Exodermal Function and Suberin Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PLANTLIFE.Ps, Page 1-21 @ Normalize
IMPORTANT ARABLE PLANT AREAS Identifying priority sites for arable plant conservation in the United Kingdom Important Arable Plant Areas BOB GIBBONS/NATURAL IMAGE BOB GIBBONS/NATURAL This fine show of Corn Marigold and Common Poppy in Dorset appeared for just one season, through lack of effective herbicide treatment. Report written by: Andrew Byfield and Phil Wilson Contents This report is a summarised version of a full paper authored by Phil Wilson (Wilson, in prep.). Summary 1 Acknowledgements A large number of people have contributed to this report, in the form of site and survey information, and in 1. Introduction 3 commenting on the Important Arable Plant Areas concept and criteria presented here. In particular we should like to thank Liz McDonnell (English Nature-RDS),Andy Jones (Countryside Council for Wales), 2.The rise and fall of arable plants 4 David Pearman (Botanical Society of the British Isles), Mark Stevenson (Defra), Simon Smart (FWAG Wiltshire), Michael Woodhouse (FWAG), Ron Porley (English Nature), Jill Sutcliffe (English Nature), Chris 3. Conserving arable plants: 8 Sydes (Scottish Natural Heritage) and Kevin Walker (Centre for Ecology & Hydrology); and Joanna Bromley, a way forward Jenny Duckworth, Nicola Hutchinson, Beth Newman, Dominic Price and Joe Sutton in the resources and UK conservation teams at Plantlife International. 4. Criteria for the selection of 10 The BSBI and Centre for Ecology and Hydrology Biological Records Centre is thanked for making available Important Arable Plant Areas the 10-km square coincidence map of rare arable plants reproduced as Map 1. 5. Initial findings 14 This report was commissioned as part of Plantlife International’s species recovery programme Back from the Brink, with generous financial support from English Nature and the Esmée Fairbairn Charitable Foundation. -
Network Scan Data
Selbyana 15: 132-149 CHECKLIST OF VENEZUELAN BROMELIACEAE WITH NOTES ON SPECIES DISTRIBUTION BY STATE AND LEVELS OF ENDEMISM BRUCE K. HOLST Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299, USA ABSTRACf. A checklist of the 24 genera and 364 native species ofBromeliaceae known from Venezuela is presented, including their occurrence by state and indications of which are endemic to the country. A comparison of the number of genera and species known from Mesoamerica (southern Mexico to Panama), Colombia, Venezuela, the Guianas (Guyana, Suriname, French Guiana), Ecuador, and Peru is presented, as well as a summary of the number of species and endemic species in each Venezuelan state. RESUMEN. Se presenta un listado de los 24 generos y 364 especies nativas de Bromeliaceae que se conocen de Venezuela, junto con sus distribuciones por estado y una indicaci6n cuales son endemicas a Venezuela. Se presenta tambien una comparaci6n del numero de los generos y especies de Mesoamerica (sur de Mexico a Panama), Colombia, Venezuela, las Guayanas (Guyana, Suriname, Guyana Francesa), Ecuador, y Peru, y un resumen del numero de especies y numero de especies endemicas de cada estado de Venezuela. INTRODUCTION Bromeliaceae (Smith 1971), and Revision of the Guayana Highland Bromeliaceae (Smith 1986). The checklist ofVenezuelan Bromeliaceae pre Several additional country records were reported sented below (Appendix 1) adds three genera in works by Smith and Read (1982), Luther (Brewcaria, Neoregelia, and Steyerbromelia) and (1984), Morillo (1986), and Oliva-Esteva and 71 species to the totals for the country since the Steyermark (1987). Author abbreviations used last summary of Venezuelan bromeliads in the in the checklist follow Brummit and Powell Flora de Venezuela series which contained 293 (1992). -
Divergent Chemical Cues Elicit Seed Collecting by Ants in an Obligate Multi-Species Mutualism in Lowland Amazonia
Divergent Chemical Cues Elicit Seed Collecting by Ants in an Obligate Multi-Species Mutualism in Lowland Amazonia Elsa Youngsteadt1¤a, Patricia Guerra Bustios2¤b, Coby Schal1* 1 Department of Entomology and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America, 2 Facultad de Ciencias Biolo´gicas, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru´ Abstract In lowland Amazonian rainforests, specific ants collect seeds of several plant species and cultivate them in arboreal carton nests, forming species-specific symbioses called ant-gardens (AGs). In this obligate mutualism, ants depend on the plants for nest stability and the plants depend on ant nests for substrate and nutrients. AG ants and plants are abundant, dominant members of lowland Amazonian ecosystems, but the cues ants use to recognize the seeds are poorly understood. To address the chemical basis of the ant-seed interaction, we surveyed seed chemistry in nine AG species and eight non-AG congeners. We detected seven phenolic and terpenoid volatiles common to seeds of all or most of the AG species, but a blend of the shared compounds was not attractive to the AG ant Camponotus femoratus. We also analyzed seeds of three AG species (Anthurium gracile, Codonanthe uleana, and Peperomia macrostachya) using behavior-guided fractionation. At least one chromatographic fraction of each seed extract elicited retrieval behavior in C. femoratus, but the active fractions of the three plant species differed in polarity and chemical composition, indicating that shared compounds alone did not explain seed-carrying behavior. We suggest that the various AG seed species must elicit seed-carrying with different chemical cues. -
Visit to Adelaide Botanic Garden Adelaide, South Australia 23-24
Visit to Adelaide Botanic Garden Adelaide, South Australia 23-24 th September 2006 Laura Fagan, Brad Howlett, Corina Till, Melanie Walker (Crop & Food Research) Background A visit was made to Adelaide Botanic Garden as part of the B3 IO3.5 Expatriate Plant Communities project. John Sandham, Collections Development Officer (see site visit report 28 Sept 06_Barratt) organised a garden duty officer, Enzo Vidoni, to guide the visit by Laura Fagan. Figure 1. Main entrance to Adelaide Botanic Figure 2. Wollemia Garden off Botanic Road. nobilis The Adelaide Botanic Garden is an historic garden on the Adelaide Plains with a dry Mediterranean climate and alkaline soils. The original 16 hectare (41 acre) garden was first opened to the public in 1857. Acquired by the Adelaide Botanic Garden in 1866, the adjacent Botanic Park is a glorious 34 hectare green oasis within easy walking distance of the Adelaide CBD. It is flanked on the Botanic Garden side by a stately avenue of Plane trees which were planted in 1874, and on the northern side by the River Torrens and the Adelaide Zoo. Century old Moreton Bay Fig trees from Queensland with their huge trunks and gnarled buttress roots add to the special quality of Botanic Park. The garden contains the oldest Australian forest tree species in the country including a single specimen of Wollemia nobilis and the largest Plain tree. Native and exotic plant collections are displayed including palms, cycads, bromeliads and many spectacular mature trees and shrubs. Rainforest species are grown in the temperate Australian forest and the Bicentennial Conservatory for tropical plants. -
The Smut Fungi (Ustilaginomycetes) of Restionaceae S. Lat
MYCOLOGIA BALCANICA 3: 19–46 (2006) 19 Th e smut fungi (Ustilaginomycetes) of Restionaceae s. lat. Kálmán Vánky Herbarium Ustilaginales Vánky (H.U.V.), Gabriel-Biel-Str. 5, D-72076 Tübingen, Germany (e-mail: [email protected]) Received 2 October 2005 / Accepted 25 October 2005 Abstract. Smut fungi of Restionaceae s. lat. were studied. Th ey are classifi ed into two genera, Restiosporium and Websdanea. Problems of species delimitation in these smuts are discussed. In addition to the nine known smut fungi, thirteen new species are described and illustrated: Restiosporium anarthriae, R. apodasmiae, R. chaetanthi, R. desmocladii, R. eurychordae, R. fl exuosum, R. hypolaenae, R. lepyrodiae, R. pallentis, R. patei, R. proliferum, R. spathacei, and R. sphacelatum. Key words: new species, Restionaceae s. lat., Restiosporium, smut fungi, taxonomy, Websdanea Introduction and stained in 1 % aqueous uranyl acetate for 1 h in the dark. After fi ve washes in distilled water, the material was Th e monocotyledonous Restionaceae is a remarkable family dehydrated in acetone series, embedded in Spurr’s plastic, of Southern Hemisphere, evergreen, rush-like plants. Th ey and sectioned with a diamond knife. Semi-thin sections are concentrated mainly in SW Africa and in SW Australia. were stained with new fuchsin and crystal violet, mounted Th e c. 320 species of African Restionaceae, in 19 genera, were in ‘Entellan’ and studied in a light microscope. revised by Linder (1985, 1991). Th e 170 species of Australian Spore ball and spore morphology was studied using Restionaceae s. lat. were published by Meney & Pate (1999) a light microscope (LM) with an oil immersion lens at a in a beautifully illustrated monograph. -
Crossing Borders Program Book of Abstracts
25th International EUCARPIA Symposium Section Ornamentals CROSSING BORDERS PROGRAM BOOK OF ABSTRACTS June 28th- July 2nd 2015 Institute for Agricultural and Fisheries Research Melle, Belgium Welcome Dear participant, EUCARPIA aims to promote scientific and technical co-operation in the field of plant breeding in order to foster its further development. To achieve this purpose, the Association organizes on a regular basis meetings to discuss general or specific problems from all fields of plant breeding and genetic research. The section Ornamentals was founded in 1971 and a first meeting took place in Wageningen, The Netherlands. This year the twenty-fifth symposium is hosted in Melle, Belgium. Ornamental breeding is involved with a great number of species and a continuous demand for novelties. The importance of ornamentals cannot be underestimated as they contribute to the daily joy of life. They decorate our homes, landscapes and gardens, ameliorate climate, abate the harmful aspects of pollutions and much more. “Crossing borders”, the central theme of this symposium, expresses our intention to go beyond traditional ornamental plant breeding. Recent boosts in fundamental knowledge offers opportunities for ornamentals. Interaction and discussion between plant breeders and scientists create new ideas. We are excited that besides the lectures of leading experts also 130 scientific contributions from all over the world are presented. Parallel with the scientific sessions we scheduled two workshops. In these workshops active participation of breeding companies will be stimulated. A post-symposium tour gives you the opportunity to discover the dynamic and innovative ornamental plant breeding industry in Belgium. It is my personal wish that the symposium can be the start of new longstanding collaborations and friendships. -
Phylogeny of the SE Australian Clade of Hibbertia Subg. Hemistemma (Dilleniaceae)
Phylogeny of the SE Australian clade of Hibbertia subg. Hemistemma (Dilleniaceae) Ihsan Abdl Azez Abdul Raheem School of Earth and Environmental Sciences The University of Adelaide A thesis submitted for the degree of Doctor of Philosophy of the University of Adelaide June 2012 The University of Adelaide, SA, Australia Declaration I, Ihsan Abdl Azez Abdul Raheem certify that this work contains no materials which has been accepted for the award of any other degree or diploma in any universities or other tertiary institution and, to the best of my knowledge and belief, contains no materials previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University digital research repository, the Library catalogue, the Australian Digital Thesis Program (ADTP) and also through web search engine, unless permission has been granted by the University to restrict access for a period of time. ii This thesis is dedicated to my loving family and parents iii Acknowledgments The teacher who is indeed wise does not bid you to enter the house of his wisdom but rather leads you to the threshold of your mind--Khalil Gibran First and foremost, I wish to thank my supervisors Dr John G. Conran, Dr Terry Macfarlane and Dr Kevin Thiele for their support, encouragement, valuable feedback and assistance over the past three years (data analyses and writing) guiding me through my PhD candidature. -
The Electronic Publication
The electronic publication Phänologische und symphänologische Artengruppen von Blütenpflanzen Mitteleuropas (Dierschke 1995) has been archived at http://publikationen.ub.uni-frankfurt.de/ (repository of University Library Frankfurt, Germany). Please include its persistent identifier urn:nbn:de:hebis:30:3-425536 whenever you cite this electronic publication. Tuexenia 15: 523-560. Göttingen 1995. Phänologische und symphänologische Artengruppen von Blütenpflanzen Mitteleuropas - Hartmut Dierschke- Zusammenfassung Mit Hilfe blühphänologischer Merkmale von Waldpflanzen wird die Vegetationsperiode in Phäno- phasen nach phänologischen Artengruppen eingeteilt. Diesen Phasen werden 1577 Blütenpflanzen Mittel- europas, vorwiegend solche mit Hauptverbreitung im planaren bis montanen Bereich, zugeordnet, aufge teilt auf 12 grobe G esellschaftsgruppen (А-M). Hieraus ergeben sich zwei Artenlisten mit phänologischen bzw. symphänologischen Angaben in gesellschaftsspezifischer Gliederung und alphabetischer Reihenfol ge (Anhang 1-2). Für die Gesellschaftsgruppen werden symphänologische Gruppenspektren erstellt und kommentiert. Abstract: Phenological and symphenological species groups of flowering plants of central Europe By means of phenological characteristics (time from beginning to full development of flowering) of forest plant species, 9 phenological groups have been established which characterize phenophases 1-9 of the vegetation period. Afterwards, 1577 plant species of central Europe were classified into these phenolo gical groups, especially those growing in lower to montane areas (i.e. excluding alpine plants). These species belong to 12 groups of plant communities (А-M ; some with subgroups a-b). On this basis two species lists are prepared, one with symphenological groups related to the community groups A- M (appendix 1) and one in alphabetic sequence (appendix 2). Symphenological group spectra were estab lished and are discussed for the community groups. -
Vicariance, Climate Change, Anatomy and Phylogeny of Restionaceae
Botanical Journal of the Linnean Society (2000), 134: 159–177. With 12 figures doi:10.1006/bojl.2000.0368, available online at http://www.idealibrary.com on Under the microscope: plant anatomy and systematics. Edited by P. J. Rudall and P. Gasson Vicariance, climate change, anatomy and phylogeny of Restionaceae H. P. LINDER FLS Bolus Herbarium, University of Cape Town, Rondebosch 7701, South Africa Cutler suggested almost 30 years ago that there was convergent evolution between African and Australian Restionaceae in the distinctive culm anatomical features of Restionaceae. This was based on his interpretation of the homologies of the anatomical features, and these are here tested against a ‘supertree’ phylogeny, based on three separate phylogenies. The first is based on morphology and includes all genera; the other two are based on molecular sequences from the chloroplast genome; one covers the African genera, and the other the Australian genera. This analysis corroborates Cutler’s interpretation of convergent evolution between African and Australian Restionaceae. However, it indicates that for the Australian genera, the evolutionary pathway of the culm anatomy is much more complex than originally thought. In the most likely scenario, the ancestral Restionaceae have protective cells derived from the chlorenchyma. These persist in African Restionaceae, but are soon lost in Australian Restionaceae. Pillar cells and sclerenchyma ribs evolve early in the diversification of Australian Restionaceae, but are secondarily lost numerous times. In some of the reduction cases, the result is a very simple culm anatomy, which Cutler had interpreted as a primitively simple culm type, while in other cases it appears as if the functions of the ribs and pillars may have been taken over by a new structure, protective cells developed from epidermal, rather than chlorenchyma, cells. -
Cibulnaté a Hlíznaté Rostliny
Cibulnaté a hlíznaté rostliny Přehled druhů 2: Asparagales Řád Asparagales rozsáhlý řád, 14 čeledí, některé obrovské semena rostlin obsahují černé barvivo melanin (některé druhy ho druhotně ztratily) Hosta PREZENTACE © JN Iridaceae (kosatcovité) Řád Asparagales Čeleď Iridaceae (kosatcovité) vytrvalé byliny s oddenky, hlízami, nebo cibulemi stonek přímý nevětvený, někdy zkrácený listy mečovité nebo čárkovité, dvouřadé se souběžnou žilnatinou květy jednotlivé nebo v chudých květenstvích (vějířek nebo srpek) – významné druhy okrasného zahradnictví subtropy až mírné pásmo 70/1750, ČR 3/12 PREZENTACE © JN Iridaceae (kosatcovité) Řád Asparagales Čeleď Iridaceae (kosatcovité) Zahradnicky významné jsou: mečíky (Gladiolus), frézie (Freesia), kosatce (Iris), šafrány (Crocus) Mezi další zahradnicky významné Iridaceae patří např. Crocosmia, Ixia, Tigridia © Saxifraga-Dirk Hilbers © Saxifraga-Inigo Sanchez Iris xiphium http://www.freenatureimages.eu/Plants/Flora%20D-I/Iris%20xiphium/slides/Iris%20xiphium%201,%20Saxifraga-Dirk%20Hilbers.jpg http://www.freenatureimages.eu/Plants/Flora%20D-I/Iris%20xiphium/slides/Iris%20xiphium%202,%20Saxifraga-Inigo%20Sanchez.jpg Iridaceae (kosatcovité) Iris (kosatec) zahrnuje i množství druhů které se neřadí mezi cibuloviny. Do cibulovin patří kosatce sekce Xiphium a Reticulata Sekce Xiphium - původní druhy pocházejí ze středomoří, hlavně Pyrenejí, zde rostou v 1500 m na mořem Cibule se 3-5 masitými šupinami, žlábkovité listy , stvol s 2-3 tuhými zelenými listeny a 2-3 květy, jsou modré se žlutým středem na vnějších okvětních lístcích, v přírodě kvetou koncem června Křížením původních druh této sekce hlavně Iris xiphium a I. tingitana vzniklo velké množství kutivarů – označované jako Dutch iris (holandské kosatce), pěstují se tržně v mnoha barvách (od bílé, žluté, modré až po fialovou) a prodávají jako řezané květiny např. -
Comparative Biology of Seed Dormancy-Break and Germination in Convolvulaceae (Asterids, Solanales)
University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) Kariyawasam Marthinna Gamage Gehan Jayasuriya University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Jayasuriya, Kariyawasam Marthinna Gamage Gehan, "COMPARATIVE BIOLOGY OF SEED DORMANCY- BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES)" (2008). University of Kentucky Doctoral Dissertations. 639. https://uknowledge.uky.edu/gradschool_diss/639 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kariyawasam Marthinna Gamage Gehan Jayasuriya Graduate School University of Kentucky 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) ABSRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Art and Sciences at the University of Kentucky By Kariyawasam Marthinna Gamage Gehan Jayasuriya Lexington, Kentucky Co-Directors: Dr. Jerry M. Baskin, Professor of Biology Dr. Carol C. Baskin, Professor of Biology and of Plant and Soil Sciences Lexington, Kentucky 2008 Copyright © Gehan Jayasuriya 2008 ABSTRACT OF DISSERTATION COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) The biology of seed dormancy and germination of 46 species representing 11 of the 12 tribes in Convolvulaceae were compared in laboratory (mostly), field and greenhouse experiments. -
Cuscuta Coryli Engelm
Cuscuta coryli Engelm. Common Names: Hazel dodder (3). Etymology: With Arabic origins, Kushkut, means dodder plant or parasitic plant; in New Latin, Cuscuta directly translates as dodder. Corylus converts to hazel in Greek. The species epithet, coryli, refers to the tendency to parasitize Corylus (1,2). Botanical synonyms (4): Cuscuta compacta var. crenulata (Engelm.) Choisy Cuscuta crenulata Engelm. Cuscuta inflexa Engelm. Epithymum coryli (Engelm.) Nieuwl. & Lunell Grammica coryli Family: Convolvulaceae, the morning glory family Quick Notable Features: ¬ Reduced stem and leaf structure ¬ Thread-like stem is 0.4-0.6mm in diameter ¬ Tiny flowers, ~1.5-2.5mm, with translucent yellowish-white petals, growing in cymose-paniculate clusters or compact glomerulate bunches ¬ Corolla lobes are inflexed ¬ Most often present in hazel (Corylus) fields Plant Height: The height of Cuscuta coryli is dependent on the host; H.L. Dean measured the length of a single dodder plant at nearly half a mile (14). Subspecies/varieties recognized (4): Cuscuta coryli var. coryli and Cuscuta coryli var. stylosa Engelm. Most Likely Confused with: Any other species of Cuscuta—in Michigan these might be: C. cephalathi, C. epilinum, C. epithymum, C. glomerata, C. indecora, C. pentagona or C. polygonorum. Habitat Preference: In Michigan, C. coryli parasitizes Amphicarpaea, Aster, Bidens, Ceanothus, Corylus, Euthamia, Mentha, Monarda, Solidago, Stachys and Symphoricarpos (6). It has also been noted in sandy areas along pond perimeters and low, dry surfaces (17). Geographic Distribution in Michigan: C. coryli is found in eight counties in Michigan’s Lower Peninsula: Cass, Kalamazoo, Monroe, Wayne, Oakland, St. Clair, Midland and Bay (6). Known Elevational Distribution: The altitudinal limit of C.