciaceae. In: Smissen, R.; Wilton, A.D. Flora of New Zealand – Mosses. Fascicle 46. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/w15y-gz43 Date submitted: 9 May 2019 ; Date accepted: 15 Aug 2019 Cover image: Eurhynchium asperipes, habit with capsule, moist. Drawn by Rebecca Wagstaff from A.J. Fife 6828, CHR 449024. Contents Introduction..............................................................................................................................................1 Typification...............................................................................................................................................1
    [Show full text]
  • Newsletter Number 29 September 1992 New Zealand Botanical Society Newsletter Number 29 September 1992
    NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 29 SEPTEMBER 1992 NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 29 SEPTEMBER 1992 CONTENTS News NZ Bot Soc News Call for nominations 2 New Zealand Threatened Indigenous Vascular Plant List .2 Regional Bot Soc News Auckland 5 Canterbury 6 Nelson 6 Rotorua 7 Waikato 7 Wellington 8 Obituary Margot Forde 8 Other News Distinguished New Zealand Scientist turns 100 9 Government Science structures reorganised 10 New Department consolidates Marine Science strengths 10 Notes and Reports Plant records Conservation status of titirangi (Hebe speciosa) 11 Senecio sterquilinus Ornduff in the Wellington Ecological District ....... 16 Trip reports Ecological Forum Excursion to South Patagonia and Tierra del Fuego (2) .... 17 Tangihua Fungal Foray, 20-24 May 1992 19 Biography/Bibliography Biographical Notes (6) Peter Goyen, an addition 20 Biographical Notes (7) Joshua Rutland 20 New Zealand Botanists and Fellowships of the Royal Society 22 Forthcoming Meetings/Conferences Lichen Techniques Workshop 22 Forthcoming Trips/Tours Seventh New Zealand Fungal Foray 22 Publications Checklist of New Zealand lichens 23 The mosses of New Zealand, special offer 24 Book review An illustrated guide to fungi on wood in New Zealand 25 Letters to the Editor New Zealand Botanical Society President: Dr Eric Godley Secretary/Treasurer: Anthony Wright Committee: Sarah Beadel, Ewen Cameron, Colin Webb, Carol West Address: New Zealand Botanical Society C/- Auckland Institute & Museum Private Bag 92018 AUCKLAND Subscriptions The 1992 ordinary and institutional subs are $14 (reduced to $10 if paid by the due date on the subscription invoice). The 1992 student sub, available to full-time students, is $7 (reduced to $5 if paid by the due date on the subscription invoice).
    [Show full text]
  • Towards Resolving Lamiales Relationships
    Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales.
    [Show full text]
  • Senecio Changii (Asteraceae: Senecioneae), a New Species from Sichuan, China
    RESEARCH ARTICLE Senecio changii (Asteraceae: Senecioneae), a New Species from Sichuan, China Chen Ren1*, Tian-Jing Tong1,3, Yu Hong1,3, Qin-Er Yang1,2 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People’s Republic of China, 2 Key Laboratory of Plant Resources Conservation and Utilization of Hunan Province, Jishou University, Jishou 416000, People’s Republic of China, 3 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China * [email protected] Abstract a11111 Senecio changii (Asteraceae: Senecioneae), a new species from Muli, Sichuan, southwest- ern China, is described. It is distinguished in Chinese Senecio s.s. by having lyrate-pinnati- sect to pinnatisect leaves and a single terminal large discoid capitulum which is somewhat nodding. Evidence from floral micromorphology, karyology and molecular phylogenetic analyses based on the nuclear ITS/ETS sequence data all support its membership within OPEN ACCESS Senecio s.s. Citation: Ren C, Tong T-J, Hong Y, Yang Q-E (2016) Senecio changii (Asteraceae: Senecioneae), a New Species from Sichuan, China. PLoS ONE 11(4): e0151423. doi:10.1371/journal.pone.0151423 Editor: William Oki Wong, Institute of Botany, CHINA Introduction Received: December 20, 2015 Senecio L. (Asteraceae: Senecioneae), as recently delimitated [1, 2], consists of ca. 1,000 species Accepted: February 27, 2016 with an almost cosmopolitan distribution. The genus is not particularly richly represented in China. In the Flora of China 20–21 published in 2011, 65 species were recorded in the genus Published: April 6, 2016 [3].
    [Show full text]
  • Listado De Todas Las Plantas Que Tengo Fotografiadas Ordenado Por Familias Según El Sistema APG III (Última Actualización: 2 De Septiembre De 2021)
    Listado de todas las plantas que tengo fotografiadas ordenado por familias según el sistema APG III (última actualización: 2 de Septiembre de 2021) GÉNERO Y ESPECIE FAMILIA SUBFAMILIA GÉNERO Y ESPECIE FAMILIA SUBFAMILIA Acanthus hungaricus Acanthaceae Acanthoideae Metarungia longistrobus Acanthaceae Acanthoideae Acanthus mollis Acanthaceae Acanthoideae Odontonema callistachyum Acanthaceae Acanthoideae Acanthus spinosus Acanthaceae Acanthoideae Odontonema cuspidatum Acanthaceae Acanthoideae Aphelandra flava Acanthaceae Acanthoideae Odontonema tubaeforme Acanthaceae Acanthoideae Aphelandra sinclairiana Acanthaceae Acanthoideae Pachystachys lutea Acanthaceae Acanthoideae Aphelandra squarrosa Acanthaceae Acanthoideae Pachystachys spicata Acanthaceae Acanthoideae Asystasia gangetica Acanthaceae Acanthoideae Peristrophe speciosa Acanthaceae Acanthoideae Barleria cristata Acanthaceae Acanthoideae Phaulopsis pulchella Acanthaceae Acanthoideae Barleria obtusa Acanthaceae Acanthoideae Pseuderanthemum carruthersii ‘Rubrum’ Acanthaceae Acanthoideae Barleria repens Acanthaceae Acanthoideae Pseuderanthemum carruthersii var. atropurpureum Acanthaceae Acanthoideae Brillantaisia lamium Acanthaceae Acanthoideae Pseuderanthemum carruthersii var. reticulatum Acanthaceae Acanthoideae Brillantaisia owariensis Acanthaceae Acanthoideae Pseuderanthemum laxiflorum Acanthaceae Acanthoideae Brillantaisia ulugurica Acanthaceae Acanthoideae Pseuderanthemum laxiflorum ‘Purple Dazzler’ Acanthaceae Acanthoideae Crossandra infundibuliformis Acanthaceae Acanthoideae Ruellia
    [Show full text]